
Memetic algorithm with an efficient split
procedure for the Team Orienteering Problem

with Time Windows

Rym Nesrine GUIBADJ1 and Aziz MOUKRIM1

Université de Technologie de Compiègne
Laboratoire Heudiasyc, UMR 7253 CNRS, 60205 Compiègne, France

{rym-nesrine.guibadj,aziz.moukrim}@hds.utc.fr

Abstract. The Team Orienteering Problem (TOP) is a variant of the
vehicle routing problem. Given a set of vertices, each one associated with
a score, the goal of TOP is to maximize the sum of the scores collected
by a fixed number of vehicles within a certain prescribed time limit.
More particularly, the Team Orienteering Problem with Time Windows
(TOPTW) imposes the period of time of customer availability as a con-
straint to assimilate the real world situations. In this paper, we present a
memetic algorithm for TOPTW based on the application of split strat-
egy to evaluate an individual. The effectiveness of the proposed MA is
shown by many experiments conducted on benchmark problem instances
available in the literature. The computational results indicate that the
proposed algorithm competes with the heuristic approaches present in
the literature and improves best known solutions in 101 instances.

1 Introduction

The Orienteering Problem (OP) was firstly introduced by Tsiligirides [24]. The
roots of this problem trace back to the pioneering work of Golden et al. [7] who
proved that the OP is NP-hard and used it to formulate and solve the home fuel
delivery problem. The name ”Orienteering Problem” originates from the sport
game of orienteering described in [3]. Later, a new variant of the problem called
Team Orienteering Problem (TOP) was introduced since it is widely seen in
many real life situations, like for example the routing of technicians [21] and fuel
delivery problems [7]. Many heuristics have been successfully applied to TOP.
There are four methods that can be considered as the state-of-the-art algorithms
in the literature: a variable neighborhood search proposed by Archetti et al. [1], a
memetic algorithm [2], a path relinking approach [20] and a PSO-based memetic
algorithm [5]. The survey of Vansteenwegen et al. [25] gives a review of the most
important contributions on the orienteering literature.

Recently, the Orienteering Problem with Time Windows (OPTW) and the
Team Orienteering Problem with Time Windows (TOPTW) have been the in-
terest of many researchers. They are considered as the generalization of OP and
TOP with the additional time constraints. In these problems, the service of a

customer must be started within a time window [ei, li] defined by customer i.
The vehicle cannot arrive earlier than time ei and no later than time li. A vehicle
arriving earlier than the earliest service time of a customer will incur waiting
time. The first who considered the time windows in the OP were Kantor and
Rosenwein [8]. They solved the problem with a tree heuristic that was more effi-
cient than the classical insertion heuristics. The only exact method that we found
was developed by Righini and Salani [17]. The computational time required by
their method to solve large problem instances was very expensive. Therefore,
most of the researchers focus on developing approximate methods. Montemanni
and Gambardella [12] used ant colony optimization to solve the problem, while
Vansteenwegen et al. [26] present an iterated local search metaheuristic. In this
method, an insert step is combined with a shake step to explore the search space
more efficiently. Tricoire et al. [23] defined the Multi-Period Orienteering Prob-
lem with Multiple Time Windows (MuPOPTW) as a new problem for scheduling
the customer visits of sales representatives. The MuPOPTW is a generalization
of OPTW and TOPTW, where customers may be visited on different days, and
may have several time windows for each given day. They propose an exact algo-
rithm embedded in a variable neighborhood search method and provide experi-
mental results for their method on standard benchmark of OPTW and TOPTW
instances. Lin and Yu [11] presented a simulated annealing based heuristic ap-
proach to solve TOPTW. The method proposed by Labadie et al. [10] combines
greedy randomized adaptive search procedure (GRASP) with evolutionary local
search (ELS). ELS generates multiple distinct child solutions that are further
improved by a local search procedure, while GRASP provides multiple start-
ing solutions to ELS. Labadie et al. [9] introduced granular variant to a VNS
algorithm in order to improve its efficiency. Firstly, each arc is evaluated with
new cost taken into account traveling times, waiting times and profits. Then,
an assignment problem is optimally solved and intervals of granularity are cre-
ated. These intervals determine subset of promising arcs which will be considered
during the node sequences construction in the local search procedure.

In this paper, a metaheuristic-based memetic algorithm (MA) is presented
for TOPTW. The proposed MA works with permutation encoding and uses an
adapted procedure to optimally split a sequence into a set of routes. The rest
of the article is organized as follows. The next section is devoted to the formu-
lation of TOPTW. Section 3 presents the detailed description of the proposed
method including the solution representation, the optimal split procedure, and
other components and parameters. In Section 4, the effectiveness of the pro-
posed algorithm is demonstrated by many computational results based on some
benchmark problems. The conclusions are discussed in the final Section 5.

2 Formulation of the problem

TOPTW is modeled with a graph G = (V,E), V = {0, 1, 2, ..., n} is the set of
vertices where i 6= 0 represents a customer and 0 represents the depot. E =
{(i, j) : i 6= j, i, j ∈ V } is the edge set. Each vertex i ∈ V, i 6= 0 is associated

with a profit Pi and a service time Ti. The visit of a vertex i can start only
within a predefined time window [ei, li]. The vehicle v cannot arrive later than
the time li and if it arrives earlier than ei, it must wait W v

i before the service can
start. Each edge (i, j) ∈ E is associated with a travel cost ci,j which is assumed
to be symmetric and satisfying the triangle inequality. A tour R is represented
as an ordered list of q customers from V , so R = (R[1], . . . , R[q]). Each tour
begins and ends at the depot vertex. We denote the total profit collected from
a tour R as P (R) =

∑i=q
i=1 PR[i], and the total travel cost or duration C(R) =

c0,R[1]+
∑i=q−1
i=1 cR[i],R[i+1]+

∑i=q
i=1W

R
R[i]+

∑i=q
i=1 TR[i]+cR[q],0. A tour R is feasible

if C(R) ≤ l0, l0 being a latest possible arrival time to the depot, and if each
customer is serviced within its time window. The fleet is composed of m identical
vehicles. A solution S is consequently a set of m (or fewer) feasible tours R in
which each customer is visited at most once. The goal is to find a solution
S such that

∑
R∈S P (R) is maximized. For mixed integer linear programming

formulations of TOPTW see [12] and [26].

3 Memetic algorithm

Memetic algorithm is a combination of an evolutionary algorithm and local
search framework [13]. The basic idea behind memetic approaches is to combine
the advantages of the crossover that discovers unexplored promising regions of
the search space, and local optimization that finds good solutions by concentrat-
ing the search around these regions. The proposed memetic algorithm is based
on permutation encoding. The key feature of the proposed method is the split
procedure that allows a reduction of the solution space exploration within the
global optimization. We introduce an interesting way to represent solutions of
TOPTW, known as giant tours. Each giant tour is in fact a neighborhood of
solutions in the search space from which the optimal associated solution can
be easily extracted by an evaluation process. Therefore, a heuristic using this
representation explores a smaller solution space without any loss of information
and has a better chance to reach the global optimum. The good results obtained
on several extensions of the routing problems have raised a growing attention on
the split strategy [16]. Next, all the details of MA implementation are presented.

3.1 Chromosome and evaluation

The representation of our chromosome consists of an ordered list of all acces-
sible customers in V called a giant tour. The giant tour is a permutation of n
positive integers, such that each integer corresponds to a customer without trip
delimiters. We try to extract m tours from the giant tour while respecting the
order of the customers in the sequence. A tour from a permutation π is identified
by its starting point i in the sequence and the number of customers following
i. A chromosome is evaluated using a tour splitting procedure which optimally
partitions π into feasible routes. Using this strategy, the MA searches the set of
possible giant tours to find one that gives an optimal solution after splitting.

Bouly et al. [2] proposed an optimal splitting procedure which is specific
to TOP. In their method, only tours of maximum length are considered. This
means that all customers following i in the sequence are included in the tour as
long as all constraints are satisfied, or until the end of the sequence is reached.
Such a tour is called saturated tour. They proved that solutions containing only
saturated tours are dominant. Therefore, only saturated tours were considered
in their procedure. Later, Dang et al. [6] introduced a new evaluation procedure
in which the limited number of saturated tours is exploited more efficiently to
reduce the complexity of the evaluation process. Before reviewing the main idea
of the split procedure, we recall the definition of an interval graph [22] as follows.
A graph G = (V,E) is an interval graph if there is a mapping I between the
vertex set of G and a collection of intervals in the real line such that two vertices
of G are adjacent if their respective intervals intersect. Then, for all i and j of
V , [i, j] ∈ E if and only if I(i) ∩ I(j) 6= ∅.

We have extended the split procedure for TOPTW to tackle time windows.
When defining a saturated tour R starting with x, we should make sure that
each customer is served within its time window and that C(R) ≤ l0, where l0 is
the latest possible arrival time to the depot and C(R) the total travel duration.
So, a waiting time is added each time the vehicle arrives at a customer before
the beginning of his time window. The set of extracted tours from a giant tour
can be mapped to the set of vertices of an interval graph X. An edge in X
indicates the presence of shared customers between the associated tours. A split
procedure looks for m tours without any shared customer such that the sum of
their profit is maximized. So this is equivalent to solve a knapsack problem with
the conflict graph X. In this particular knapsack problem, the number of items
is equal to the number of possible tours. This number is equal to n when only
saturated tours are considered. The weight of each item is one and the capacity
of the knapsack is m. Such a problem can be solved in O(m · n) time and space
[18].

Proposition 1 Given a TOPTW instance where m is the maximum number of
available vehicles and π a permutation of n customers, the split procedure of π
can be done optimally in O(m · n) time and space.

[30,40]

2

3

4

51

10
40

40

30

10
40

35

25

20

10

30 25

10

a) a splitting problem with m = 2

[10,50]

[20,60]

[30,50]

[60,70]

[0,100]

b) the weighted interval model

1 2 3 4 5

40

 40

 10

 80

 40

30

[0,100]

[60,70]

c) a saturated optimal solution

2

3

4

51

10
40

40

30

10
40

35

25

20

10 10

[30,40]

[10,50]

[20,60]

[30,50]

Fig. 1. An example of splitting problem.

The evaluation process is performed with dynamic programming technique: A
two-dimensional array of size m ·n is used to memorize the maximum reachable
profit during process. Then, a backtrack is performed in order to determine the
tours corresponding to the optimal solution. The first graph of Figure 1 shows a
sequence S = (1, 2, 3, 4, 5) where each customer has a profit and a time window
given in the square brackets. To simplify, we assume that the service times are
set to 0, the number of the vehicles m used is equal to 2, and the maximum
operation time l0 is 100. The interval model is given in the Figure 1.b. The first
interval [1, 2] for example with weight 40 corresponds to the collected profit of
the trip (d, 1, 2, a). Vehicle leaves the depot at time 0, waits 10 units of time at
node 1 before leaving it to serve node 2 at time 40. The customer 3 cannot be
included in the trip, since its time window is already closed when the vehicle
reaches it at time 70. The other intervals [i, j] of the graph are similarly defined.
The maximum score obtained in the solving steps is equal to 120. Finally, we
give the optimal solution obtained by the algorithm in Figure 1.c. It is composed
of two tours starting respectively with customers 1 and 4.

3.2 Population

A small part of the initial population is created with a fast heuristic procedure
and the remainder is generated randomly. In the proposed Iterative Destruc-
tion/Construction Heuristic (IDCH), we build a feasible solution by inserting
at every iteration an unrouted customer. This process is performed using Best
Insertion Algorithm (BIA). Initially, IDCH removes a limited random number
of customers D ∈ {1, 2, 3} from the current solution. Then, the travel cost of
tours is reduced using 2-opt* and Or-opt exchanges [14]. In the next step, we
rebuild the solution by re-inserting unrouted customers in all possible ways. To
ensure that the feasibility of an insertion is verified in O(1), we record for each
already included customer i in a route r, its waiting time W r

i and the maximum
delay allowed for the service Maxshiftri . All feasible insertions of each unserved
customer u between two couple of adjacent customers i and j are evaluated.
This is done according to a suitable cost function f(u) = Shiftu/(Pu)α where
Shiftu = (ci,u + W r

i + Tu + cu,j − ci,j). The feasible insertion that minimizes
the cost is then processed. In addition, priority coefficient priou is associated
to each customer u. Whenever the customer is not routed through a construc-
tion phase its priority is increased by the value of its profit. The customer u
that has a lager priou is more likely to be inserted. When a limited number of
iterations iterperturb = n is reached without a strict improvement, a method
of diversification is performed. Diversification stands for random moves that
can deteriorate the current solution by removing a large number of customers
Dperturb ∈ [1, n/m]. The destruction and construction phases are iterated until
itermax = n2 iterations without improvement.

3.3 Selection and crossover

In this work, the binary tournament method [15] is adopted to select a couple
of parents among the population. Two chromosomes are randomly selected in
the population, and the chromosome with the best evaluation becomes the first
parent. The tournament is repeated for the second parent. These parents are
then combined using linear order crossover or LOX [15]. LOX first chooses two
cut points randomly and passes the section enclosed by the cut points from one
parent to child. Then, the unpassed customers are placed in the unfilled positions
using the order of their occurrence in the other parent.

3.4 Local search engine

When a new child is computed with the crossover operator, the local search
scheme is applied with a probability pm. Neighborhoods are selected in a random
order. The search in a given neighborhood is stopped as soon as a better solution
is found. Then, a new neighborhood is chosen randomly. This process is stopped
when all neighborhoods fail to bring out an improvement to the current solution.
The set of local search operators used in the Memetic Algorithm are:

– 2-opt* operator : two routes r1 and r2 are divided into two parts. Then the
first part of r1 is connected to the second part of r2, while the first part of
r2 is connected to the second part of r1.

– Or-opt operator : consider a sequence of one, two or three consecutive cus-
tomers in the the current solution, and move the sequence to another location
in the same route.

– destruction/repair operator : first, a random number of customers (between
1 and n

m) is removed from an identified solution. Then, the lowest possible

insertion cost Shifti
(Pi)α

of each unrouted customer i is evaluated. The visit with

the lowest ratio will be selected for insertion.
– shift operator : a customer is removed from its current position and is relo-

cated at another one. Every possible insertion position for every customer is
considered.

– swap operator : positions of every two customers in the sequence are ex-
changed.

3.5 Population update

When an offspring solution snew is created by the crossover operator presented
in Section 3.3 and improved by the local search algorithm described in Section
3.4, we decide if the improved offspring should be inserted into the population
and which existing solution of the population should be replaced. Basically, our
decision is made based on both: the solution quality and the distance between
solutions in the population. The update procedure is applied if the performance
of new solution snew is better than the worst individual. Population is a list of
solutions sorted in descending order according to two criteria: the total collected

profit and the travel cost/time. Two solutions are said to be similar or identical
if the evaluation procedure returns the same profit and a difference in travel
cost/time lower than a value δ. If there is a solution s similar to snew, then s
is replaced with snew. Otherwise the worst individual is deleted and the new
solution is inserted into the population.

3.6 Basic algorithm

The proposed Memetic Algorithm associates all the elements described above.
Algorithm 1 presents a synthetic view of the whole process. The algorithm starts

Algorithm 1: Basic algorithm

Data: POP a population of N solutions;
Result: SPOP [N − 1] best solution found;

1 begin
2 initialize and evaluate each solution in POP (see Section 3.2);
3 while NOT (stopping condition) do
4 select 2 parents POP [p1] and POP [p2] using binary tournament;
5 C ← LOX(POP [p1], POP [p2]) ;
6 if rand(0, 1) < pm then
7 apply local search on C (see Section 3.4);

8 if f(C) ≥ f(POP [0])(see Section 3.5) then
9 if @p‖(f(POP[p]) = f(C)) then

10 eject POP [0] from POP ;
11 reset stopping condition ;

12 else
13 update stopping condition;

14 insert or replace C in right place in POP ;

15 else
16 update stopping condition;

with an initial set of solutions, called population. During each iteration, two
parents are selected and crossover operator is applied to create a new solution.
The obtained child chromosome has a probability pm of being mutated using
a set of local search techniques repeatedly. Finally, it is inserted within the
population according to its fitness evaluation. The stopping criterion for MA is
after reaching a maximum number of iterations without improvement. That is to
say after reaching the number of iterations where the child chromosome has the
same fitness as an existing chromosome in the population, or when its evaluation
is worse than the worst chromosome in the current population.

4 Numerical results

We used 56 instances designed by Solomon [19] and 20 instances designed by
Cordeau et al. [4] to test our new proposed algorithm. Solomon’s 100-customer
instances are divided into random, clustered and randomclustered categories. In
Cordeau’s instances, the number of customers varies between 48 and 288. A third
set of benchmark was introduced by Vansteenwegen et al. [26] using the original
instances of Solomon and Cordeau. In these instances, the number of vehicles
considered allows to visit all customers that is why the optimal solutions of these
instances are known since they are equal to the sum of customers’ profits. Travel
time between two customers is assumed to be equal to the travel distance. It
is rounded down to the first decimal for the Solomon’s instances and to the
second decimal for the Cordeau’s instances. The whole algorithmic approach
was implemented in C++ using the Standard Template Library (STL) for data
structures and was compiled using the GNU GCC compiler on an AMD Opteron
2.60 GHz in a Linux environment.

4.1 Parameter setting

A number of different alternative values were tested and the ones selected are
those that gave the best computational results concerning both the quality
of the solution and the computational time needed to achieve this solution.
When the population is initialized, 5 chromosomes are generated by the IDCH
heuristic and the rest (35) are generated randomly. The similarity measurement
of individuals δ is set to 0.01 and the local search rate pm is calculated as:
1− iter

itermax where iter is the number of consecutive iterations without improve-
ment. The algorithm stops when iter reaches itermax = k ∗ n/m. The cost
function C(u) = Shiftu/(Pu)α of the BIA heuristic uses a random value of
α generated in [1, 3]. This control parameter makes our IDCH less predictable
and actually a randomized heuristic. Moreover, the score becomes more rele-
vant than the time consumption when deciding which unrouted client is the
most promising to insert. If α is set to 1, the obtained results are worse. Finally
only two parameters are required to be tuned, they are the stopping condition
k and the population size N . Computational experiments were conducted on a
representative subset of the problem characteristics (problem size, distribution
of customer location, and time windows characteristic). This small subset in-
cludes 40 instances: 6 problems from Solomon’s instances and 4 problems from
Cordeau’s instances with m = 1, 2, 3, 4. The value of k and N were varied from
10 up to 50 with steps of 10. This results 25 different (k,N) settings to be tested.
The algorithm was run 5 times on different randomly generated seeds for each in-
stance. For an overall performance comparison between different configurations,
we use two following measures. The first one is the relative gap to the best known
solutions, denoted rpe(%) and the second is the average computational time in
seconds CPUavg. The results for each of the 25 parameter combinations tested
are illustrated in Figure 2. We adopt the parameter settings (10, 40) which gives
a good trade off between algorithm performance and computational time.

Instance Set
ACS ILS VNS GRASP-ELS SA GVNS MA

rpe cpuavg rpe cpuavg rpe cpuavg rpe cpuavg rpe cpuavg rpe cpuavg rpe cpuavg
m=1
c100 0 6.34 1.11 0.33 0 98.39 0 22.59 0 21.07 0.56 166.46 0 0.98
r100 0 383.40 1.90 0.19 0 89.10 0.11 3.51 0.11 23.34 1.72 29.43 0 5.38
rc100 0 143.21 2.92 0.23 0 65.21 0.33 1.99 0 22.19 1.88 9.80 0 1.59
c200 0.40 342.61 2.28 1.71 0 560.17 0.40 32.18 0.13 37.49 0.55 192.40 0 122.40
r200 2.18 1556.70 2.89 1.66 0.40 1065.82 0.59 11.18 1.29 45.83 2.44 33.82 -0.52 236.10
rc200 1.23 1544.55 3.43 1.63 0.07 869.41 1.37 8.21 0.96 50.25 2.53 16.01 -0.02 201.52
pr01-pr10 1.05 1626.61 4.72 1.75 0 822.07 0.73 5.03 0.97 112.21 0.54 12.37 -0.02 485.98
pr11-pr20 10.73 887.66 9.11 1.98 0.93 1045.93 1.70 7.90 3.25 162.40 2.71 24.22 0.39 903.08
m=2
c100 0.15 818.00 0.94 1.08 0 87.98 0 70.94 0 26.42 0.47 139.53 0 70.09
r100 0.34 1559.36 2.27 0.87 0.06 63.46 0.92 7.97 0.14 36.63 1.10 60.34 -0.12 45.98
rc100 0.38 1375.78 2.47 0.71 0.23 55.16 1.46 4.66 0.19 40.48 0.78 20.31 0 46.33
c200 1.27 1398.10 2.54 3.46 0.51 545.65 0.09 29.26 1.18 53.66 0.25 33.79 0 164.93
r200 3.11 2735.15 2.69 2.27 0.20 1015.08 0.28 17.58 0.53 91.40 0.62 14.73 -0.57 634.67
rc200 2.64 2342.72 4.08 2.20 0.43 804.83 0.59 17.14 1.18 80.10 1.62 12.76 -0.60 355.97
pr01-pr10 2.35 1889.66 5.99 4.76 0.63 524.83 0.87 19.46 2.21 173.93 0.57 39.09 -0.44 1291.54
pr11-pr20 4.79 2384.81 7.65 5.21 1.04 618.78 2.21 28.77 3.66 201.63 0.98 82.44 -0.24 2144.27
m=3
c100 0.11 1043.24 2.44 1.50 0 85.49 0.13 86.74 0.22 35.26 0.34 165.01 0 70.77
r100 0.55 1668.86 1.78 1.67 0.21 61.91 0.89 13.86 0.38 56.07 1.21 73.93 -0.01 58.56
rc100 1.19 1476.81 3.14 1.11 0.36 60.62 1.83 8.65 0.64 42.80 0.91 33.68 -0.01 54.72
c200 0.55 1413.11 1.98 2.08 0.16 196.80 0.45 26.75 0.35 53.93 0.64 55.42 -0.10 104.73
r200 0.13 1171.65 0.30 1.36 0.03 321.65 0 2.49 0.08 41.95 0.11 6.97 0 74.22
rc200 0.37 1607.85 1.37 1.73 0.04 404.01 0.06 8.34 0.20 58.98 0.25 7.41 -0.07 212.43
pr01-pr10 3.01 2163.80 6.57 9.24 1.50 473.20 1.31 40.55 2.33 197.01 0.35 85.90 -0.33 1416.21
pr11-pr20 5.19 2383.29 8.91 9.69 1.48 517.48 2.00 42.95 3.51 251.83 0.72 150.73 -0.71 2388.19
m=4
c100 0.47 1056.05 2.93 2.57 0.09 81.87 0.50 84.58 0.36 49.51 0.85 133.22 -0.19 106.15
r100 0.99 1652.54 3.25 2.60 0.24 61.17 0.88 24.18 0.67 58.38 1.15 84.74 -0.11 79.46
rc100 0.92 1854.00 3.07 1.98 0.34 58.47 1.43 13.35 0.26 68.13 0.85 36.91 -0.24 57.66
c200 0 7.70 0 1.00 0 104.78 0 0.01 0 41.76 0 0.55 0 0.04
r200 0 126.46 0 0.87 0 150.74 0 0.03 0 39.71 0 0.27 0 0.10
rc200 0 646.72 0 1.24 0 164.56 0 0.03 0 40.15 0 0.88 0 0.15
pr01-pr10 2.34 2447.70 6.63 14.07 1.40 403.17 1.42 45.75 1.76 255.57 0.60 127.33 -1.12 1807.40
pr11-pr20 4.18 2583.50 7.16 13.74 0.90 408.01 1.20 65.33 2.57 283.98 0.64 232.64 -2.23 2784.70
Average 1.65 1401.79 3.38 3.09 0.36 375.62 0.74 22.60 0.96 88.30 0.87 64.34 -0.23 524.00

Table 1. Performance comparison based on RPE average for each data set of the
standard benchmark.

Instance Set
ILS GRASP-ELS SA GVNS MA

arpe cpuavg arpe cpuavg arpe cpuavg arpe cpuavg arpe cpuavg
new Solomon’s instances 1.12 2.38 0.35 70.34 0.30 35.70 0.65 16.92 0.04 43.02
new Cordeau’s instances 2.32 30.41 1.04 565.98 0.92 71.48 1.25 51.34 0.76 112.63
Average 1.72 16.40 0.70 318.16 0.61 53.59 0.95 34.13 0.40 77.82

Table 2. Performance comparison based on ARPE average for each data set of the
new benchmark.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

rp
e
(%

)

Cpuavg

Fig. 2. Pareto front solutions obtained with different settings of the stopping condition
k and the population size N

4.2 Performance comparison

In order to investigate the performance of the proposed MA for TOPTW, we
compare it with: the Ant Colony System (ACS) of [12], the Iterated Local Search
(ILS) of [26], the Variable Neighborhood Search (VNS) of [23], the Simulated
Annealing approach (SA) of [11], the Greedy Randomized Adaptive Search pro-
cedure of (GRASP-ELS) [10] and the Granular Variable Neighborhood Search
(GVNS) of [9]. The results of GVNS, GRASP-ELS and ACS were obtained with
5 runs of the algorithm on each instance. VNS was run 10 times per instance
while ILS and SA were executed only once. We used the same protocol as in the
state-of-the-art methods and run MA 5 times for each instance. The quality of
the produced solutions is given in terms of the relative percentage error (RPE)
for the standard benchmark and in terms of the average relative percentage error
(ARPE) for the new data set where there exists a solution visiting all customers.
Tables 1 and 2 summarize the comparison and report the percentage error (RPE
or ARPE) and the average computational time in seconds CPUavg for each in-
stance set. MA produces the best relative gap which is equal to −0, 23% for the
standard benchmark and 0, 40% for the new data set. The first conclusion that
can be drawn from these tables is that MA is very competitive compared to the
others methods. It outperforms the other methods and improves 101 instances
for which the optimal solution remains unknown. However, one should note that
MA is far more time consuming. Actually, on the largest instances. MA needs
more time to get good quality solutions. The reason appears to be that a lot
of time is consumed by local-search operators. This is necessary to take entirely
advantage of the MA component.

5 Conclusion

In this paper, a Memetic Algorithm was proposed for the Team Orienteering
Problem with Time Windows. The key feature of our algorithm is the use
of an Optimal Split procedure especially intended for TOPTW that runs in
O(m · n). The proposed algorithm integrates several optimization methods, in-
cluding heuristic approaches, a crossover operator, a local search optimization
procedure and a quality-and-diversity based population updating strategy. The
computational results obtained prove the efficiency of our memetic algorithm for
TOPTW in comparison with the existing ones. The algorithm brings further im-
provements and has allowed the identification of new best known solutions. The
method is also very flexible in the sense that it can address many problem vari-
ants with a unified methodology and common parameter settings. Future work
will focus on extending the methodology to a wider array of vehicle routing
problems with time windows.

Bibliography

[1] Archetti, C., Hertz, A., Speranza, M.G.: Metaheuristics for the team orien-
teering problem. Journal of Heuristics 13(1) (February 2007)

[2] Bouly, H., Dang, D.C., Moukrim, A.: A memetic algorithm for the team
orienteering problem. 4OR 8(1), 49–70 (2010)

[3] Chao, I.M., Golden, B., Wasil, E.A.: The team orienteering problem. Eu-
ropean Journal of Operational Research 88, 464–474 (1996)

[4] Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for pe-
riodic and multi-depot vehicle routing problems. Networks 30(2), 105–119
(1997)

[5] Dang, D.C., Guibadj, R.N., Moukrim, A.: A pso-based memetic algorithm
for the team orienteering problem. In: EvoApplications. pp. 471–480 (2011)

[6] Dang, D.C., Guibadj, R.N., Moukrim, A.: An effective pso-inspired algo-
rithm for the team orienteering problem. European Journal of Operational
Research 229(2), 332 – 344 (2013)

[7] Golden, B., Levy, L., Vohra, R.: The orienteering problem. Naval Research
Logistics 34, 307–318 (1987)

[8] Kantor, M.G., Rosenwein, M.B.: The orienteering problem with time win-
dows. The Journal of the Operational Research Society 43(6), 629–635
(1992)

[9] Labadie, N., Mansini, R., Melechovský, J., Calvo, R.W.: The team orien-
teering problem with time windows: An lp-based granular variable neigh-
borhood search. European Journal of Operational Research 220(1), 15–27
(2012)

[10] Labadie, N., Melechovský, J., Calvo, R.W.: Hybridized evolutionary local
search algorithm for the team orienteering problem with time windows.
Journal of Heuristics 17(6), 7296–753 (2011)

[11] Lin, S.W., Yu, V.F.: A simulated annealing heuristic for the team orienteer-
ing problem with time windows. European Journal of Operational Research
217(1), 94–107 (2012)

[12] Montemanni, R., Gambardella, L.: Ant colony system for team orienteer-
ing problems with time windows. Foundations of Computing and Decision
Sciences 34(4), 287–306 (2009)

[13] Moscato, P.: New ideas in optimization. chap. Memetic algorithms: a short
introduction, pp. 219–234. McGraw-Hill Ltd., UK, Maidenhead, UK, Eng-
land (1999)

[14] Potvin, J.Y., Kervahut, T., Garcia, B.L., Rousseau, J.M.: The vehicle rout-
ing problem with time windows part i: Tabu search. INFORMS Journal on
Computing 8(2), 158–164 (1996)

[15] Prins, C.: A simple and effective evolutionary algorithm for the vehicle
routing problem. Computers & Operations Research 31(12), 1985–2002
(2004)

[16] Prins, C., Labadie, N., Reghioui, M.: Tour splitting algorithms for vehicle
routing problems. International Journal of Production Research 47(2), 507–
535 (2009)

[17] Righini, G., Salani, M.: Decremental state space relaxation strategies and
initialization heuristics for solving the orienteering problem with time win-
dows with dynamic programming. Computers & Operations Research 36(4),
1191–1203 (2009)

[18] Sadykov, R., Vanderbeck, F.: Bin packing with conflicts: a generic branch-
and-price algorithm (2012), preprint accepted for publication in INFORMS
Journal on Computing

[19] Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations Research 35(2), 254–265 (1987)

[20] Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., Van Oudheusden, D.:
A path relinking approach for the team orienteering problem. Computers
& Operations Research 37(11), 1853–1859 (2010)

[21] Tang, H., Miller-Hooks, E.: A tabu search heuristic for the team orienteering
problem. Computers & Operations Research 32, 1379–1407 (2005)

[22] Tarjan, R.E.: Graph theory and gaussian elimination. Tech. rep., Stanford
University (1975)

[23] Tricoire, F., Romauch, M., Doerner, K.F., Hartl, R.F.: Heuristics for the
multi-period orienteering problem with multiple time windows. Computers
& Operations Research 37, 351–367 (2010)

[24] Tsiligirides, T.: Heuristic methods applied to orienteering. Journal of the
Operational Research Society 35(9), 797–809 (1984)

[25] Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering
problem: A survey. European Journal of Operational Research 209(1), 1–10
(2011)

[26] Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.:
Iterated local search for the team orienteering problem with time windows.
Computers & Operations Research 36(12), 3281–3290 (2009)

