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Random walk with heavy tail and negative drift

conditioned by its minimum and final values

Vincent Bansaye∗ and Vladimir Vatutin†,

December 11, 2013

Abstract

We consider random walks with finite second moment which drifts to

−∞ and have heavy tail. We focus on the events when the minimum and

the final value of this walk belong to some compact set. We first specify

the associated probability. Then, conditionally on such an event, we finely

describe the trajectory of the random walk. It yields a decomposition the-

orem with respect to a random time giving a big jump whose distribution

can be described explicitly.

1 Introduction and main results

We consider a random walk S = (Sn : n ≥ 0) generated by a sequence (Xn :
n ≥ 1) of i.i.d. random variables distributed as a random variable X . Thus,

Sn =
n
∑

i=1

Xi, (S0 = 0).

We assume that the random walk has a negative drift

E [X ] = −a < 0. (1)

and a heavy tail

A(x) = P (X > x) =
l(x)

xβ
, (2)

where β > 2 and l(x) is a function slowly varying at infinity. Thus, the random
variable X under the measure P does not satisfy the Cramer condition and has
finite variance. We further suppose that, for any fixed ∆ > 0,

x

[

l(x+∆)

l(x)
− 1

]

x→∞−→ 0
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which is equivalent to

P(X ∈ (x, x +∆]) =
∆βP(X > x)

x
(1 + o(1)) =

∆βA(x)

x
(1 + o(1)) (3)

as x → ∞.

To formulate the results of the present paper we introduce two important
random variables

Mn = max(S1, . . . , Sn) , Ln = min(S1, . . . , Sn)

and two right-continuous functions U : R → R0 = {x ≥ 0} and V : R → R0

given by

U(x) = 1 +

∞
∑

k=1

P (−Sk ≤ x,Mk < 0) , x ≥ 0,

V (x) = 1 +

∞
∑

k=1

P (−Sk > x,Lk ≥ 0) , x ≤ 0,

and 0 elsewhere. In particular U(0) = V (0) = 1. It is well-known that U(x) =
O(x) for x → ∞. Moreover, V (−x) is uniformly bounded in x in view of
EX < 0.

It will be convenient to write 1n for the n−dimensional vector whose co-
ordinates are all equal to 1 and set Sj,n = (Sj , Sj+1, · · · , Sn) if j ≤ n with
Sn = S0,n and Sn,0 = (Sn, Sn−1, · · · , S0). Similar notation will be used for
nonrandom vectors. Say, sn,0 = (sn, sn−1, · · · , s0). Let

bn = β
P (X > an)

an
.

With this notation in hands, we first describe the asymptotic behavior of the
probability of the event that the random walk remains within the time interval
[0, n] above some level −x and ends up at time n below the level T .

Theorem 1 For any x ≥ 0 and T > −x, as n → ∞,

P (Sn < T,Ln ≥ −x) ∼ bnU(x)

∫ x+T

0

V (−z) dz (4)

and for any x ≥ 0 and T < x, as n → ∞,

P (Sn > T,Mn < x) ∼ bnV (−x)

∫ x−T

0

U(z) dz . (5)

Our second goal is to demonstrate that if the event {Sn < T,Ln ≥ −x} oc-
curs then the trajectory of the random walk on [0, n] has a big jump of the
order an+O (

√
n), such a jump is unique and happens at the beginning of the

trajectory. Using this fact we also describe the full trajectory of the random
walk.
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Theorem 2 For all x > 0 and T ∈ R there exists a sequence of numbers
πj = πj(x) > 0,

∑

j≥0 πj = 1, such that for each j the following properties
hold:

(i) limn→∞ P (Xj ≥ an/2|Ln ≥ −x, Sn ≤ T ) = πj ;
(ii) For each measurable and bounded function F : Rj → R and each family

of measurable uniformly bounded functions Fn : Rn+1 → R such that

lim
ε→0

sup
n∈N,sn∈Rn+1

|Fn(sn + ǫ1n+1)− Fn(sn)| = 0, (6)

we have as n → ∞

E [F (Sj−1)Fn−j(Sj,n)|Ln ≥ −x, Sn ≤ T, Xj ≥ an/2]

−E [F (Sj−1)|Lj−1 ≥ −x]Eµ

[

Fn−j(S
′
n−j,0)|L′

∞ ≥ −x
]

→ 0,

where S′ is a random walk with step −X and positive drift, L′
∞ is its global

minimum and µ is a probability measure given by :

µ(dy) = 1y∈[−x,T ]θ
−1Py(L

′
∞ ≥ −x)dy, θ =

∫ T

−x

dyPy(L
′
∞ ≥ −x). (7)

In words, this theorem yields the decomposition of the trajectory of (Si :
i ≤ n) conditioned by its minimum Ln and final value Sn. It says that condi-
tionally on Ln ≥ −x and Sn = s, S jumps with probability πj at some (finite)
time j. Before this time, S is simply conditioned to be larger than −x. After
this time, reversing the trajectory yields a random walk S′ (with positive drift)
conditioned to be larger than −x. The size of the jump at time j links the
value Sj−1 to S′

n−j−1 = s+ a(n− j − 1) +
√
nWn, where, thanks to the central

limit theorem, Wn converges in distribution, as n → ∞ to a Gaussian random
variable. Thus this big jumps is of order an + Wn

√
n, as stated below. The

proof is differed to Section 5.

Corollary 3 Let κ = inf{j ≥ 1 : Xj ≥ an/2}. Under P, conditionally on
Ln ≥ −x and Sn ≤ T , κ converges in distribution to a proper random variable
whose distribution (πj : j ≥ 1) is specified by

πj = πj(x) =
P(Lj ≥ x)

∑

k≥0 P(Lk ≥ x)

and
Xκ − an√

n

converges in distribution to a centered Gaussian law with variance σ2 = V ar(X).

Proof. The expression of πj can be found in STEP 4 of the proof of Theorem 2,
see (23). The second part of the corollary is an application of the second part
of the mentioned theorem with

F (s0, · · · , sj) = 1, Fn(s1, ..., sn+1) = g((s1 − an)/
√
n)
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for g uniformly continuous and bounded if one takes into account the positivity
of the drift of S′ allowing to neglect the condition L′

∞ ≥ −x and to use the
central limit theorem.

We note that random walks with negative (or positive) drift satisfying con-
ditions (1) and (2) (and even weaker assumptions) have been investigated by
many authors (see, for instance, [6, 11, 14, 15] and monograph [9] with refer-
ences therein. Article [11] is the most close to the subject of the present paper.
Durrett has obtained there scaled limit results for the random walk meeting con-
ditions (1) and (2) but conditionally on the minimum value only. He has shown
that, for each M ≥ a the size of the big jump may exceed the value Mn with
a positive probability. The additional condition on the final value we impose in
Theorem 1 modifies the size of the big jump by forcing it to be concentrated
in a vicinity of point an with deviation of order

√
n and allows us to provide

in Theorem 2 a non scaled decomposition of the asymptotic conditional path.
We stress that when the increments of the random walk are in the domain of
attraction of a Gaussian law with zero mean, such problems have been investi-
gated. See, in particular, [16] for the convergence of the scaled random walk to
the Brownian excursion.

The initial motivations to get the results of the present paper come from
branching processes in random environment (BPRE). The survival probability
of such processes are deeply linked to the behavior of the random walk associated
with the successive log mean offspring [13, 3, 4, 1, 2, 8, 17], namely logm. The
fine results given here are required to get the asymptotic survival probability of
the subcritical class of BPRE such that this logm has density

p (x) =
l0(x)

xβ+1
e−ρx, (8)

where l0(x) is a function slowly varying at infinity, β > 2, ρ ∈ (0, 1). We refer
to [5] for precise statements and proofs.

2 Preliminaries : Some classical results on ran-

dom walks

Our arguments essentially use a number of statements from the theory of ran-
dom walks, that are included into this section.
In the sequel we shall meet the situations in which the random walk starts from
any point x ∈ R. In such cases we write for probabilities as usual Px (·) . We
use for brevity P instead of P0.

We define

τn = min {0 ≤ k ≤ n : Sk = min(0, Ln)} , τ = min {k > 0 : Sk < 0}

4



and let

D =
∞
∑

k=1

1

k
P (Sk ≥ 0) .

Now we list some known statements for the convenience of references. The first
lemma is directly taken from [9], Theorems 8.2.4, page 376 and 8.2.18, page 389.

Lemma 4 Under conditions (1) and (2), as n → ∞

P (Ln ≥ 0) = P (τ > n) ∼ eDP (X > an) (9)

and for any fixed x > 0

lim
n→∞

P (Ln ≥ −x)

P (τ > n)
= U(x). (10)

The next statement is an easy corollary of Theorem 4.7.1, page 218 of mono-
graph [9].

Lemma 5 Let X be a non-lattice random variable with E [X ] = −a < 0 whose
distribution satisfies condition (3). If S̃n = X1 + · · · + Xn + an, then for any
∆ > 0 uniformly in x ≥ n2/3,

P
(

S̃n ∈ [x, x +∆)
)

=
∆βnA(x)

x
(1 + o(1)).

In the sequel we use several times the following lemma, in which i) does not
require a proof and ii) is a special case of Theorem 1 in [10].

Lemma 6 Let (rn) be a regularly varying sequence with
∑∞

k=0 rk < ∞.
i) If δn ∼ drn, ηn ∼ ern, then

∑n
i=0 δiηn−i ∼ crn with c = d

∑∞
k=0 ηk +

e
∑∞

k=0 δk as n → ∞.
ii) If

∑∞
k=0 αkt

k = exp
(
∑∞

k=0 rkt
k
)

for |t| < 1, then αn ∼ crn with c =
∑∞

k=0 αk as n → ∞.

We introduce two functions

K1 (λ) =
1

λ
exp

{ ∞
∑

n=1

1

n
E
[

eλSn ;Sn < 0
]

}

=
1

λ

(

1 +
∞
∑

n=1

E
[

eλSn ;Mn < 0
]

)

=

∫ ∞

0

e−λxU(x)dx, (11)

K2 (λ) =
1

λ
exp

{ ∞
∑

n=1

1

n
E
[

e−λSn ;Sn ≥ 0
]

}

=
1

λ

(

1 +
∞
∑

n=1

E
[

e−λSn ;Ln ≥ 0
]

)

=

∫ ∞

0

e−λzV (−z)dz, (12)
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being well defined for λ > 0.
Note that the intermediate equalities in (11) and (12) are simply versions of

the Baxter identities (see, for instance, Chapter XVIII.3 in [12] or Chapter 8.9
in [7]).

3 Asymptotic behavior of the distribution of (Sn, Ln)

Basing on the three previous lemmas, we prove the following statement.

Lemma 7 Assume that E [X ] < 0 and that A(x) meets condition (3). Then,
for any λ > 0 as n → ∞

E
[

eλSn ; τn = n
]

= E
[

eλSn ;Mn < 0
]

∼ K1 (λ) bn (13)

and
E
[

e−λSn ; τ > n
]

= E
[

e−λSn ;Ln ≥ 0
]

∼ K2 (λ) bn. (14)

Proof. We prove (14) only. Statement (13) (proved in [17] under a bit stronger
conditions) may be checked in a similar way. First we evaluate the quantity

E
[

e−λSn ;Sn ≥ 0
]

= E
[

e−λSn ; 0 ≤ Sn < λ−1 (β + 2) logn
]

+O
(

n−β−2
)

. (15)

Clearly, for any ∆ > 0

∑

0≤k≤(β+2)λ−1∆−1 logn

e−λ(k+1)∆P
(

k∆+ an ≤ S̃n ≤ (k + 1)∆ + an
)

≤ E
[

e−λSn ; 0 ≤ Sn < λ−1 (β + 2) logn
]

≤
∑

0≤k≤(β+2)λ−1∆−1 logn

e−λk∆P
(

k∆+ an ≤ S̃n ≤ (k + 1)∆+ an
)

.

Recall that by Lemma 5 in the range of k under consideration

P
(

k∆+ an ≤ S̃n ≤ (k + 1)∆+ an
)

=
∆βn

(k∆+ an)
A (k∆+ an) (1 + o(1))

=
∆β

a
A (an) (1 + o(1)),

where o(1) is uniform in 0 ≤ k ≤ (β + 2)λ−1∆−1 logn. Now passing to the
limit as n → ∞ we get

∆

∞
∑

k=0

e−λ(k+1)∆ ≤ lim inf
n→∞

aE
[

e−λSn ; 0 ≤ Sn < λ−1 (β + 2) logn
]

βA (an)

≤ lim sup
n→∞

aE
[

e−λSn ; 0 ≤ Sn < λ−1 (β + 2) logn
]

βA (an)

≤ ∆

∞
∑

k=0

e−λk∆.
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Letting ∆ → 0+, we see that

lim
n→∞

aE
[

e−λSn ; 0 ≤ Sn < λ−1 (β + 2) logn
]

βA (an)
= λ−1.

Combining this with (15) we conclude that, as n → ∞

E
[

e−λSn ;Sn ≥ 0
]

∼ β

aλ
A (an) (1 + o(1)) ∼ β

aλ
P(X > an). (16)

We know by the Baxter identity (see, for instance, Chapter 8.9 in [7]) that for
λ > 0 and t ∈ [0, 1]

1 +
∞
∑

n=1

tnE
[

e−λSn ;Ln ≥ 0
]

= exp

{ ∞
∑

n=1

tn

n
E
[

e−λSn ;Sn ≥ 0
]

}

.

From (16) and point i) of Lemma 6 with rn = bn we get for n → ∞,

E
[

e−λSn ;Ln ≥ 0
]

∼ K2 (λ)
βP(X > an)

an
,

where K2 (λ) is specified by (12). This gives statement (14) of the lemma.

Lemma 8 For x ≥ 0, λ > 0 we have as n → ∞ :

E−x[e
λSn ; Mn < 0] ∼ bnV (−x)

∫ ∞

0

e−λzU(z) dz, (17)

Ex[e
−λSn ; Ln ≥ 0] ∼ bnU(x)

∫ ∞

0

e−λzV (−z) dz. (18)

Proof. This proof follows the line for proving Proposition 2.1 in [1]. By the
continuity theorem for Laplace transforms Lemmas 6 and 7 give for any x ∈
[0,∞) and λ > 0

b−1
n E[eλSn ;Mn < 0 , Sn > −x] →

∫ x

0

e−λzU(z) dz, (19)

b−1
n E[e−λSn ;Ln ≥ 0 , Sn < x] →

∫ x

0

e−λzV (−z) dz. (20)

Further, using duality we have

E[eλSn ;Mn < x] =

n−1
∑

i=0

E[eλSn ;S0, . . . , Si ≤ Si < x , Si > Si+1, . . . , Sn]

+ E[eλSn ;S0, . . . , Sn ≤ Sn < x]

=

n−1
∑

i=0

E[eλSi ;Li ≥ 0, Si < x] · E[eλSn−i;Mn−i < 0]

+E[eλSn ;Ln ≥ 0, Sn < x].

7



This formula together with (13), (20), the left continuity of V (−z) for z > 0
implying V (0) = V (0−) = 1, and the equations

1 +

∞
∑

k=1

E[eλSk ;Lk ≥ 0, Sk < x]

= 1 +

∫

(0,x)

eλz dV (−z) = eλxV (−x)− λ

∫ x

0

eλzV (−z) dz ,

1 +

∞
∑

k=1

E[eλSk ;Mk < 0] = λ

∫ ∞

0

e−λzU(z) dz

yield by Lemma 6 i) that for λ > 0 and x > 0

b−1
n E[eλSn ;Mn < x] → V (−x)eλx

∫ ∞

0

e−λzU(z) dz,

which gives (17) by multiplying by exp(−λx). Using similar arguments one can
get (18).

The continuity theorem for Laplace transforms and (17) and (18) yield the
asymptotic distribution of (Sn, Ln) on compacts sets.

Proof of Theorem 1. By (18) and the continuity theorem for Laplace
transforms for any x ≥ 0 and y > x we have

Ex[e
−λSn ; Sn < y,Ln ≥ 0] ∼ bnU(x)

∫ y

0

e−λzV (−z) dz

giving

Px (Sn < y,Ln ≥ 0) ∼ bnU(x)

∫ y

0

V (−z) dz

or

P (Sn < y − x, Ln ≥ −x) ∼ bnU(x)

∫ y

0

V (−z) dz

justifying (4).
The asymptotic representation (5) may be checked by the same arguments.

4 Conditional description of the random walk

In this and subsequent sections we agree to denote by C,C1, C2, ... positive
constants which may be different in different formulas or even within one and
the same complicated expression.

Our first result shows that the random walk may stay over a fixed level for
a long time only if it has at least one big jump. Let

Bj (y) = {Xj + a ≤ y}, B(n) (y) = ∩n
j=1Bj (y) .

8



Lemma 9 If E [X ] = −a < 0 and condition (3) is valid then there exists δ0 ∈
(0, 1/4) such that for all δ ∈ (0, δ0), k ∈ Z, and an/2− u ≥ M,

Pu( max
1≤j≤n

Xj ≤ δan, Sn ≥ k) ≤ εM (k)n−β−1, where εM (k) ↓M→∞ 0.

Proof. Set Yn = (Sn + an) /σ where σ2 = V ar(X) and S0 = 0. It follows
from Theorem 4.1.2 and Corollary 4.1.3 (i) in [9] (see also estimate (4.7.7) in
the mentioned book) that if r > 2 and δ > 0 are fixed then for x ≥ n2/3 and all
sufficiently large n

P(B(n)
(

xσr−1
)

, Yn ≥ x) ≤
[

nP(X + a ≥ σxr−1)
]r−δ

.

Since l(x) in (2) is slowly varying, x−1/4l(x) → 0 as x → ∞. Hence we get for
all sufficiently large n and β > 2

[

nP(X + a ≥ σxr−1)
]r−δ ≤ C

(

nl(x)

xβ

)r−δ

≤ C
( n

xβ−1/4

)r−δ

≤ C

(

1

n1/6

)r−δ

.

We fix now r > 2, δ0 < 1/4 with rδ0 = 1/2 so that (r − δ) /6 > β + 1 for all
δ ∈ (0, δ0). As a result we obtain that there exists γ > 0 such that

Pu(B(n)
(

xσr−1
)

, Sn ≥ xσ − an+ u) ≤ Cn−β−1−γ

for all x ≥ n2/3 where now S0 = u. Setting xσ = rδ0an we get

Pu(B(n) (δ0an) , Sn ≥ −an/2 + u) ≤ Cn−β−1−γ .

Therefore, for every k ∈ Z

Pu( max
1≤j≤n

Xj ≤ δ0an; Sn ≥ k) ≤ Cn−β−1−γ (21)

for all an/2 − u ≥ M → ∞. Since the left-hand side is decreasing when δ0 ↓ 0
the desired statement follows.

We know by (4) that for any fixed N and l ≥ −N

P (Ln ≥ −N, Sn ∈ [l, l+ 1)) ∼ bnU(N)

∫ N+l+1

N+l

V (−z) dz, n → ∞.

Hence, applying Lemma 9 with u = 0 we conclude that, as n → ∞

P (Ln ≥ −N, Sn ∈ [l, l+ 1)) ∼ P
(

Ln ≥ −N, Sn ∈ [l, l+ 1); B̄(n) (δ0an)
)

,

meaning that for the event {Ln ≥ −N, Sn ∈ [l, l+ 1)} to occur it is necessary
to have at least one jump exceeding δ0an. The next statement shows that, in
fact, there is exactly one such big jump on the interval [0, n] that gives the
contribution of order bn to (4) and the jump occurs at the beginning of the
interval.

9



Lemma 10 Under conditions E [X ] = −a < 0 and (3) for any fixed l and δ > 0

lim
J→∞

lim sup
n→∞

b−1
n P

(

Ln ≥ −N, max
J≤j≤n

Xj ≥ δan, Sn ∈ [l, l + 1)

)

= 0

and, for any fixed J

lim
n→∞

b−1
n P

(

∪J
i6=j {Xi ≥ δan, Xj ≥ δan}

)

= 0.

Proof. Write for brevity Sn ∈ [l) if Sn ∈ [l, l+ 1). Then

P (Ln ≥ −N,Xj ≥ δan, Sn ∈ [l))

≤
∫ ∞

−N

P (Sj−1 ∈ ds, Lj−1 ≥ −N)×
∫ ∞

δan

P (Xj ∈ dt)P (Sn−j ∈ [l − t− s), Ln−j ≥ −t− s−N)

≤
∫ ∞

−N

P (Sj−1 ∈ ds, Lj−1 ≥ −N)

∫ ∞

δan

P (Xj ∈ dt)P (Sn−j ∈ [l − t− s)) .

By condition (3),

P (Xj ∈ [t)) ≤ C
P (X > t)

t
, t > 0.

This estimate and its monotonicity in t gives
∫ ∞

−N

P (Sj−1 ∈ ds;Lj−1 ≥ −N)

∫ ∞

δan

P (Xj ∈ dt)P (Sn−j ∈ [l − t− s))

≤ C1
P (X ≥ δan)

n

∫ ∞

−N

P (Sj−1 ∈ ds;Lj−1 ≥ −N)

∫ ∞

δan

P (Sn−j ∈ [l − t− s)) dt.

Now
∫ ∞

δan

P (Sn−j ∈ [l − t− s)) dt ≤
∫ ∞

−∞
dt

∫ l−t−s+1

l−t−s

P (Sn−j ∈ dw)

=

∫ ∞

−∞
P (Sn−j ∈ dw)

∫ l−s−w+1

l−s−w

dt = 1.

Thus,

P (Ln ≥ −N,Xj ≥ δan, Sn ∈ [l))

≤ C
P (X > an)

n

∫ ∞

−N

P (Sj−1 ∈ ds, Lj−1 ≥ −N)

= C
P (X > an)

n
P (Lj−1 ≥ −N) = C1bnP (Lj−1 ≥ −N) .

By (10) the series
∑

j≥1 P (Lj−1 ≥ −N) converges meaning that a big jump may
occur at the beginning only. Moreover, it is unique on account of the estimate

P (Xi ≥ δan,Xj ≥ δan) = O
(

l2(n)n−2β
)

= o (bn)

10



for all i 6= j with max (i, j) ≤ J and β > 2.

The next lemma gives an additional information about the properties of the
random walk in the presence of a big jump. Let

Rδ (M,K) =
{

δan ≤ X1 ≤ an−M
√
n, |Sn| ≤ K

}

and
R (M,K) =

{

X1 ≥ an+M
√
n, |Sn| ≤ K

}

.

Lemma 11 Under conditions E [X ] = −a < 0 and (3) for any δ ∈ (0, 1) and
each fixed K,

lim
M→∞

lim sup
n→∞

b−1
n P (Rδ (M,K) ∪R (M,K)) = 0.

Proof. Similarly to the previous lemma we have

P (Rδ (M,K)) =

∫ an−M
√
n

δan

P (Sn−1 ∈ [−K − x,K − x])P (X1 ∈ dx)

≤ C
P (X > δan)

δan

∫ an−M
√
n

δan

P (Sn−1 ∈ [−2K − x, 2K − x]) dx

= C
P (X > δan)

δan

∫ an−M
√
n

δan

dx

∫ 2K−x

−2K−x

P (Sn−1 ∈ dv)

≤ 4KC
P (X > δan)

δan

∫ 2K−δan

−2K−an+M
√
n

P (Sn−1 ∈ dv)

≤ 4KC
P (X > δan)

δan
P
(

Sn−1 ≥ −2K − an+M
√
n
)

and

P (R (M,K)) =

∫ ∞

an+M
√
n

P (Sn−1 ∈ [−K − x,K − x])P (X1 ∈ dx)

≤ C
P (X > an)

an

∫ ∞

an+M
√
n

P (Sn−1 ∈ [−2K − x, 2K − x]) dx

≤ 4KC
P (X > an)

an
P
(

Sn−1 ≤ 2K − an−M
√
n
)

.

Since lim supn→∞ P (|Sn−1 + an| ≥ M
√
n) decreases to 0 as M → ∞ by the

central limit theorem, the desired statement follows.

5 Proof of Theorem 2

We start by the following important statement.

11



Lemma 12 Let Fn be a bounded family of uniformly equicontinuous functions
as defined in Theorem 2 by (6). Then the family of functions

gn(s) =
√
nEs [Fn(Sn);Ln ≥ −x, Sn ≤ T ] , n = 1, 2, ...,

is uniformly equicontinuous and uniformly bounded in s ∈ R.

Proof. First, the fact that the family of functions Fn is bounded by C combined
with the Stone local limit theorem for iid random variables having finite variance
(see, for instance, [7], Section 8.4) allows us to bound gn by

C
√
nPs(Sn ∈ [−x, T ]) = C

√
nP(Sn ∈ [−x− s, T − s]) ≤ C1 < ∞.

Second,

|gn(s+ ǫ)− gn(s)|
=

√
n|Es [Fn(Sn + ǫ1n+1);Ln + ǫ ≥ −x, Sn + ǫ ≤ T ]

−Es [Fn(Sn);Ln ≥ −x, Sn ≤ T ] |
≤

√
n|Es [Fn(Sn + ǫ1n+1)− Fn(Sn);Ln + ǫ ≥ −x, Sn + ǫ ≤ T ] |

+
√
n|Es [Fn(Sn);Ln + ǫ ≥ −x, Sn + ǫ ≤ T ]

−Es [Fn(Sn);Ln ≥ −x, Sn ≤ T ] |
≤ HǫC +

√
n|Ps(Ln + ǫ ≥ −x, Sn + ǫ ≤ T )−Ps(Ln ≥ −x, Sn ≤ T )|,

where Hǫ → 0 as ǫ → 0 again by the assumptions on Fn and the Stone local
limit theorem. Let us prove now that the last term is small. Indeed,

√
n|Ps(Ln + ǫ ≥ −x, Sn + ǫ ≤ T )−Ps(Ln ≥ −x, Sn ≤ T )|

≤
√
n [Ps(Sn ∈ [T − ǫ, T ]) +Ps(Ln ∈ [−x− ǫ,−x[, Sn ≤ T )]

and only the second term raises a difficulty. By the total probability formula
with respect to the (first) time k of the minimum we have

Ps(Ln ∈ [−x− ǫ,−x[, Sn ≤ T )

= P(Ln + s+ x ∈ [−ǫ, 0[, Sn ≤ T − s)

=

n
∑

k=0

P(S1 > Sk, · · · , Sk−1 > Sk, Sk + s+ x ∈ [−ǫ, 0),

Sk+1 ≥ Sk, · · · , Sn ≥ Sk, Sn ≤ T − s)

≤
n−[

√
n]−1

∑

k=0

P(Sk + s+ x ∈ [−ǫ, 0))P(Sk+1 ≥ Sk, · · · , Sn ≥ Sk)

+

n
∑

k=n−[
√
n]

P(S1 > Sk, · · · , Sk−1 > Sk, Sk + s+ x ∈ [−ǫ, 0))

×P(Sk+1 ≥ Sk, · · · , Sn ≥ Sk).

12



Now we use the representation

P(Sk+1 ≥ Sk, · · · , Sn ≥ Sk) = P(Ln−k ≥ 0) ∼ C(n− k + 1)−β

and the Stone local limit theorem according to which

√
2πnP(Sk + s+ x ∈ [−ǫ, 0[) = ǫ exp

{

− (s+ x)
2

2σ2n

}

+ δn,

where δn → 0 as n → ∞ uniformly in k ∈ [n−√
n, n] and s+ x ∈ R. Hence we

conclude that

√
nPs(Ln ∈ [−x− ǫ,−x[, Sn ≤ T )

≤ (ǫ + δn)C

n−[
√
n]−1

∑

k=0

(n− k + 1)−β + C1

n
∑

k=n−[
√
n]

(n− k + 1)−β

≤ C2

(

ǫ+ δn +
√
n(
√
n)−β

)

≤ C3 (ǫ+ δn) ,

for n large enough, since β > 1. We end up the proof by noting that all these
bounds are uniform with respect to s.

Proof of Theorem 2. We know by Lemmas 9, 10 and 11 that conditionally on
the event {Ln ≥ −x, Sn ≤ T }, there is a (single) big jump, that its size is of order
an with a deviation of order

√
n and that the jump happens at the beginning.

Taking this into account and setting AM
j = {Xj−an ∈ [−M

√
n,M

√
n]} we get

E [F (Sj−1)Fn−j(Sj,n);Ln ≥ −x, Sn ≤ T ] = εJ,M,nbn +
J
∑

j=0

AM
j,n,

where
lim

J,M→∞
sup
n

|εJ,M,n| = 0

and
AM

j,n = E
[

F (Sj−1)Fn−j(Sj,n);Ln ≥ −x,AM
j , Sn ≤ T

]

.

By the Markov property we have

AM
j,n = E

[

F (Sj−1)1{Lj−1≥−x}H
M
j,n(Sj−1)

]

,

where

HM
j,n(s) = E [1AMEs+X [Fn−j(Sn−j);Ln−j ≥ −x, Sn−j ≤ T ]]

and AM = {X − an ∈ [−M
√
n,M

√
n]}.

13



STEP 1. We are proceeding by bounded convergence and show first the
simple convergence. Thus, we consider

b−1
n HM

j,n(s) =

∫ M
√
n+an

−M
√
n+an

b−1
n P(X ∈ dy)Es+y [Fn−j(Sn−j);Ln−j ≥ −x, Sn−j ≤ T ]

=
1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(s+ y)µn(dy),

where

µn(dy) = b−1
n P(X ∈ dy), gj,n(s) =

√
nEs [Fn−j(Sn−j);Ln−j ≥ −x, Sn−j ≤ T ] .

We want to prove that

1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(s+ y)µn(dy)−
1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(s+ y)dy → 0

as n → ∞ by using the local converges of µn to the Lebesgue measure (with
uniformity in y ∈ [an−M

√
n, an+M

√
n] thanks to (2) and (3)) and the uni-

form equicontinuity of gj,n (compare with Lemma 12). Let us give the details.
First, by Lemma 12 for any ε > 0 there exists η > 0 such that for all n ≥ n0 =
n0(ε, η) we have

sup
y

sup
u∈[0,η]

|gj,n(y)− gj,n(y + u)| ≤ ǫ.

Let, further, si(= sni ) be a division of [an−M
√
n, an+M

√
n−1] into subintervals

with step η. Then, for sufficiently large n ≥ n0,

∣

∣

∣

∣

∣

b−1
n HM

j,n(s)−
1√
n

∑

i

gj,n(si)µn[si, si+1)

∣

∣

∣

∣

∣

≤ 3Mǫ.

Besides, gj,n(y) is bounded by C with respect to the pair n, y by Lemma 12.
Recalling that by (3)

sup
y∈s+an+[−M

√
n,M

√
n]

|µn[y, y + η]− η| ≤ ǫη

for n large enough, we get

∣

∣

∣

∣

∣

b−1
n HM

j,n(s)−
1√
n

∑

i

gj,n(si)η

∣

∣

∣

∣

∣

≤ 3Mǫ+ 2CMǫη
1

η
.

Using again the uniform continuity of gj,n yields for n large enough

∣

∣

∣

∣

∣

1√
n

∑

i

gj,n(si)η − 1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(s+ y)dy

∣

∣

∣

∣

∣

≤ 3ǫM,
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resulting in
∣

∣

∣

∣

∣

b−1
n HM

j,n(s)−
1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(s+ y)dy

∣

∣

∣

∣

∣

≤ M(6 + 2C)ǫ

for n large enough.
Clearly, b−1

n HM
j,n, n = j + 1.j + 2, ... is a bounded sequence since both gj,n

(see Lemma 12) and µn([an −M
√
n, an+M

√
n])/

√
n are bounded. This and

the dominated convergence theorem lead to

b−1
n AM

j,n −E

[

F (Sj−1)1{Lj−1≥−x}
1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(Sj−1 + y)dy

]

n→∞−→ 0.

(22)
STEP 2. We can now complete the proof by reversing the random walk after

time j. To this aim set sk = (s0, · · · , sk) and sn,0 = (sn, · · · , s0) and recall that
(see, for instance, Lemma 9 in [14])

ds0Ps0(Sn ∈ dsn) = dsnPsn(S
′
n,0 ∈ dsn,0).

Hence, letting

Bn(sk) = {|s0 − an− s| ≤ M
√
n, sk ∈ [−x, T ], min

0≤i≤k
si ≥ −x}

we get by integration
∫

1Bn(sn−j)Fn−j(sn−j)ds0Ps0(Sn−j ∈ dsn−j)

=

∫

1Bn(sn−j)Fn−j(sn−j)dsn−jPsn−j
(S′

n−j,0 ∈ dsn−j,0).

It follows that

1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(s+ y)dy

=

∫

s′
0
∈[−x,T ]

Es′
0

[

Fn−j(S
′
n−j,0);L

′
n−j ≥ −x;

∣

∣S′
n−j − an− s

∣

∣ ≤ M
√
n
]

ds′0.

Since, as n → ∞

P(
∣

∣S′
n−j − an− s

∣

∣ ≤ M
√
n) → 1

σ
√
2π

∫ M

−M

exp

{

− y2

2σ2

}

dy

for every s ∈ R and S′ has a positive drift, we conclude that

KM (s) = lim sup
n→∞

∣

∣

∣

∣

1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(s+ y)dy

−
∫

s′
0
∈[−x,T ]

Es′
0

[

Fn−j(S
′
n−j,0);L

′
∞ ≥ −x

]

ds′0

∣

∣

∣

∣
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goes to 0 as M becomes large. Further, by the bounded convergence and taking
into account the boundness of gj,n, we get (recall (7))

lim sup
n→∞

∣

∣

∣

∣

E

[

F (Sj−1)1{Lj−1≥−x}
1√
n

∫ M
√
n+an

−M
√
n+an

gj,n(Sj−1 + y)dy

]

−E
[

F (Sj−1)1{Lj−1≥−x}θEµ

[

Fn−j(S
′
n−j,0)|L′

∞ ≥ −x
] ]

∣

∣

∣

∣

≤ E
[

F (Sj−1)1{Lj−1≥−x}K
M (Sj−1)

]

where the right-hand side goes to 0 as M → ∞. Using (7) once again we set

Dj,n = E [F (Sj−1)|Lj−1 ≥ −x]Eµ

[

Fn−j(S
′
n−j)|L′

∞ ≥ −x
]

and deduce from (22) that the function

RM = lim sup
n→∞

∣

∣b−1
n AM

j,n −P(Lj−1 ≥ −x)θDj,n

∣

∣

goes to zero as M → ∞. Writing

Cj,n = E [F (Sj−1)Fn−j(Sj,n);Ln ≥ −x; Sn ≤ T ; Xj ≥ an/2]

we have

lim sup
n→∞

∣

∣b−1
n Cj,n −P(Lj−1 ≥ −x)θDj,n

∣

∣

≤ lim sup
n→∞

b−1
n P(Xj ≥ an/2, |Xj − an| > M

√
n, Sn ≤ T ) +RM .

Combining the last limit and Lemma 11 ensures that the right-hand side of this
inequality goes to 0 as M → ∞. We conclude

lim
n→∞

(

b−1
n Cj,n −P(Lj−1 ≥ −x)θDj,n

)

= 0.

STEP 4. We apply the limit above to the family of functions F = 1, Fn−j = 1
and get

b−1
n P (Ln ≥ −x, Sn ≤ T, Xj ≥ an/2)

n→∞−→ P(Lj−1 ≥ −x)θ. (23)

Recalling (4) ensures that there exists πj(x) > 0 such that

P (Xj ≥ an/2 | Ln ≥ −x, Sn ≤ T )
n→∞−→ πj(x).

Using Lemmas 9, 10 and 11 shows that there is only one big jump at the begin-
ning, and it has to be greater than an/2. Thus,

∑

j≥0 πj(x) = 1. Finally, the
proof of the Theorem can be completed by using again the conclusion of STEP 3.
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