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Abstract

Aerial robotics can be very useful to perform complex tasks in a distributed
and cooperative fashion, such as localization of targets and search of point
of interests (Pols). In this work, we propose a distributed system of au-
tonomous Unmanned Aerial Vehicles (UAVs), able to self-coordinate and
cooperate in order to ensure both spatial and temporal coverage of specific
time and spatial varying Pols. In particular, we consider an UAVs system
able to solve distributed dynamic scheduling problems, since each device is
required to move towards a certain position in a certain time. We give a
mathematical formulation of the problem as a multi-criteria optimization
model, in which the total distances traveled by the UAVs (to be minimized),
the customer satisfaction (to be maximized) and the number of used UAVs
(to be minimized) are considered simultaneously. A dynamic variant of the
basic optimization model, defined by considering the rolling horizon concept,
is shown. We introduce a case study as an application scenario, where sport
actions of a football match are filmed through a distributed UAVs system.
The customer satisfaction and the traveled distance are used as performance
parameters to evaluate the proposed approaches on the considered scenario.
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1. Introduction

Technological advances in the area of unmanned aerial vehicles (UAVs, for
short), commonly known as drones, are opening new possibilities for creating
teams of vehicles able to perform complex missions with some degree of
autonomy. A possible application of a team of UAVs, equipped with camera
(referred to as camera-drones), is represented by a live sporting event filming,
where the use of the camera-drones gives the audience the feeling to be part
of the sport competition itself.

This kind of application falls in the general class of dynamic and dis-
tributed scheduling problems, whose aim is to ensure both spatial and tem-
poral coverage of given set of point of interests (Pols). In the specific case of
sport event, a Pol could be the movement of the ball that has to be followed
and filmed. The spatial coverage implies that the Pol where the event occurs
will be “covered”, whereas the temporal coverage is related to a time con-
straint associated to the event. In practice, the Pol needs to be covered when
the event starts and for the whole duration of the event itself. Based on the
previous considerations, it is evident that the strategic level of the mission
planning needs a dynamic scheduler, deciding what event the system should
consider at each time and which drone should be used. In addition, the
concept of soft time windows is used to take into account temporal coverage
constraints. Soft time concept allows us to find feasible scheduling schemes
by introducing a penalty in terms of lower satisfactions of the customers
every time a drone is not able to reach “quickly” a Pol.

In this paper, we present a mathematical formulation of the UAVs routing
problem in which conflicting objectives are optimized simultaneously. In
particular, the proposed multi-criteria optimization model takes into account
three objective functions: the total distances traveled by the UAVs (to be
minimized), the customer satisfaction (to be maximized) and the number of
used UAVs (to be minimized). The customer satisfaction is modeled by using
soft time windows constraints. Since the considered criteria are conflicting
objectives and thus it is not possible to find a unique optimal solution, the
e-constraint method [4] is applied to determine the set of efficient solutions.
In addition, in order to capture the dynamicity of the considered scenario, a
rolling horizon approach is defined.

Since the problem we deal with in this work belongs to the NP-hard



class, we have also considered some efficient heuristics and compare their
behavior with the benchmark obtained by using the optimization model, in
terms of minimization of distance traveled and maximization of customer’s
satisfaction. The rest of the paper is organized as follows. Section ” is
devoted to a presentation of the related works. The UAVs routing problem
and the proposed multi-criteria optimization model for its representation
are described in Section 3. The solution strategies developed to define the
set of efficient solutions are presented in Section 4, whereas their behavior is
evaluated experimentally in Section h. The paper ends with some concluding
remarks given in Section f.

2. Related Works

The main motivation for this work comes from the development of UAVs
that have many characteristics that make them attractive for cooperative
monitoring applications [1h]. UAVs can be tailored for a specific mission
and are typically low-cost. These characteristics make them very useful in
disaster related situations [?| [%] and able for performing complex missions
with some degree of autonomy. Typically, this kind of networks is mainly
used in Information, Surveillance and Reconnaissance missions (ISR) [11]. In
some cases ISR can be represented effectively through dynamic scheduling
problems.

In this work we address a task scheduling problem combined with the
motion planning one, aimed at reaching a certain coverage degree both spa-
tial and temporal. This specific application belongs to the general class of
Dynamic Vehicle Routing (DVR) problem. For this reason, in what follows
the terms “vehicle” | “drone” and “UAV” are used in an interchangeable way.

Similarly to [11], we focus on mission planning at the strategic level, de-
ciding what event the system should consider at each time and which vehicle
must be used. In [I1] authors consider available a probabilistic description

of the environments dynamics, whereas we consider a rolling horizon ap-
proach to face with the dynamicity of the environment. Moreover, authors
in [11] add switching costs penalizing the travel of vehicles between the sites
to inspect, while we consider the costs associated to the “transition” of a
vehicle from a point to another point, by considering explicitly the distances
associated to.

Another example of dynamic scheduling application has been considered
in [16]. They consider m aircrafts tracking the positions of n submarines with



m < n, so that aircraft has to change task from time to time if each submarine
needs to be monitored. Authors consider a restless version of the Multi-
Armed Bandit Problem (MABP), in order to accomplish simultaneous events
observation with a smaller number of aircrafts. In the specific application
scenario we considered in this work, we only consider an active event at each
time, but the proposed optimization model is defined to handle simultaneous
events and heuristics can easily be tailored to consider events occurring at
the same time. Moreover, in [i16] authors do not introduce explicitly the
soft time windows concept. In fact, while a submarine is under observation
information associated to are gained. While it is not, information is being
lost. In our approach, we explicitly introduce the satisfaction parameter in
order to quantify the degree of observation of the events and we measure the
effectiveness of the approaches in terms of degree of satisfaction and in terms
of costs, namely, the distance traveled by UAVs.

In [%] the main goal is to provide overview images of certain regions with
a specified resolution. Typically they need multiple images in order a cer-
tain area to be covered. Optimization criteria are minimizing the number of
pictures and energy consumption and maximizing the coverage. They formu-
late their problem as an integer linear programming model. In practice, they
consider only a spatial coverage type while the optimization formulation and
the heuristics we derived focus on both spatial and temporal coverage. In
fact, we formulate our problem as a particular instance of the VRP.

An example of dynamic UAV routing problem is considered in [r]. Specif-
ically, they focus on scheduling UAVs in military operations subject to dy-
namic movement and control constraints. In their approach, the authors do
not consider explicitly time windows concept while we need to introduce ex-
plicitly the concept of time in order to make the dynamic scheduling more
effective with time constraints applications. Moreover, they consider a cen-
tral far controller and take into account of this in the mathematical model.
While, we assume UAVs able to communicate and self-organize in a dis-
tributed fashion. In [1/] authors consider a VRP with soft time windows in a
fuzzy random environment. They focus on the minimization of the distance
traveled and the maximization of the satisfaction of the customers. The con-
cept of soft time windows is realized through the concept of fuzzy random
environment.



A Customer's
Satisfaction

Smax

o —

toith Lstart tstop Time

Figure 1: Event soft time window

3. Problem Statement and Mathematical Formulation

The considered scenario is characterized by a set of UAVs that fly over a
finite dimension area in order to reach all the events, which occur in a finite
time horizon. The satisfaction degree achieved by the customer is determined
by considering the instant of the time that a drone reaches a particular event
location. Indeed, it is a measure of the temporal event coverage.

To better understand how the described scenario can be mathematically
represented as a particular instance of the VRP with Soft Time Windows
(VRP-STW), it is useful to introduce its key components, namely events,
UAVs movement and customer satisfaction.

3.1. Bvents

The particular scenario under consideration is spatially located inside a
limited area and temporally placed in a finite time frame. In this space-time
location, it is assumed that the events occur in a random way.

An event is spatially characterized by the z-y-z coordinates, to identify
the location inside the area. The Euclidean distance is used to evaluate the
distance among the events.

As far as the temporal dimension is concerned, an event is characterized
by a finite time frame, representing its time window (Fig. 1). In this context,
the time is is related to the instant at which the drones meet the event to be
monitored.

The time window associated to each event is defined by three instants
of time: €pipth, tstart a0d tgp. The first, tp4n, represents the event’s birth,
instead the instant of the time when the event starts working is tg4+. The
instant in which the event terminates coincides with #y,.

In order to better explain the meanings of the three different instant of
times in terms of their relation to the events, it is useful to consider the



following example, related to the refueling of the cars during a car race.
Most race cars do not carry enough fuel to complete a race from start to
finish. They must return to the pit area for more fuel, which is commonly
called pit stop. During the pit stop, team’s pit crew quickly puts new tires
on the car while fueling to the car.

Let’s consider an area where each race team has a space reserved for the
refueling of its car: a car must reach its pit area to be refueled. In our
example the event consists of the car refueling. The UAVs, flying over the pit
area, must reach all the events in order to film the refueling of the race cars.
The three instant of the times characterizing each event, can be described as
follows:

® ty;4n: is the instant of the time when the race car reaches its pit area;
® 1. is the instant of the time when the refueling takes place;

® ty0p: is the instant of the time when the refueling operations are com-
pleted and the race car leaves the pit area.

Naturally, a UAV knows a new event only when the race car reaches its
pit area and the time to achieve that area could be greater than the time
between ty;,4, and tgq+. Therefore the satisfaction of viewers will depend on
the instant of arrival of the drone.

Another important assumption for the development of the mathematical
model is related to the first m actions. They are dummy event locations
used to represent the UAVs initial positions. Thus, no time windows are
associated to these events, but they simply are born at the scenario starting
time instant and remain active for the all duration of the scenario itself.
In addition, since the drones starting positions must not be reached, these
events do not influence the customer’s satisfaction degree.

Similar considerations are valid for the last event: it does not contribute
to the evaluation of the customer’s satisfaction, but unlike the initial events,
a time window is associated with it and it represents a “useful position” that
all the drones must reach. The corresponding movements, however, do not
contribute to the total distance travelled by the drones. It can be viewed as
a meeting place where, for example, it is possible to perform maintenance
operations.

All the other events locations must be reached by exactly one drone and
it must stay in the event location until the time window ends.



3.2. UAVs movement

As far as the characterization of drones movement is concerned, we refer
to UAV as any aircraft capable of moving autonomously at constant and
homogeneous speed, for which a maximum feasible distance to be traveled
is defined. We assume that UAVs are equipped with cameras, a positioning
system, storage memory and a wireless transceiver. We assume that the units
are able to communicate to each other in a distributed fashion and are able
to self-organize. Moreover, they are capable of identifying and localizing a
target by some radio frequency identification tag applied on it or by using
a sensor network [13] [U] [14] placed at the sides of the field and capable of
locating the target and communicating to the drones. They can move in
the three-dimensional space. However, for the sake of the simplicity, in this
paper the third dimension is not taken into account. Indeed, we assume that
the drones lie and move on a plane parallel to the plane where the events
occur.

An event is monitored by a drone when the event position represented by
the z-y coordinates coincides with the drone z-y location.

3.3. Customer satisfaction

The customer satisfaction represents a measure of the fulfillment of cus-
tomer expectations and it is related to the way in which the different events
are monitored by the drones.

Consequently, it depends on the instant of time in which a drone reaches
the event’s location. More specifically, if the drone arrives at the events
location before ¢4+, the customer satisfaction assumes the maximum value.
It decreases linearly and it becomes 0 when the event ends before the drone
could reach it.

Mathematically, the satisfaction obtained by the customer (S¥), as in Fig.
I, can be described as follows:

k
Smaa: tarr,i < tstart,i
tk i —tstart, k
arr,i 5 . .
_Smax : tstop i—tstart.i + Smax tstm‘t,z S tarr,i S tstop,z (1)
k )
0 tarr,i > tStOPﬂ

where S¥ is the customer’s satisfaction obtained for the event i reached by
vehicle k, S,,q, is the maximum customer satisfaction, t’aﬁ,m is the arrival time

of drone £ in the position of event i, {544, and ¢4,y ; are, respectively, start
and stop instant of event i.



It is worth observing that the initial and final events are not taken into
account when evaluating the average satisfaction perceived by the customer.

3.4. Modeling through graph theory

The UAVs single-objective routing problem has been introduced in [10].
In this section, we consider the trade-off among three conflicting objectives,
namely the total traveled distance, the customer’s satisfaction and the num-
ber of used UAVs. The mathematical model presented in this paper can be
viewed as multi-criteria extension of the model in [111] and it can be described
by using the graph theory as follows.

Let G = (V,A) be a directed graph where N = {1..n} is the vertices
set and A is the arcs set. The vertices ¢ with ¢ = (m + 1)...(n — 1), where
m is the number of available UAVs, denote the events to be reached and
monitored, these events contribute to the customer satisfaction evaluation,
whereas the vertices j with 7 = 1...m identify the drones starting position
and n represents the final event.

A non-negative cost d;; is associated to each arc (i,j) € A, representing
the Euclidean distance from vertex i to vertex j. It is assumed that d;; = oo
with ¢ = 1...n, that is loops on the same event are prohibited.

Let us consider a set of m (0 < m < n) identical drones, constrained by
a maximum allowed traveled distance d¥, , k = 1,...,m initially positioned
at the vertices j with j = 1...m, and able to move in two dimensions with
constant and homogeneous speed v. Each drone must follow at most one
route, starting from its initial position, including a set of events and ending
to n. Each event should be reached by exactly one drone.

Each vertex is associated with a time window, in which the corresponding
event 7 remains active [tpireni: tstopi] Where ¢ = (m + 1)..n. A drone that
reaches an event must stay in the event position until the corresponding
time window ends. Each event is associated with a satisfaction function
(Fig. 1) and the instant of time in which a drone starts monitoring an event
influences the satisfaction obtained by the customer.

The goal is to find a route to be followed by each drone such that all the
events are monitored and some criteria are optimized simultaneously.

3.4.1. Notations and Definitions
In order to describe the proposed mathematical model it is useful to
introduce the following notations and definitions.



A =L x W size-limited area;
[0...7] time horizon;

N = {1..n} set of events spatially distributed in A and temporally
distributed in [0...T];

M = {1...m} drones (vehicle) able to move in 2 dimensions with con-
stant and homogeneous speed v (0 < m < n);

d® . maximum feasible distance traveled by vehicle k;
1,...,m drones initial positions;

n drones final position;

hirth i, tstarti a0d tsop; born, start and stop time instant of the event 4
Vie N\{1,...,m};

tbirth,i < tstart,i < tstop,i VZ S N \ {17 s 7m}7

tstops < T'Vie N\{l,...,m et n} and typ, = T (hypothesis in order
to conclude the events before the scenario end);

d;; Euclidean distance between event ¢ and j Vi,j € N;

tk..; arrival time instant of vehicle k to event ¢ Vi € N\ {1,...,m}
and Vk € M;

th.p: departure time instant of vehicle &k from event i Vi € N'\ {n} and
Vk € M;

th = dTJ time required by vehicle £ to go from event i to j Vi,j € N

and Vk € M;

ajfj binary variable used to indicate if drone k travels along the arc i-j

& 1 if vehicle k travels along arc (i,j)
0 otherwise



e y¥ binary variable to indicate if drone k reached the event i

Y, =

K 1 if vehicle k reaches the event i
0 otherwise

e S¥ customer satisfaction achieved when the event i is reached by drone

kVie N\{1,...,met n} and Vk € M. The mathematical description
is given in (1);

e S,.. max satisfaction obtainable by the customer in a single event;

o U =>"" Z;:;L 1 S¥ total customer satisfaction, i.e. the sum of cus-
tomer satisfaction perceived in all events;

m n—1
\If _ D ohel Zi:m+1 Szk

average customer satisfaction;
n—m—1

e Wy = U x 100 percentage average customer satisfaction;
e VU, .. minimum level of ensured satisfaction;

o 1, = (v,09,..05) with vy € {1,...,m}, v, = n, va..v5_1 € N\
{1,...,m et n} and Vk € M. Each drone has to travel a route that
starts from its initial position and finish at final position.

It is worth observing that a piecewise linear function is used to represent the
customer’s satisfaction, given in (1). In order to linearize this function, the
following variables are introduced:

e 07, 0% and 65 binary variables defined as follows:

5k‘ _ 1 if t}acm«’i S tstart,i
L 0 otherwise

(5k _ 1 lf tstart,i < t];rr,i S tstop,i
2 0 otherwise

ko
O5; =

1 if tstop,i < tfwr,i < tStOPKn
0 otherwise

10



ko ok k : :
21;, 25; and z5; non-negative variables.

The function (1) for each i € N\ {1,...,m} and for each k € M assumes
the following form:

S = Spad + Syanh + (L) &

tstop,'i - tstart,i

with the variables constrained as follows:

03; + O + 0y = 1
0<2h < tstart,i * St
0<zh < (tstopi — tstarti) - 85
0 < 25 < (tstopn — tstop) - 03;

3.4.2. Assumptions

The time and spatial distribution of events are known in advance;
All the events (except the last one) must be reached by exactly 1 drone;
Drones start from different positions;

Drones, that accomplished their tasks, converge towards a dummy lo-
cation (last event), where maintenance operations on the vehicles can
be performed. The distance traveled to reach this final position is not
taken into account in the total cost evaluation;

All events € N \ {1,...,m} have their own soft time window already
presented in Fig. 1.

3.4.3. Mathematical model

The UAVs routing problem with soft time windows has been mathemat-
ical represented by defining a multi-criteria optimization model. The con-
sidered objective functions are related to the following three specific aspects:
minimize traveled distance, maximize average customer satisfaction and min-
imize the number of used vehicles.

In the evaluation of the first two objectives, the events corresponding to
the initial drones’ position and to the last dummy position are not taken
into account. The third criterion is determined by considering the number of

11



vehicles that reach the last event directly from their initial position, without
reaching other events. These UAVs represent the vehicles that are not used.
The proposed formulation can be mathematically represented as follows:

—1 n—

m n—1 1
min E E E d;j - xZ
k=1 i=1

j=1
max \Tf
m m
min (m— 3° 1k
k=1 i=1
Subject to:
dyb=1  VieN\{n}
k=1
D n=m
k=1
yt>ab VijeNkeM
yr >l Vi,jeNkeM
> al=1 VkeM
i=1 j=m+1
n—1
dab, =1 VkeM
=1
n—1

1 k=1

<.
Il

n

ix] 1 Vie N\ {n}

=1 k=1

.

foZ—lejj:O Vze N\ {{1,....m}u{n}}, ke M

2 =0 Vie N, ke M

1

12

le vie N\ {{1,....,m}u{n}}



>N ak=0 VkeM (15)
i=1 j=1
th,;=0 Vie{l,...om}, keM (16)

n

tl(irr] = Z(tsep,i + tf—m) ’ zfg Vj €N \ {17 te 7m}a ke M (17)
i=1
tflepz

tzep7i2t5t0p7i-yi ViEN\{{l,...,m}U{n}}, ke M

>0 YieN, keM

(18)

(19)

thepi Ststopn - yf Vi€ N, ke M (20)
thepm = tstopn VK EM (21)
thm <totopn  VkEM (22)

(23)

(24)

(25)

(26)

O+ o0h + 0k =yf  VieN keM
0< 2l <tyarei-0F, VieN, keM

0 < 25 < (tstopi — tstarti) -0, Vi€ N, ke M 25

0 < 25 < (totopn — tstopi) - 04, Vi€ N, ke M 26

Sk = Smméfi—i—Smax(SSpL( Smas Vie N\{1,...,m}, ke M
Lstopi — Ustart,i (27>

SF=0 Vie{l,....m} keM (28)

th i = totari - On; + toopi - 05 + 20+ 25, + 25, Vie N, ke M (29)
The tree objective functions represent the total traveled distance (7) to

be minimized, the average customer satisfaction (3) to be maximized and the
number of used vehicles (4) to be minimized.

Each event (except the final one) must be monitored by exactly one drone
(1), while the last event must be reached by all the drones (f). The event j
must be monitored by the drone that followed the path that goes from event
ito g (1-%).

All vehicles must start from their initial position and stop in the final
event position (Y-111). For each event, exactly one path entering and outgoing
from it must be present in the final solution (11-13). The drones cannot
follow loops, i.e. they cannot return to an event previously monitored (14)

13



and cannot reach the other drones’ initial positions (15). The arrival time
to the initial position is set equal to the starting simulation instant (i6),
instead, the arrival time to the event j (excluding the initial event) by the
vehicle £ must be equal to time of departure from event ¢ added to the time
it takes to go from i to j (17).

A drone can leave an event only after the simulation time is started (1%),
the event work is finished (19) and before the end of the simulation time
horizon (20).

A drone must never leave the last event, therefore, the departure from
final event has only a symbolic value equal to the end of the simulation (21)
and a vehicle must reach the final position before the end of the simulation
period (??). The constraints (?3-29) are used to linearize the customer’s
satisfaction condition (1).

3.5. Case Study: Sport Fvent Filming Problem

In section 3 4 3, we modeled the UAVs movement in order to make them
able to reach a set of events and stay in these positions until the end of the
event itself.

The proposed model is useful for representing many real applications [¥]
[17] [6]. In this paper, we consider the Sport Event Filming Problem (SEFP)
as a case study.

In many sport events, a very large number of spectators watch the game
on TV (or on the Internet) where the event is broadcasted (or streamed). In
the last few years, new techniques and devices have been developed by event
broadcasting companies in order to attract new spectators. Consequently,
new types of cameras, such as automatic cameras and spider cameras, have
been developed.

In this context, the challenge is to organize a fleet of drones able to fly
over a limited field and film a sport event with the objective of maximizing
the satisfaction experienced by customers who watch the game on TV.

In order to apply the proposed model to the SEFP, we assume that a
match is the scenario in which a set of game actions (i.e. the events of
the generic model) is randomly deployed in space-time Pol. Game action is
characterized by a quadruple (z,v, z,t), where (z,vy, z) are the coordinates
of the position in a 3-dimensional spatial reference system and ¢ is the time
instant of the game action in that position. Drones will follow the actions
by moving on the correspondent (z,y) — coordinates. Fach game action is
associated with a specific Soft Time Window (Fig. 1) where:

14



® tyi4n: is the instant time when the possession of the ball is gained by
another player;

® tyar: is the instant time when the player who has possession of the
ball starts performing some movements with it;

® 150 is the instant time when the player in possession of the ball loses

it;
e T, is the time interval between the loss of the ball by one player
(tstop) and the gain of it by another (tpi¢n).

An example of game action is given in Fig. 7, where, in subfigure 1, the ball
reaches the player 1 and a new game action borns. In subfigure 2, player 1
starts its action by moving and in subfigure 3 player 1 stops its action when
he loses the ball, passing it to the player 2. In subfigure 4 the ball reaches
player 2 and a new action borns.

We will not use T, in optimizing the spectators satisfaction because we
assume that an usual camera can follow the movement of the ball from one
player to another for the whole event. The goal is to compute the movements
of a drones set equipped with a camera, to achieve all the game actions and
film them.

An additional requirement in order to adapt the generic mathematical
model to the SEF problem is: the events (game actions for SEF problem)
must be sequential and not occur simultaneously, in fact the couple player-
ball are in only one time-space location at each time and game actions are
serial. To ensure these requirements, we set tsop; < tpirtn; Vi,j € N\

{1,...,m} with ¢ < j. In addition, the constraints (14) are modified as
follows: '
»aki=0 VieN keM (30)
j=1

With the introduction of these constraints, the actions are causal in the
time, that is drones cannot reach an action before the action occurs and are
forbidden to produce loops.

4. The solution approaches

In this section, the solution approaches proposed to address the multi-
objective UAVs routing problem are described in details.

15



Figure 2: Example of game action

Two different solution strategies have been defined to address the UAVs
routing problem. The former (i.e., the e-constraint method) assumes that all
the events are known in advance and allows to determine an approximation
of the Pareto front, the latter is a rolling horizon strategy. In what follows,
the proposed methods are described in details.

4.1. The e-constraint method

Several approaches for solving multi-objective optimization problems have
been proposed in the scientific literature [/]. In this paper, in order to de-
termine the set of efficient solutions, the e-constraint method, introduced in
[4], is applied.

16



The main idea of this method is to select only one of the objective func-
tions to be optimized, whereas all others are converted into constraints. Thus,
a set of e-constraint problems P;(¢), one for each objective i = 1...k at a time
is solved.

The e-constraint method is applied to the bi-objective version of the UAVs
routing problem, where the total distance traveled and the customer’s satis-
faction are taken into account. The third objective is tackled as a parameter
of the optimization procedure, in the sense that the number of UAVs to be
used is fixed at each iteration of the overall algorithm. However, it is impor-
tant to point out, that since m varies within the range of meaningful values
that can be assigned to the number of UAVs, the overall optimization process
allows us optimizing all the three objectives simultaneously.

Thus, let m a given number of available drones, the following two opti-
mization problems (i.e., Pi(e3) and Ps(e1)) are solved iteratively.

m n—1n—
minimize Z d;j - xfj (31)
k=1 i=1 j=1
subject to:
re X (32)
\If > €9 (3?))
maximize ¥ (34)
subject to:
reX (35)
m n—1n—1
S Syt < (36)

k=1 i=1 j=1

where X denotes the feasible region defined by the constraints (h-13), (15-29)
and (30).

Thus in the first model we optimize the total traveled distance and we
take into account the customer’s satisfaction as an e-constraint; in the latter,
the customer’s satisfaction is optimized and the total traveled distance is
handled as an e-constraint. At each iteration, the value of the parameters €;
and €y, are adequately modified.

17



4.2. A rolling horizon strategy

We defined a rolling horizon approach in order to capture the dynamicity
of the considered scenario. In the static case, it is assumed that all of the
events are know in advance, instead in the dynamic case this assumption is
relaxed: events can start at any time of the considered time horizon.

In order to handle this specific situation, the route to be followed by the
drones are planned by assuming the availability of partial known information
about the position and the instant of time in which each event takes place
[17]. In particular, let n be the number of events to be monitored, it is
assumed that only a certain number 7 of events (0 < r < n) is known at each
decision epoch. Thus the proposed static model is used to define the best
UAVs routing, by considering only the known events and no information on
future events is considered.

When a new set of 7 events become available (i.e., in the subsequent de-
cision epoch), the new routing is determined by considering as initial drones’
positions those obtained in the previous optimization.

5. Computational Experiments

The computational experiments have been carried out on Hewlett-Packard
m9460it, Intel Core 2 Quad Q9400 2.66 GHz and 4 GB Ram with operating
system Windows Vista 64 bit.

To solve the proposed mathematical model, we used LINGO 9.0 ([i]),
a tool designed to build and solve different optimization models in efficient
way.

In order to assess the behavior of the considered solution approaches, the
SEFP as been considered as a case study. In particular, the specific scenario,
whose main characteristics are reported in Table I, has been considered in
the computational phase.

The number of drones m has been varied in the interval [1,...,6]. We
considered 6 as the maximum number of drones since the application scenario
is based on a sport event whose field size is small. In fact, we will observe to
the follow that difference of performance is not so appreciable when we pass
from 5 to 6 drones. The set of efficient solutions obtained by the e—constraint
method is depicted in Fig. 3.

In order to show the effectiveness of the proposed solution approach, we
have also carried out computational experiments by treating the problem as
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Parameter ‘ Value ‘
Size of the game field (L x W) 110 x 80 [m?]
Action Min/Max Duration (tpirtn, — tstop) {0.2 + 6} [s]
Number of game actions 20
Ball Min/Max Speed {1 +40} [m/s]
Coordination Time (T ,o0rq) 0.2 [s]
Max Satisfaction (Syaq) 1
Actions Spatial and Temporal Distribution random
Number of run for each scenario 1000
Confidence interval of 95%

Table 1: Values of the relevant parameters used for the experimental testing
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Figure 3: Graphical representation of the Pareto front obtained with the

e-constraint method

a single-objective optimization problem, where a convex combination of the

three objective functions has been considered.

The related problem assumes the following form:

m n—1n—1 m m
minimize o Z dij -y — BU+ v (m— Z fon) (37)
k=1 i=1 j=1 k=1 i=1
subject to:
reX (38)
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where «, [ and v are non-negative parameters chosen in such a way that
a+pf+v=1

To generate non-dominated solutions, the single-objective optimization
problem has been solved for different values of these parameters and different
values of the number of drones m. Also in this case m has been chosen in
the interval [1,...,6], whereas «, 8 and - have been selected as in Table
7. The related results are reported in Fig. 4. By observing Fig. 4, the
advantage of the use of the e-constraint method is evident. The superiority
of this approach is underlined by the results reported in what follows.

o] b]7]

NI R Wi O O =
NI ONI-H =i O~ O
NN = O =i = O O

Table 2: Values for the parameters o, § and ~

Total Travelled Distance
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Figure 4: Graphical representation of the Pareto front obtained by solving
the single-objective optimization
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More specifically, in order to compare the two considered solution ap-
proaches, the quality of the Pareto approximation set is evaluated by consid-
ering the diversity of the set. In particular, the spacing metric proposed by
Schott in [? ] is used. The aim of this metric is to evaluate how evenly the
points in the approximation set are distributed in the objective space. It is
defined as follows:

1 o~ -
A= | —— (d-d,)?
n—li;( )

where d; = minj—y ;i ’ffj ff| + |f21 - f§| + }f?f — f3|, f1, f2, fs represent
the considered criteria and d is the mean of d;, e =1,... 7.

The spread metric S introduced in [»] has been also considered. This
metric is used to evaluate if the set of solutions obtained span the entire
Pareto optimal region and it is defined as follows:

e da 2 |di — d]
Z%:l de, + (n—1)d
where df represents the Euclidean distance between the extreme solutions
of Pareto optimal front and the boundary solutions of the obtained non-
dominated set corresponding to m —th objective function; d; denotes the Eu-
clidean distance between neighboring solutions in the obtained non-dominated
solutions set and d is the mean value of these distances. The smaller the value
of S, the better the diversity of the nondominated set.

It is worth observing that this metric works only for bi-objective opti-
mization problems. Thus, in order to evaluate S, we have considered only
two of the three objective functions that is the total traveled distance and
the customer’s satisfaction.

The obtained results are given in Table 3, they underline that for the
considered scenario the e-constraint method outperform the single objective
optimization approach.

Three different scenarios have been considered to evaluate the perfor-
mance of the proposed rolling horizon approach, obtained by varying the
value of the parameter r, representing the number of events known at each
decision epoch. In particular, r has been set equal to 3, 4 and 5. In addition,
at each time instant of the rolling horizon, for a given number of drones, we
solve a single-objective optimization model in which the total distance trav-
eled by the drones is minimized and the customer’s satisfaction is handled
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e-constraint | Single Objective
Method Optimization
S 19.08 27.50
A 1.00 1.13
Number of
Pareto Solutions 19 15

Table 3: Values of spacing and spread metrics and number of efficient points
for the e-constraint method and the single objective optimization approach

as a constraint. The number of drones m has been set equal to 1, 2, 3, 4, 5
and 6, whereas the lower limit on the customer’s satisfaction has been chosen
equal to 0.50, 0.90. The case in which U is not constrained has been also
considered.

The related results are given in Fig. 5, they clear underline that the best
performance are obtained when r = 3.

This behavior can be explained by observing that the lower r, the higher
the number of the times in which the model is solved and thus the better is
the representation of the dynamicity of the problem.

In order to evaluate the performance of the proposed rolling horizon strat-
egy, we have compared this approach with the heuristic techniques proposed
in [10], where the UAVs routes are re-optimized every time a new action
starts. The sub-optimal solution is computed action-by-action by the drones
that cooperate by exploiting their communication capabilities in a distributed
and self-organized fashion.

For the sake of completeness, in what follows, we give a brief description
of these heuristics.

NN Nearest Neighbor
The basic idea of this approach consists in the selection of the UAV
closer to the action every time a new event occurs. The Nearest Neigh-
bor technique has been effectively exploited for DVR problems [3].

NN-SR Nearest Neighbor with Specular Repositioning
In the Nearest Neighbor with Specular Repositioning (NN-SR) tech-
nique considers two drones for every action: when one of drones, k, is
chosen to move to film an action for which it is the nearest neighbor,
the drone that is closest to the specular position of the action position,

k, moves specularly in respect of the first.
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Figure 5: Pareto Front determined by the rolling horizon approach

NN-QSR

BMI

Nearest Neighbor with Quasi-Specular Repositioning

The Nearest Neighbor with Quasi-Specular Repositioning (NN-QSR)
technique is a generalization of the NN-SR technique. The idea behind
the NN-QSR is to make the center of the field be an attractor for k
while it is repositioning in the direction of k’s specular position. The
attraction strength on the movement can be modulated through an
appropriate detour factor, 0 < 5 < 1. More precisely, if (24, ya), L, W
are the positions of the new action, the length and the width of the
field, respectively, then & will move to (L - (1 — g) — .- (1= 0),W -

(1-=5) —va-(1=5)).
Ball Movement Interception

The Ball Movement Interception concept is to use the interval of time

between 1, and tyen,,, to forecast the location of next action.
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By computing ball trajectory estimation before the ball reaches the
next player, UAVs can start moving towards the straight line between
the position of the previous action and that of the player expected to
receive the ball. So, we introduce a new family of techniques, called
Ball Movement Interception (BMI), which includes all the previous
techniques augmented by this knowledge: Ball Movement Interception
(BMI), Ball Movement Interception with Specular Repositioning (BMI-
SR) and Ball Movement Interception with Quasi-Specular Repositioning
(BMI-QSR).

The heuristic approaches described above have been implemented in Mat-
lab and have been simulated in a MacBook 2.4 GHz Intel Core 2 Duo and 4
GB Ram with operating system Mac OS X 10.5.8.

The related results are given in Tables 4, where for each heuristic and
for each number of the available drones, indicated with m, the sum of the
distance traveled by each UAV (i.e. the total distance) and the average
customer’s satisfaction are given.

From the results we can argue as, in terms of satisfaction, BMI-based
techniques generally behave better than techniques without BMI, when the
number of nodes is smaller. In fact, the gap in terms of satisfaction level is
around 30% when only a UAV is considered and ~ 8% when the number of
drones is 3. This better level of satisfaction is paid in terms of total distance
traveled. In fact, the difference in terms of distance between the BMI-based
and no-BMI-based approaches can achieve values greater than 500 meters
when the number of UAVs is smaller than 3. When the number of devices
increases (> 4), we can notice as performance behaviors in terms of both
satisfaction and total distance between the two macro-class of approaches
(i.e. BMI-based and no-BMI-based) decreases. These considerations allow us
to conclude that BMI-approaches are preferable when the number of available
devices is smaller.

The set of efficient solutions determined by applying all the considered
heuristics is given in Fig. n.

From the collected results, it is evident that, for the considered scenario,
the rolling horizon approach behaves the best. Indeed, the solutions deter-
mined by this last strategy dominates those identified by the heuristics.
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Heuristic m Total Customer’s m Total Customer’s

Distance Satisfaction Distance Satisfaction
(meter) (meter)

NN 1 931.91 0.55 2 748.57 0.73
NN-SR 1 926.85 0.54 2 1231.14 0.75
NN-QSRps5 1 937.23 0.54 2 1041.40 0.78
NN-QSRpg 1 929.17 0.54 2 1036.66 0.78
NN-QSRg7 1 935.73 0.54 2 1043.81 0.77
BMI 1 1076.62 0.85 2 935.72 0.87
BMI-SR 1 1084.90 0.84 2  1667.66 0.86
BMI-QSRg¢ 1 1087.39 0.84 2 1275.02 0.87
BMI-QSRo7 1 1079.75 0.84 2 1252.38 0.88
BMI-QSRgs 1 1085.62 0.84 2 1228.86 0.88
BMI-QSRge 1 1083.12 0.85 2 1227.86 0.88
NN 3 606.17 0.81 4 520.72 0.86
NN-SR 3  1063.05 0.80 4 849.67 0.85
NN-QSRos5 3 901.14 0.82 4 772.99 0.85
NN-QSRog 3 890.38 0.81 4 768.49 0.84
NN-QSRo7 3 884.44 0.81 4 755.39 0.85
BMI 3 824.04 0.89 4 728.95 0.90
BMI-SR 3 1371.47 0.89 4 1190.80 0.90
BMI-QSRo¢ 3 1150.63 0.89 4 1029.34 0.90
BMI-QSRo7 3  1129.05 0.89 4 1014.36 0.91
BMI-QSRog 3  1100.16 0.89 4 994.94 0.90
BMI-QSRg9 3 1080.28 0.89 4 974.26 0.90
NN 5 490.47 0.88 6 437.09 0.90
NN-SR 5 77T 0.88 6 682.67 0.89
NN-QSRos5 5 682.63 0.87 6 608.34 0.89
NN-QSRos 5 670.30 0.87 6 601.73 0.89
NN-QSRo7 5 655.66 0.88 6 578.12 0.90
BMI 5 644.35 0.91 6 582.58 0.92
BMI-SR 5 1060.84 0.92 6 950.95 0.92
BMI-QSRg¢ 5 929.86 0.91 6 842.67 0.92
BMI-QSRo7 5 915.14 0.91 6 829.30 0.92
BMI-QSRgs 5 876.56 0.92 6 801.88 0.92
BMI-QSRg9 5 838.49 0.92 6 764.37 0.92

Table 4: Computational results obtained by the heuristic approaches
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Figure 6: Pareto Front determined by heuristic approaches

6. Conclusions

In this work we proposed a system of Unmanned Aerial Vehicles (UAVs)
able to communicate, self-organize and cooperate in order to determine in an
effective way a dynamic schedule. The distributed dynamic schedule has to
ensure both spatial and temporal coverage of specific targets that evolve both
spatially and temporally. We proposed a mathematical formulation as multi-
criteria optimization model by consider the minimization of the distance
traveled, the maximization of customers and the minimization of the number
of used UAVs. Concerning the mathematical optimization model we took into
account of the dynamicity of the events by considering the concept of rolling-
horizon. Furthermore, we proposed some heuristics and we compared their
performance in terms of traveled distance, customer satisfaction and number
of vehicles. In order to test and compare the heuristic with the mathematical
formulation results, we considered a specific application scenario, that is a
football match where the events were the game actions to be followed and
our UAVs were equipped with cameras.
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