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This paper deals with a one-dimensional elastodynamic contact problem and aims to highlight some new numerical results. A new proof of existence and uniqueness results is proposed. More precisely, the problem is reformulated as a differential inclusion problem, the existence result follows from some a priori estimates obtained for the regularized problem while the uniqueness result comes from a monotonicity argument. An approximation of this evolutionary problem combining the finite element method as well as the mass redistribution method which consists on a redistribution of the body mass such that there is no inertia at the contact node, is introduced. Then two benchmark problems, one being new with convenient regularity properties, together with their analytical solutions are presented and some possible discretizations using different time-integration schemes are described. Finally, numerical experiments are reported and analyzed.

Introduction

This paper aims to give some new numerical results for the dynamical evolution with impact of a linearly elastic body and a rigid obstacle by using Email addresses: farshid.dabaghi@insa-lyon.fr (Farshid Dabaghi), apetrov@math.univ-lyon1.fr (Adrien Petrov), jerome.pousin@insa-lyon.fr (Jérôme Pousin), Yves.Renard@insa-lyon.fr (Yves Renard) the mass redistribution method introduced in [START_REF] Khenous | Mass redistribution method for finite element contact problems in elastodynamics[END_REF]. The situations involving contact abound in industrial or biomedical problems. For this reason a considerable engineering and mathematical literature has been devoted to contact problems. Usually, with the hypotheses of small deformations, the contact phenomena is modelled by using the so-called Signorini's boundary conditions in displacement, which are based on a linearization of the physically meaningful non penetrability of masses. The elastodynamic contact problems are typically stated as hyperbolic type variational inequalities in Sobolev spaces, and a few existence of solutions results has been established. The reader is referred to [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle[END_REF][START_REF] Lebeau | A wave problem in a half-space with a unilateral constraint at the boundary[END_REF][START_REF] Kim | A boundary thin obstacle problem for a wave equation[END_REF] and also the comprehensive monograph [START_REF] Eck | Unilateral contact problems : variational methods and existence theorems[END_REF]. The uniqueness result was successfully investigated for a wave equation in a half-space with a unilateral contact at the boundary in [START_REF] Lebeau | A wave problem in a half-space with a unilateral constraint at the boundary[END_REF]. In particular, the uniqueness still remains an open problem in other frameworks. The fundamental mathematical difficulties are related to the intrinsic nonsmoothness of the problem coming from the Signorini boundary conditions. Finally, notice that the existence of a strong solution for viscoelastodynamic problems with unilateral constraints is proved in [START_REF] Petrov | Mathematical results on existence for viscoelastodynamic problems with unilateral constraints[END_REF].

On the other hand, another challenging task consists to elaborate efficient numerical methods for solving dynamical contact problems. Newmark's method is one of the most popular numerical solvers which is usually combined with finite elements methods. Unfortunately, for almost all values of the parameters of this method, unphysical energy blow-ups occur during the time integration as well as numerical instabilities at the dynamical contact boundaries. To overcome these difficulties, some numerical methods based on the Newmark scheme for solving impact problems and which are energy dissipative have been introduced in [START_REF] Carpenter | Lagrange constraints for transient finite element surface contact[END_REF]. Although stable, those methods lead to an important energy loss at impact which do not vanish when the time step decreases. Laursen et al. in [START_REF] Laursen | Improved implicit integrators for transient impact problems-geometric admissibility within the conserving framework[END_REF][START_REF] Laursen | Design of energy conserving algorithms for frictionless dynamic contact problems[END_REF][START_REF] Chawla | Energy consistent algorithms for frictional contact problems[END_REF][START_REF] Laursen | Computational contact and impact mechanics. Fundamentals of modeling interfacial phenomena in nonlinear finite element analysis[END_REF] have designed time integration schemes of Newmark type which are energy conserving. However, these schemes are unable to prevent some spurious oscillations of the displacement and of the contact stress on the contact boundary. These unphysical oscillations are avoided by the numerical methods developed in [START_REF] Deuflhard | A contact-stabilized Newmark method for dynamical contact problems[END_REF] (see also the reference therein), but these methods are still energy dissipative. Another approach consisting to remove the mass at the contact nodes is investigated in [START_REF] Khenous | Mass redistribution method for finite element contact problems in elastodynamics[END_REF]. This mass redistribution method prevents the oscillations at the contact boundaries mentioned above, and it can be proven that the solution is unique and energy conserving, see [START_REF] Dabaghi | Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary[END_REF]. Furthermore, some different variants has been proposed in [START_REF] Hager | A stable energy-conserving approach for frictional contact problems based on quadrature formulas[END_REF] with an estimate of the space approximation for linear elasticity. It has also been extended for thin structures in [START_REF] Renard | The singular dynamic method for constrained second order hyperbolic equations: application to dynamic contact problems[END_REF][START_REF] Pozzolini | Some energy conservative schemes for vibroimpacts of a beam on rigid obstacles[END_REF][START_REF] Tkachuk | Hybrid-mixed discretization of elasto-dynamic contact problems using consistent singular mass matrices[END_REF] considering different discretizations for the displacement and the velocity.

The paper is organised as follows. In Section 2, the mathematical models are presented and a new proof of existence and uniqueness results is proposed. A space semi-discretization based on a redistribution of mass is introduced in Section 3 and some time integration method are advertised. In Sections 4 and 5, two elastodynamic contact benchmark problems with their analytical solutions are exhibited. Note that an analytical solution associated to the first benchmark problem is expressed by using Taylor expansion (see [START_REF] Wriggers | Computational contact mechanics[END_REF][START_REF] Doyen | Time-integration schemes for the finite element dynamic Signorini problem[END_REF]) and it is compared to the approximated solution obtained thanks to Crank-Nicolson method. However, the numerical experiments highlight that the comparison between the analytical and approximated solutions do not converge. Therefore a new analytical solution displayed for the second benchmark is exposed in Section 5 and some numerical experiments problem are reported like convergence rates for the displacement, Lagrange multiplier and energy evolution showing the efficiency of mass redistribution method.

Description of the models

We consider a model for an elastic bar of length L vibrating longitudinally. One end of this bar is free to move, as long as it does not hit a material obstacle, while the other end can be clamped or free to move. The obstacle constrains the displacement of the extremity to be non negative. The material of the bar is supposed to be homogeneous and the theory of small deformations is considered. Let us denote by x the spatial coordinate along the bar, with the origin at the material obstacle, let u(x, t) be the displacement at time t ∈ [0, T ], T > 0 of the material point of spatial coordinate x ∈ [0, L]. Let f (x, t) denotes a density of external forces, depending on time and space. In the case where the bar is clamped at one end (see Figure 5), the mathematical problem is formulated as follows:

u tt (x, t) -u xx (x, t) = f (x, t), (x, t) ∈ (0, L) × (0, T ), (1) 
with Cauchy initial data

u(x, 0) = u 0 (x) and u t (x, 0) = v 0 (x), x ∈ (0, L), (2) 
and Signorini and Dirichlet boundary conditions at x = 0 and x = L, respectively,

0 ≤ u(0, t) ⊥ u x (0, t) ≤ 0 and u(L, t) = 0, t ∈ [0, T ]. (3) 
While in the case where the bar is free to move at one end (see Figure 1), the motion is governed by the momentum equilibrium equation ( 1) together with Cauchy initial data (2) and Signorini and Neumann boundary conditions at x = 0 and x = L, respectively,

0 ≤ u(0, t) ⊥ u x (0, t) ≤ 0 and u x (L, t) = 0, t ∈ [0, T ]. (4) 
Here u t def = ∂u ∂t and u x def = ∂u ∂x . The orthogonality has the natural meaning; namely if we have enough regularity, it means that at the boundary x = 0 the product u(0, •)u x (0, •) vanishes almost everywhere in time. If it is not the case, the above inequality is integrated on an appropriate set of test functions, leading to a weak formulation for the unilateral condition. Observe that from mathematical viewpoint, Signorini's condition means that when the bar touches the obstacle at x = 0, its reaction can be only upwards, so that u x (0, •) ≤ 0 on the set {t : u(0, •) = 0}. While in the case where the bar does not touch the obstacle, its end is free to move. More precisely, we have u x (0, •) = 0 on the set {t : u(0, •) > 0}. We suppose that the initial displacement u 0 belongs to the H 1 (0, L) and satisfies the compatibility conditions, i.e. u 0 (L) = 0 and u 0 (0) ≥ 0, the initial velocity v 0 belongs to L 2 (0, L) and the density of external forces f belongs to L 2 (0, T ; L 2 (0, L)).

We describe now the weak formulations of both the two problems. For that purpose, it is convenient to introduce the following notations:

V Dir def = {u ∈ H 1 (0, L) : u(L) = 0}, V Neu def = H 1 (0, L) and H def = L 2 (0, L).
We denote by K the following convex set:

K def = {u ∈ H 2 : u(•, t) ∈ K for almost every t}, where H 2 def = {u ∈ L 2 (0, T ; V) : u t ∈ L 2 (0, T ; H)}, K def = {u ∈ V : u(0) ≥ 0} and V = V Dir or V = V Neu depending on the conditions taken in x = L.
Therefore the weak formulations associated to (1)-(3) and to (1)-(2) together with (4) are obtained by multiplying (1) by vu and by integrating formally this result over

Q T def = (0, L) × (0, T ) to get                  find u ∈ K such that - L 0 v 0 (v(•, 0)-u 0 ) dx- Q T u t (v t -u t ) dx dt + Q T u x (v x -u x ) dx dt≥ Q T f (v-u) dx dt for all v ∈ K for which there exists ζ > 0 with v = u for t ≥ T -ζ. (5)
Notice that the sole difference of the weak formulation associated to (1)-(3) and to (1)-( 2), (4) comes from the definition of the convex set K.

It should also be noted that existence and uniqueness results are obtained for a similar situation of a vibrating string with concave obstacle in one dimensional space in [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle[END_REF] and also for a wave equations with unilateral constraint at the boundary in a half space of R N in [START_REF] Lebeau | A wave problem in a half-space with a unilateral constraint at the boundary[END_REF]. An existence result for a wave equation in a C 2 -regular bounded domain constrained by an obstacle at the boundary in R N for N ≥ 2 is proven in [START_REF] Kim | A boundary thin obstacle problem for a wave equation[END_REF].

Theorem 2.1 (Existence and uniqueness results). Assume that

u 0 ∈ V, v 0 ∈ H and f ∈ L 2 (0, T ; H). Then Problem (1)-(3) admits a unique solution u ∈ L ∞ (0, T ; V) ∩ W 1,∞ (0, T ; H).
Proof. The first step consists to introduce an auxiliary problem. Namely, let ū be the solution to Problem (1) with initial data (2) and boundary conditions (3) where Signorini's boundary condition is replaced by Dirichlet's one, i.e. ū(0, t) = 0, t ∈ [0, T ]. Note that the auxiliary problem possesses a unique solution ū belonging to C 0 ([0, T ]; [22,[START_REF] Brezis | Analyse fonctionnelle[END_REF]). Then we denote by v def = uū a solution of v tt (x, t)v xx (x, t) = 0, (x, t) ∈ (0, L) × (0, T ), [START_REF] Deuflhard | A contact-stabilized Newmark method for dynamical contact problems[END_REF] with Cauchy initial data v(x, 0) = 0 and v t (x, 0) = 0, x ∈ (0, L),

H 2 (0, L) ∩ H 1 0 (0, L)) ∩ C 1 ([0, T ]; H 1 0 (0, L)) ∩ C 2 ([0, T ]; H) (see
and Signorini and Dirichlet boundary conditions at x = 0 and x = L, respectively,

0 ≤ v(0, t) ⊥ v x (0, t) + ūx (0, t) ≤ 0 and v(L, t) = 0, t ∈ [0, T ]. ( 8 
)
The second step consists to rewrite ( 6)-( 8) as a differential inclusion problem by using the characteristic method. To this aim, it is convenient to introduce the characteristic coordinates ξ def = x + t and η def = xt. Therefore the chain rule gives v xx = v ξξ + 2v ξη + v ηη and v tt = v ξξ -2v ξη + v ηη . According to (1), v ξη vanishes and it follows that v(ξ, η) = φ(ξ) + ψ(η), where φ and ψ are two differentiable functions such that v(x, t) = φ(x+t) + ψ(x-t). In particular, taking t = 0 and using the Cauchy initial data, we get φ(x) + ψ(x) = 0 and φ (x)ψ (x) = 0, which by integration implies that there exist two constants C φ and C ψ such that φ(ξ) = C φ and ψ(η) = C ψ for all ξ and η belonging to [0, L]. It comes that the boundary conditions (3) can be rewritten as follows: 0 ≤ φ(t) + ψ(-t) ⊥ φ (t) + ψ (-t) + g(t) ≤ 0 and φ(L+t) + ψ(L-t) = 0 (9) for all t belonging to [0, T ]. Thanks to the above identity, we may extend φ(t) for all t ∈ [L, 2L], i.e. we have

φ(L+t) = -ψ(L-t)
for all t belonging to [0, L]. If we choose t = L+t, we get φ(t ) = -ψ(2L-t ). We already have the solution for ψ(t) with 0 ≤ t ≤ L and if L ≤ t ≤ 2L, we can obtain φ(t ) by observing that 0 ≤ 2Lt ≤ L and by using ψ(2L-t), it comes that φ(t) = C ψ for all t belonging to [L, 2L].

Let the indicator function, namely χ (-∞,0] (x) is equal to 0 if x ∈ (-∞, 0] and +∞ otherwise. Obviously, χ (-∞,0] is a lower semi-continuous and convex function, for further details the reader is referred to [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]. Its subdifferential is a multivalued function J N : R → P( R) defined by

J N [x] def =      {0} if x < 0, [0, +∞) if x = 0, ∅ if x > 0,
where P( R) is the set of all subsets of R. Then, the inequalities in (9) can be rewritten as follows

φ (t) + ψ (-t) + g(t) ∈ -J N [-φ(t)-ψ(-t)]. (10) 
Note that at this stage, ψ(η), η ∈ [-L, L], is the unique unknown of [START_REF] Grosu | Stability of semidiscrete formulations for elastodynamics at small time steps[END_REF].

Let us define now w(t

) def = -φ(t) -ψ(-t). (11) 
We insert [START_REF] Hager | A stable energy-conserving approach for frictional contact problems based on quadrature formulas[END_REF] into [START_REF] Grosu | Stability of semidiscrete formulations for elastodynamics at small time steps[END_REF] to get

w (t) ∈ -J N [w(t)] -g(t).
Finally, we find the following Cauchy problem

w (t) ∈ -J N [w(t)] -g(t) a.e. t ∈ (0, L), (12a) w(0) = 0. ( 12b 
)
Then we look for a solution of the following problem:

w (t) + h(t) = -g(t) a.e. t ∈ (0, L), (13a) h(t) ∈ J N [w(t)] a.e. t ∈ (0, L), (13b) w(0) = 0. ( 13c 
)
We observe that ( 13) is equivalent to [START_REF] Eck | Unilateral contact problems : variational methods and existence theorems[END_REF], the verification is left to the reader. We regularize the problem (13), we construct a solution of the regularized problem, and we show the existence of a solution by passing to the limit with respect to regularity parameter.

We regularize the problem (13) by using Yosida's regularization. More precisely, we introduce first a sequence {g ε } ε>0 such that g ε belongs to C 0 ([0, L]) for all ε > 0 and

g ε → g in H as ε 0. ( 14 
)
We may approximate ( 13) by the following problem:

w ε (t) + J N,ε [w ε (t)] = -g ε (t) a.e. t ∈ (0, L), (15a) 
w ε (0) = 0. ( 15b 
)
where

J N,ε def = 1 ε (1-J ε )
denotes the Yosida approximation with the resolvant defined by J ε def = (1+εJ N ) -1 . Note that J N,ε is a monotone and Lipschitz continuous mapping defined on all H. Clearly the contraction principle step by step in time allows us to prove that (13) possesses a unique solution w ε belonging to C 1 ([0, L]).

We establish now some a priori estimates, which later will enable to infer the existence of a weak solution. To this aim, we multiply (15a) by w ε (t), and we integrate this expression over (0, L) to get

L 0 |w ε (t)| 2 dt + L 0 J N,ε [w ε (t)]w ε (t) dt = - L 0 g ε (t)w ε (t) dt. ( 16 
)
Let us define now

I ε (-∞,0] (w) def = min z∈H 1 2ε |w-z| 2 + I (-∞,0] (z)
for all ε > 0 and w ∈ H. Since J N is the subdifferential of a proper, convex and lower semicontinuous function

I (-∞,0] , it follows that I ε (-∞,0] is convex,
Fréchet differentiable in H and its subdifferential ∂I ε (-∞,0] coincides with J N,ε . Furthermore we have

∀z ∈ H : I ε (-∞,0] (z) I (-∞,0] (z) as ε 0.
Then we may deduce from ( 16) that

1 2 w ε 2 H + I ε (-∞,0] (w ε (L)) ≤ 1 2 g ε 2 H . ( 17 
)
We observe that by definition I ε (-∞,0] (w ε (L)) ≥ 0 which follows from ( 17) that there exists C 1 > 0, independent of ε > 0, such that

w ε H ≤ C 1 . (18) 
Furthermore we have

|w ε (τ )| 2 ≤ 2L w ε 2 H (19) 
for all τ ∈ (0, L). Then we deduce from ( 17) and ( 19) that there exists

C 2 > 0, independent of ε > 0, such that |w ε (τ )| 2 + w ε 2 H ≤ C 2 (20) 
for all τ ∈ (0, L). Since J ε is a contraction on all H (see [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]), it follows from (20) that there exists C 3 > 0, independent of ε > 0, such that

w ε V + J ε w ε V ≤ C 3 . (21) 
We observe that (15a) implies that

J N,ε [w ε ] 2 H ≤ 2 w ε 2 H + 2 g ε 2 H . (22) 
The above a priori estimates allow us to infer that there exists w and h belonging to V ∩ L ∞ (0, L), respectively, and passing to subsequences, if necessary, we find

J ε w ε w in L ∞ (0, L) weak * , (23a) J N,ε [w ε ] h in H weak, (23b) 
as ε tends to 0. Since V → H with compact embedding, it follows that

J ε w ε → w in H, (24a) w ε → w in H and w ε w in V weak, (24b) 
as ε tends to 0. It remains to prove that w and h satisfy [START_REF] Hilber | Improved numerical dissipation for time integration algorithms in structural dynamics[END_REF]. We integrate (15a) over (0, τ ), we get

τ 0 w ε (t)+J N,ε [w ε (t)]+g ε (t) dt = 0 ( 25 
)
for all τ ∈ (0, L). Thanks to ( 23) and ( 24), we may pass to the limit in all the terms of ( 25), namely we find

τ 0 w (t)+h(t)+g(t) dt = 0 for all τ ∈ (0, L), which is equivalent to (13a). Let us note that J N,ε [w ε ] ∈ J N [J ε w ε ],
for some technical details, the reader is referred to [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]. Then (23b) and (24a) enable us to deduce that lim sup

ε 0 L 0 J N,ε [w ε (t)]J ε w ε (t) dt ≤ L 0 h(t)w(t) dt, (26) 
which implies that (13b) holds. Then we may conclude that there exists a solution v to Problem ( 6)-( 8).

The uniqueness result comes from the monotonicity of J N , namely J N is the subdifferential of a convex, lower semi-continuous and proper function (see [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF] for further details).

The existence and uniqueness results to Problem (1)-(2) together with (4) is established by using analogous approach developed above for Problem (1)-( 3). The main difference comes from the choice of the auxiliary problem. Let ū be the unique solution to Problem (1) with initial data (2) and boundary conditions (4) where the Signorini boundary conditions are replaced by Dirichlet boundary conditions, i.e. ū(0, t) = 0, t ∈ [0, T ]. Hence the rest of the proof is quite a routine, the verification is left to the reader.

Finally, we consider the following energy which is associated to ( 5):

E(t) = 1 2 L 0 |u t (x, t)| 2 +|u x (x, t)| 2 dx.
This energy is constant with respect to time t when the density forces f vanishes.

Note that formulations (5) and ( 13) are equivalent (in the sense that they have the same weak solutions), since the proof given in [START_REF] Dabaghi | Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary[END_REF] can be straightforwardly adapted.

Discretization

Classical finite element discretization

We introduce now a semi-discrete problem in space associated to [START_REF] Dabaghi | Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary[END_REF] . To this aim, we choose a set of parameters h def = L m (mesh size) having in mind the limit m → +∞, where m is an integer, and let V Neu

h def = {v h ∈ C 0 ([0, L]) : v h | [a i ,a i+1 ] ∈ P 1 , i = 0, . . . , m -1} and V Dir h def = {v h ∈ V Neu h : v h (L) = 0}.
Here, a i def = ih, i = 0, 1, . . . , m and P 1 is the space of polynomials of degree less than or equal to 1. A classical basis of V h is given by the sequence of shape functions ϕ i ∈ V h for i = 0, 1, . . . , J, defined by

ϕ i (x) def = 1 -|x-a i | h if x ∈ [a max(i-1,0) , a min(i+1,m) ], 0 otherwise,
where J = m -1 in the case where V h = V Dir h and J = m in the case where

V h = V Neu h . Observe that ϕ i (a j ) = δ ij , j = 0, 1, . . . , m (δ is Kronecker's sym- bol).
We approximate the solution u belonging to V to the weak formulation (5) by

u h (x, t) = J j=0 u j (t)ϕ j (x).
Consequently, we have u i = u h (a i ), i = 0, 1, . . . , J. We shall consider two strategies to approximate the dynamic contact problem. The first one is a classical finite element semi-discretization which uses a multiplier. It reads as follows:

             find u h : [0, T ] → V h and λ : [0, T ] → R such that for all v h ∈ V h L 0 u h,tt v h dx + L 0 u h,x v h,x dx = -λv h (0) + L 0 f v h dx a.e. t ∈ [0, T ], 0 ≤ u h (0, •) ⊥ λ ≤ 0 a.e. t ∈ [0, T ], u h (•, 0) = u 0 h and u h,t (•, 0) = v 0 h , (27) 
where u 0 h and v 0 h belong to V h and λ is the Lagrange multiplier being here the contact force. Furthermore, the approximated problem [START_REF] Pozzolini | Some energy conservative schemes for vibroimpacts of a beam on rigid obstacles[END_REF] can be rewritten in an algebraic formulation form as follows:

         find U h : [0, T ] → R n and λ : [0, T ] → R such that M U h,tt + SU h = -λe 0 + F a.e. t ∈ [0, T ], 0 ≤ u 0 ⊥ λ ≤ 0 a.e. t ∈ [0, T ], U h (0) = U 0 h and U h,t (0) = V 0 h , (28) 
where M and S denote the mass and stiffness matrices, respectively, and

U def = (u 0 , . . . , u n-1 ) T , e 0 def = (1, 0, . . . , 0) T and F def = ( L 0 f ϕ 0 dx, . . . , L 0 f ϕ n-1 dx).

Finite element discretization with the mass redistribution method

An alternative to the standard discretization is to consider a trivial mass redistribution method which consists to replace the mass matrix M in ( 28) by a modified mass matrix M mod defined by

M mod ij def = L h ϕ i ϕ j dx for all i, j ∈ [0, n -1].
Let us observe that there are more sophisticated mass redistribution methods, see [START_REF] Hager | Analysis of a space-time discretization for dynamic elasticity problems based on mass-free surface elements[END_REF]. The modified mass matrix has the form

M mod def = 0 0 0 M ,
where M admits an unmodified part Mij = M i+1,j+1 , for all i, j = 1, . . . , n-2.

As a consequence and in a certain sense, the node at the contact boundary evolves in a quasi-static way. It has been established in [START_REF] Dabaghi | Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary[END_REF] in a slightly different context that the approximated solution using the mass redistribution method converges to the unique solution to [START_REF] Dabaghi | Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary[END_REF].

Finally, note that the discrete energy associated to problem ( 28) is given by

E h (t) = 1 2 (U T h,t M U h,t +U T h SU h -U T h,t F )(t). ( 29 
)
We introduce now the time discretization. In order to fix the notations, let the time interval [0, T ] be divided by n + 1 discrete time-points such that 0 = t 0 < t 1 < . . . < t n = T . Furthermore the discrete quantities U n h , U n h,t , U n h,tt and λ n are assumed to be given by algorithmic approximations of the displacement U h (t n ), the velocity U h,t (t n ) and the acceleration U h,tt (t n ) and the Lagrange multiplier λ(t n ), respectively. Some time-stepping schemes allowing to obtain an approximated solution to Problem (1)-( 4) are introduced below and their efficiency is discussed and analyzed in the next sections.

The most wide-spread time-stepping scheme for solving contact problems is the family of classical Newmark methods proposed by Newmark in [START_REF] Newmark | A method of computational for structural dynamics[END_REF]. The algorithms form a subset of the Hilber-Hughes-Taylor (HHT) family of temporal integrators, the reader is referred to [START_REF] Hilber | Improved numerical dissipation for time integration algorithms in structural dynamics[END_REF] for further details. The underlying concept of the discretizations are Taylor expansions of displacements and velocities neglecting terms of higher order. For the contact problem introduced above, the discrete evolution is described by the finite difference equations:

U n+1 h = U n h + ∆tU n h,t + 1 2 -β ∆t 2 U n h,tt + β∆t 2 U n+1 h,tt , (30a) 
U n+1 h,t = U n h,t + (1-γ)∆tU n h,tt + γ∆tU n+1 h,tt , (30b) 
M U n+1 h,tt + SU n+1 h = -λ n+1 e 0 + F n+1 , (30c) 
0 ≤ u n+1 0 ⊥ λ n+1 ≤ 0, ( 30d 
)
where ∆t is a given time step and (β, γ) are the algorithmic parameters. Furthermore U 0 h , U 0 h,t and λ 0 are given and U 0 h,tt is evaluated by using (30c). Notice that the Newmark family contains many well-known and widely-used algorithms which correspond to different choices of the algorithmic parameters (β, γ) (see [START_REF] Hughes | The finite element method[END_REF][START_REF] Laursen | Computational contact and impact mechanics. Fundamentals of modeling interfacial phenomena in nonlinear finite element analysis[END_REF]). This method is unconditionally stable for linear elastodynamic problem for γ ≥ 1 2 and β ≥ 1 4 ( 1 2 +γ) 2 (see [START_REF] Hughes | The finite element method[END_REF][START_REF] Krenk | Energy conservation in Newmark based time integration algorithms[END_REF]). One of the most used method to study dynamic problems is the Crank-Nicolson method, also called trapezoidal or average acceleration method, which is obtained by setting the parameters (β, γ) = ( 14 , 1 2 ). This method is second-order consistent and unconditionally stable in the unconstrained case. Furthermore, the total energy of the discrete evolution is preserved, for the purely elastic case, see [START_REF] Laursen | Computational contact and impact mechanics. Fundamentals of modeling interfacial phenomena in nonlinear finite element analysis[END_REF]. That is the reason why the Crank-Nicolson method is commonly used in the community of computational mechanics. However, the situation should be examined in the case of contact constraints. Indeed the order of accuracy is degraded, for further details, the reader is referred to [START_REF] Hughes | The finite element method[END_REF][START_REF] Krenk | Energy conservation in Newmark based time integration algorithms[END_REF][START_REF] Grosu | Stability of semidiscrete formulations for elastodynamics at small time steps[END_REF].

Let us define now the energy evolution by ∆E

n h def = E n+1 h -E n h
, where E n h is assumed to be given by an algorithmic approximation of the energy E h (t n ). In particular, the energy evolution associated to [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle[END_REF] 

for (β, γ) = ( 1 4 , 1 2 ) is given by ∆E n h = -(V n h ) T Λ n γ e 0 , (31) 
where

V n h def = U n+1 h -U n h and Λ n γ def = (1-γ)λ n + γλ n+1 .
Let us observe that in the presence of permanent contact, the energy is strictly conserved, while the release of an existing contact decreases the energy and the detection of a new contact increases the energy. However, regain and loss of energy do not balance and there is no guarantee that the energy will stay bounded during the time integration.

Another approach to study elastodynamic contact problems consists to use the θ-method. More precisely, the discrete evolution is described by the finite difference equations:

U n+1 h = U n h + ∆t((1-θ)U n h,t +θU n+1 h,t ), (32a) 
U n+1 h,t = U n h,t + ∆t((1-θ)U n h,tt +θU n+1 h,tt ), (32b) 
M U n+1 h,tt + SU n+1 h = -λ n+1 e 0 + F n+1 , ( 32c 
) 0 ≤ u n+1 0 ⊥ λ n+1 ≤ 0, (32d) 
with θ ∈ [0, 1]. Furthermore U 0 h , U 0 h,t and λ 0 are given and U 0 h,tt is evaluated by using (32c). The energy evolution associated to [START_REF] Wriggers | Computational contact mechanics[END_REF] is given by

∆E n h = 1 2 -θ (V n h,t ) T M V n h,t + 1 2 -θ (V n h ) T SV n h -(V n h ) T Λ n θ e 0 . (33) 
Notice that [START_REF] Wriggers | Computational contact mechanics[END_REF] with θ = 0 and θ = 1 are called the forward and backward Euler method, respectively, while with θ = 1 2 , we obtain Crank-Nicolson's method.

Finally, we focus on the so-called Paoli-Schatzman method that consists to fix the contact constraint at an intermediate time step. Indeed the method proposed below is a slight modification of Paoli-Schatzman method (see [START_REF] Paoli | Time discretization of vibro-impact[END_REF][START_REF] Paoli | A numerical scheme for impact problems. I ,II. The multidimensional case[END_REF]) which takes into account the kernel of the modified mass matrix. A simple application of Paoli-Schatzman method based on Newmark scheme to Problem [START_REF] Renard | The singular dynamic method for constrained second order hyperbolic equations: application to dynamic contact problems[END_REF] 

with γ = 1 2 leads to                      find U n+1 h : [0, T ] → R n and λ n : [0, T ] → R such that: M (U n+1 h -2U n h +U n-1 h ) ∆t 2 + S(βU n+1 h +(1-2β)U n h +βU n-1 h ) = -λ n e 0 for all n ≥ 2, 0 ≤ u n,e 0 = u n+1 0 + eu n-1 0 1 + e ⊥ λ n ≤ 0, U 0 and U 1 given. ( 34 
)
Here e belongs to [0, 1] and is aimed to be interpreted as a restitution coefficient. Note that U 0 h and U 1 h are given data and U 1 h can be evaluated by a one step scheme. We may observe that taking M = M mod in (34), we are not able to resolve the problem on the kernel of M mod . That is the reason why, SU n-1 h as well as SU n h are projected on the orthogonal of the kernel of M . The energy evolution associated to (34) is given for β = 1 4 by

∆E n h = 1+e 2 λ n u n-1 0 . ( 35 
)
Notice that the numerical simulations were performed by employing the finite element library Getfem++ (see [START_REF] Renard | An Open Source generic C++ library for finite element methods[END_REF]). For the reader convenience, the energy evolutions ( 31), ( 33) and ( 35) are justified in the Appendix.

The wave equation with Signorini and Neumann boundary conditions

Analytical solution

We consider in this section the analytical solution proposed in [START_REF] Wriggers | Computational contact mechanics[END_REF]. It is the solution to the equation of motion (1) together with Cauchy initial data (2) and boundary conditions (4) in the case where the density of external forces f (x, t) = -(g+u x (0, t)) with g > 0 being the gravity acceleration. Let us describe the solution of this problem (see Figure 1). Before the impact, the bar is undeformed and its initial velocity v 0 vanishes. The bar reaches the rigid obstacle at time t 1 = 2u 0 g with the velocity 2u 0 g. After the impact, the bar stays in contact as long as the shock wave travels from bottom to the top of the bar and vice versa and then it takes off. Since the velocity of the shock wave c is assumed to be equal to 1, the bar stays in contact with the rigid obstacle a time L. Finally, notice that impacts occur at t 4k+1 = 3L + 16kL, t 4k+2 = t 4k+1 + 2L, t 4k+3 = t 4k+1 + 8L and t 4k+4 = t 4k+1 + 10L. We may deduce that the analytical solution is given by

u(x, t) =                  u 0 -1 2 gt 2 if t ≤ t 1 , h 1 (x, t-t 4k+1 ) if t 4k+1 < t ≤ t 4k+2 , h 2 (x, t-t 4k+2 ) if t 4k+2 < t ≤ t 4k+3 , h 1 (x, t 4k+4 -t) if t 4k+3 < t ≤ t 4k+4 , u 0 -1 2 g t-t 4k+4 -2u 0 g 2 if t 4k+4 < t ≤ t 4(k+1)+1 . (36) 
x = 0 t = 0 L Figure 1: An elastic bar with both ends free to move where we have used the following notations

h 1 (x, t) def = - 2u 0 g min(x, L-|t-L|) + +∞ n=1 2g Lν 3 n (cos(ν n t)-1) sin(ν n x), h 2 (x, t) def = u 0 - 1 2 g t- 2u 0 g 2 - 2gL 2 3 + +∞ n=1 4g λ 2 n cos(λ n t) cos(λ n x), (37) with ν n def = (n-1 2 ) π L and λ n def = n π L .

Numerical simulations

The parameters used in the numerical simulations are L = 1, g = 0.11, u 0 (x) = 0.5, v 0 (x) = 0 and u x (L, •) = 0. We evaluate the approximated solution (U n h , λ n ) to Problem (1)-( 3) by using Crank-Nicolson method that consists to choose (β, γ) = ( 14 , 1 2 ) in [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle[END_REF] for the standard and modified mass matrices. Then we compare the solutions obtained by employing Crank-Nicolson method to the analytical one (u, λ) in different points of the bar (see Figure 2). In the case where the constraint is active, the numerical experiments highlighted some spurious oscillations occurring for the approximated solution (U n h , λ n ) obtained by solving [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle[END_REF] with the standard mass matrix M (see Figure 2 (left)) while these oscillations disappeared when the standard mass matrix is replaced by the modified mass matrix, i.e. M = M mod (see Figure 2 (right)). However the approximated solutions obtained by both methods converge to the analytical solution when both the space ∆x and time ∆t steps tend to 0 in L p (0, T ; H) norms with p = 2, +∞, see Figure 3 (a constant ratio ∆x ∆t = 1 has been used). Surprisingly, the error curves in the norms u h -u L p (0,T ;V) , with p = 2, +∞ shown in the same figure are both diverging for the standard and modified mass matrices. The explanation of this divergence is illustrated in Figure 4 where the space derivative of the displacement is shown for both the analytical and the approximated solution. Indeed, Figure 4 (left) illustrates the fact that the series of the derivative corresponding to (37) do not converge. This is why it seems not to be possible to use this analytical solution to estimate the error in L p (0, T ; V) norm. For that reason, another analytical solution is exhibited in the next section. 

(a) u h -u L ∞ (0,T ;H) (b) u h -u L 2 (0,T ;H) (c) u h -u L ∞ (0,T ;V) (d) u h -u L 2 (0,T ;V)

The wave equation with Signorini and Dirichlet boundary conditions

Analytical solution

In this section, we propose a new analytical piecewise affine and periodic solution to the problem composed by the momentum equilibrium equation ( 1) together with Cauchy initial data (2) and boundary conditions (3) in the case where the density of external forces f (x, t) vanishes. Suppose that the initial displacement and velocity are given by u 0 (x) = 1 2 -x 2 and v 0 (x) = 0, respectively. The length of bar is L = 1, namely, the bar is compressed at t = 0. Let us describe the solution of this problem (see Figure 5). Before the impact, the bar, which is clamped at one end, elongates until it reaches the rigid obstacle at t 1 = 1. After the impact, the bar stays in contact for the time t ∈ (t 1 , t 2 ) and it takes off at time t 2 = 2. We use characteristics method to determine the solution of the above problem. To this aim, we split each domain defined by (0, L)×(t i , t i+1 ), i = 0, 1, 2, corresponding to the phases before the impact, during the impact and after the impact, respectively, into four regions according to Figure 6. We choose below L = 1 and t i = i, i = 0, . . . , 3. Before the impact, according to characteristics lines ξ def = x + t and η def = xt, we divide the domain (0, 1)×(0, 1) into four regions as it is drawn on Figure 6. Then we observe that ξ ∈ [0, 1] and η ∈ [0, 1] in the region I, ξ ∈ [0, 1] and η ∈ [-1, 0] in the region II, ξ ∈ [1, 2] and η ∈ [0, 1] in the region III and ξ ∈ [1, 2] and η ∈ [-1, 0] in the region IV. Therefore we may conclude that the solution is given by

x = 0 L t = 0 t 2 = 2 t 3 = 3 t 1 = 1
v = 0 u = 1-x 2 t 0 = 0 v = -1/2 u = 0 t 1 = 1 v = 1/2 u = 0 t 2 = 2 v = 0 u = 1-x 2 t 3 = 3
u(x, t) = 1 2 (1-x) in the regions I, III, (38a) u(x, t) = 1 2 (1-t) in the regions II, IV. ( 38b 
)
Once again by using the characteristics lines, we divide the domain (1, 2) × (0, 1) into four regions. Then the solution (38b) calculated in the region IV allows us to evaluate the initial conditions at time t 1 = 1, namely we found u(•, 1) = 0 and u t (•, 1) = -1 2 . Therefore we obtain u(x, t) = -1 2 (t 1 -t) in the region I, (39a) u(x, t) = -x 2 in the region II, (39b) u(x, t) = 1 2 (x-1) in the region III, (39c) u(x, t) = 1 2 (t-t 1 -1) in the region IV. (39d)

After the impact, we divide the domain (2, 3) × (0, 1) into four regions. It follows from (39d) that u(•, 2) = 0 and u t (•, 2) = 1 2 which implies that u(x, t) = 1 2 (t-t 2 ) in the regions I, II, u(x, t) = 1 2 (1-x) in the regions III, IV. Furthermore we observe that u(•, 3) = u 0 and u t (•, 3) = v 0 . Then we conclude that the solution is periodic of period 3. Note that the Lagrange multiplier λ is equal to the contact force u x (0, •).

Numerical simulations

We evaluate below (U n h , λ n ) by using different time-stepping methods, namely the Newmark method (30), the backward Euler method (32) with θ = 1 and the Paoli-Schatzman method (34). More precisely, for each timestepping method, the approximated solutions (U n h , λ n ) are obtained by solving [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle[END_REF] for different values of the couple (β, γ), (34) for β = 1 4 and different values for the parameter e and (32) in the particular case where θ = 1, respectively. The computation are also performed for both the standard mass matrix M and the modified one M = M mod and they are compared to the analytical solution (u, λ) exhibited in Section 5.1 (see Figures 7,[START_REF] Hager | A stable energy-conserving approach for frictional contact problems based on quadrature formulas[END_REF][START_REF] Hilber | Improved numerical dissipation for time integration algorithms in structural dynamics[END_REF][START_REF] Khenous | Mass redistribution method for finite element contact problems in elastodynamics[END_REF][START_REF] Krenk | Energy conservation in Newmark based time integration algorithms[END_REF]19 and 21). Furthermore, the energy evolution associated to different methods mentioned above are presented in Figures 8,[START_REF] Hager | Analysis of a space-time discretization for dynamic elasticity problems based on mass-free surface elements[END_REF][START_REF] Hughes | The finite element method[END_REF][START_REF] Kim | A boundary thin obstacle problem for a wave equation[END_REF][START_REF] Laursen | Computational contact and impact mechanics. Fundamentals of modeling interfacial phenomena in nonlinear finite element analysis[END_REF]20 and 22. Note that the numerical experiments were still done for different space and time steps with a constant ratio ∆x ∆t = 10. Some error curves for Crank-Nichoslon's method are presented for standard matrix as well as for modified mass matrix. Notice that the slope of error curves for nonlinear problems reflect both the regularity of solution and the ability of numerical schemes to reproduce some technical inequalities. In the Table 1, we used the following notation:

u h -u L p (H) = u h -u L p (0,T ;H) with p = 2, +∞.
Finally, the convergence rates for different time-stepping methods, analyzed in details above, are summarized in Tables 1 and2 for the reader convenience. These convergence rates were obtained for both standard (STD) and modified (MOD) mass matrices.

One can see in Table 1, that the rate of convergence of order one methods (Newmark I and backward Euler) in L p (0, T ; H) norms of the displacement (with p = 2, +∞) are limited to approximatively 1 2 for both the standard and modified mass matrices. Concerning the other methods, which are order two methods at least for the linear part of the problem, the rate of convergence is still approximatively 1 2 for the standard mass matrix but is improved to approximatively 1 for the modified mass matrix. Note that the Paoli-Schatzman scheme is not a fully order two method, except for e = 1, due to the discretization of the contact condition.

Scheme Method u h -u L ∞ (H) u h -u L 2 (H) u h -u L ∞ (V) u h -u L 2 (V) Crank-
Scheme Method λ h -λ L 2 (0,T ) Oscillations E h -E L ∞ (0,T ) E h -E L 2 (0,T ) Crank-Nicolson STD -0.
The advantage is less pronounced in L p (0, T ; V) norms of the displacement, but it is even more important in L 2 (0, T ) norm of the contact stress (see Table 2) since convergence does not occur for all the methods with the standard mass matrix.

An important remark is that, despite the low regularity of the exact solution, order two methods perform better than order one methods and should be preferred to approximate elastodynamic problem with impact.

Concerning the efficiency of the mass redistribution method, we can conclude that, even though it represents an additional approximation compared to the standard approximation, the convergence rates on the displacement and on the contact force are improved and the method reduces the potential spurious oscillations. The mass redistribution method appears then to be a robust method to approximate elastodynamic problem with impact.

The Crank-Nicolson method

We focus here on Newmark's method [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle[END_REF] in the particular case where (β, γ) = ( 14 , 1 2 ). The analytical solution (u, λ) exhibited in Section 5.1 and the approximated solutions (U n h , λ n ) obtained for different time and space steps are represented on Figure 7. We observe some spurious oscillations on Figure 7 (left) for the solution (U n h , λ n ) to Problem [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle[END_REF] after the contact takes place while these oscillations disappear when the standard mass matrix is replaced by the modified one, see Figure 7 (right).

It can easily be seen on Figure 8 that the scheme with the standard mass matrix is unstable with a rapidly growing energy while the one with the modified mass matrix is almost conservative as the space ∆x and time ∆t steps tend to 0. The error curves for (U n h , λ n ) highlighted that the norms u h -u L p (0,T ;H) , with p = 2, +∞, and λ n -λ H converge to 0 when M = M mod as n tends to +∞, which is unfortunately not the case for the standard mass matrix (see Figure 10). Finally, Figure 9 shows that the norm E h -E L p (0,T ) , p = 2, +∞, converges when M = M mod while this norm diverges when the standard mass matrix is considered. 

a) E h -E L ∞ (0,T ) (b) E h -E L 2 (0,T ) (c) u h -u L ∞ (0,T ;H) (d) u h -u L 2 (0,T ;H) (e) u h -u L ∞ (0,T ;V) (f) u h -u L 2 (0,T ;V)

The Newmark method I

We deal now with Newmark's method [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle[END_REF] in the particular case where (β, γ) = ( 12 , 1). We observe some oscillations on Figure 11 (left) for the Lagrange multiplier λ n associated to Problem [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle[END_REF] after the contact takes place while these oscillations are much less preeminent when the standard mass matrix is replaced by the modified one, see Figure 11 (right). Furthermore, the present scheme is dissipative and stable. 

The Newmark method II

We consider Newmark's method [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle[END_REF] in the case where (β, γ) = ( 1 2 , 1 2 ). Some oscillations on Figure 13 (left) for the Lagrange multiplier λ n associated to Problem (30) can be observed after the contact takes place while these oscillations are much less important when the modified mass matrix is considered in [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle[END_REF], see Figure 13 (right). Note that here the scales for the Lagrange multiplier associated to standard and modified mass matrices are different, see Figure 13. 

The backward Euler method

We deal here with backward Euler's method (i.e. ( 32) with θ = 1). Since the present scheme is dissipative and stable (∆E n h < 0, see (33)), the approximated solutions (U n h , λ n ) obtained by using the standard mass as well as modified mass matrices do not oscillate as it can be observed in the previous numerical simulations. 

The Paoli-Schatzman method I

We are interested here in Paoli-Schatzman's method with (β, e) = ( 1 4 , 0). Note that the stability result straightforwardly follows from [START_REF] Dumont | Vibrations of a beam between obstacles. Convergence of a fully discretized approximation[END_REF]. 

The Paoli-Schatzman method II

We focus here on Paoli-Schatzman's method with (β, e) = ( 1 4 , 1 2 ). Observe that the stability result is still an open problem for e = 0. Some spurious oscillations can be observed for the approximated Lagrange multiplier as well as for the approximated energy. 

The Paoli-Schatzman method III

We consider now Paoli-Schatzman's method with (β, e) = ( 1 4 , 1). Note that this is a second order scheme. Acknowledgments. The support of the AVCR-CNRS "Mathematical and numerical analysis of contact problems for materials with memory" grant is gratefully acknowledged.

Appendix

The aim of the present section consists to establish the energy evolutions associated to schemes [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle[END_REF], [START_REF] Wriggers | Computational contact mechanics[END_REF] and (34). Let us observe that the energy evolution, when the external force f = 0, is given by

∆E n h = 1 2 (U n+1 h,t -U n h,t ) T M (U n+1 h,t +U n h,t ) + 1 2 (U n+1 h -U n h ) T S(U n+1 h +U n h ). ( 40 
)
We prove now that the energy evolution associated to the Crank-Nicolson method is given by [START_REF] Tkachuk | Hybrid-mixed discretization of elasto-dynamic contact problems using consistent singular mass matrices[END_REF]. To this aim, we observe that (30a) and (30b) lead to Clearly we have ∆t((1-θ)(-SU n h -λ n e 0 ) + θ(-SU n+1 h -λ n+1 e 0 )) = M (U n+1 h,t -U n h,t ), which allows us to conclude that (33) holds.

M (U n+1 h -U n h -∆tU n h,t ) = -∆t 2 1 2 -β SU n h +βSU n+1 h -∆t 2 1 2 -β λ n e 0 +βλ n+1 e 0 , (41) and 
Finally we establish the energy evolution associated to (34) in the particular case where β = 1 4 . To this aim, let us introduce the energy evolution as follows: ).

∆E n h = 1 2 U T h,t M U h,t + 1 2 U T h SU h n+ 1 2 n-
Then it comes that

U n+ 1 2 h +U n-1 2 h = 1 2 (U n+1 h +2U n h +U n-1 h
) and U

n+ 1 2 h -U n-1 2 h = 1 2 (U n+1 h -U n-1 h ),
and also h,t , so we have

U n+1 h = U n h + ∆tU
U n+ 1 2 h,t -U n-1 2 h,t = U n+1 h -2U n h +U n-1 h ∆t and U n+ 1 2 h,t + U n-1 2 h,t = U n+1 h -U n-1 h ∆t .
Obviously, we get

∆E n h = 1 2 (U n+1 h -U n-1 h ) T M U n+1 h -2U n h +U n-1 h ∆t 2 + S U n+1 h +2U n h +U n-1 h 4 .
According to (34) together with β = 1 4 , we deduce that 

∆E n h = 1 2 (U n+1 h -U n-1 h ) T (-λ n+1 e 0 ) = 1 

Figure 2 :

 2 Figure 2: First analytical solution: comparison of the analytical solution (u, λ) and approximated solutions (u n h , λ n ) by using standard mass matrix (left) and modified mass matrix (right) in the contact with Crank-Nicolson method.

Figure 3 :

 3 Figure 3: First analytical solution: comparison of the error curves obtained by using standard and modified mass matrices with Crank-Nicolson method. A constant ratio ∆x ∆t = 1 has been used.

Figure 4 :

 4 Figure 4: First analytical solution: representation of the derivative of displacement with respect to x of analytical (left) and approximated (right) solutions. The analytical solution is computed with the 10 3 first terms of the series.

Figure 5 :

 5 Figure 5: An elastic bar with one end fixed and the other end free to move

Figure 6 :

 6 Figure 6: The regions allowing to determine the value of u.

Figure 7 :

 7 Figure 7: Comparison of the analytical solution (u, λ) and the approximated solutions (U n h , λ n ) by using the standard (left) and modified (right) mass matrices in the contact node with Crank-Nicolson method.

Figure 8 :

 8 Figure 8: Comparison of the energy associated to the analytical solution and the energy associated to the approximated ones for the standard (left) and modified (right) mass matrices with Crank-Nicolson method.
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Figure 9 :Figure 10 :

 910 Figure 9: Comparison of the error curves of the energy obtained by using the standard and modified mass matrices with Crank-Nicolson method.

Figure 11 :

 11 Figure 11: Comparison of the analytical solution (u, λ) and the approximated solutions (U n h , λ n ) by using the standard (left) and modified (right) mass matrices in the contact with Newmark method I.

Figure 12 :

 12 Figure 12: Comparison of the energy associated to the analytical solution and the energy associated to the approximated ones for standard (left) and modified (right) mass matrices with Newmark method I.

Figure 13 :

 13 Figure 13: Comparison of the analytical solution (u, λ) and the approximated solutions (U n h , λ n ) by using the standard (left) and modified mass matrices (right) in the contact with Newmark method II.

Figure 14 :

 14 Figure 14: Comparison of the energy associated to the analytical solution and the energy associated to the approximated ones for the standard (left) and modified (right) mass matrices with Newmark method II.

Figure 15 :

 15 Figure 15: Comparison of the analytical solution (u, λ) and the approximated solutions (U n h , λ n ) by using the standard (left) and modified (right) mass matrices in the contact with backward Euler method.

Figure 16 :

 16 Figure 16: Comparison of the energy associated to the analytical solution and the energy associated to the approximated ones for the standard (left) and modified (right) mass matrices with backward Euler method.

Figure 17 :

 17 Figure 17: Comparison of the analytical solution (u, λ) and the approximated solutions (U n h , λ n ) by using the standard (left) and modified (right) mass matrices in the contact with Paoli-Schatzman method I.

Figure 18 :

 18 Figure 18: Comparison of the energy associated to the analytical solution and the energy associated to the approximated ones for the standard (left) and modified (right) mass matrices with Paoli-Schatzman method I.

Figure 19 :

 19 Figure 19: Comparison of the analytical solution (u, λ) and the approximated solutions (U n h , λ n ) by using the standard (left) and modified (right) mass matrices in the contact with Paoli-Schatzman method II.

Figure 20 :

 20 Figure 20: Comparison of the energy associated to the analytical solution and the energy associated to the approximated ones for the standard (left) and modified (right) mass matrices with Paoli-Schatzman method II.

Figure 21 :

 21 Figure 21: Comparison of the analytical solution (u, λ) and the approximated solutions (U n h , λ n ) by using standard (left) and modified (right) mass matrices in the contact with Paoli-Schatzman method III.

Figure 22 :

 22 Figure 22: Comparison of the energy associated to the analytical solution and the energy associated to the approximated ones for the standard (left) and modified (right) mass matrices with Paoli-Schatzman method III.

Table 1 :

 1 Convergence rates for the displacement

	Nicolson	STD MOD	0.48045 0.88075	0.47113 0.97113	-0.30273 0.38624	-0.31299 0.36192
	Newmark I	STD	0.51444	0.51768	0.26104	0.24000
	(β, γ) = ( 1 2 , 1)	MOD	0.49236	0.48034	0.28219	0.25943
	Newmark II	STD	0.57503	0.61856	0.34411	0.30100
	(β, γ) = ( 1 2 , 1 2 )	MOD	0.95055	1.00090	0.39734	0.33789
	Backward Euler	STD MOD	0.51804 0.50425	0.51771 0.49024	0.26784 0.27753	0.24847 0.25465
	Paoli-Schatzman I	STD	0.66064	0.66015	0.31204	0.28406
	e = 0	MOD	0.98009	1.00690	0.39570	0.41096
	Paoli-Schatzman II	STD	0.66064	0.66014	0.33914	0.30116
	e = 1 2	MOD	0.97659	1.00170	0.41159	0.42823
	Paoli-Schatzman III	STD	0.58876	0.61110	0.39286	0.35512
	e = 1	MOD	0.97658	1.00200	0.46380	0.46993

Table 2 :

 2 Convergence rates for the Lagrange multiplier and energy

  n+1 e 0 -λ n e 0 ) . T (1γ)λ n e 0 + γλ n+1 e 0 ) T (λ n+1 e 0λ n e 0 ). By setting the parameters (β, γ) = (14 , 1 2 ) (31) holds. Let us establish the energy evolution associated to the θ-method. We infer from (32a) and (32c) thatM (U n+1 h,t -U n h,t ) = (1-θ)∆t(-SU n h -λ n e 0 ) + θ∆t(-SU n+1 h -λ n+1 e 0 ).(44)
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