Franck Butelle

Christian Lavault

Marc Bui

A Uniform Self-Stabilizing Minimum Diameter Spanning Tree Algorithm (Extended Abstract)

We present a uniform self-stabilizing algorithm, which solves the problem of distributively finding a minimum diameter spanning tree of an arbitrary positively real-weighted graph. Our algorithm consists in two stages of stabilizing protocols. The first stage is a uniform randomized stabilizing unique naming protocol, and the second stage is a stabilizing MDST protocol, designed as a fair composition of Merlin-Segall's stabilizing protocol and a distributed deterministic stabilizing protocol solving the (MDST) problem. The resulting randomized distributed algorithm presented herein is a composition of the two stages; it stabilizes in O(n∆ + D 2 + n log log n) expected time, and uses O(n 2 log n + n log W) memory bits (where n is the order of the graph, ∆ is the maximum degree of the network, D is the diameter in terms of hops, and W is the largest edge weight). To our knowledge, our protocol is the very first distributed algorithm for the (MDST) problem. Moreover, it is fault-tolerant and works for any anonymous arbitrary network.

Introduction

Many computer communication networks require nodes to broadcast information to other nodes for network control purposes, which is done efficiently by sending messages over a spanning tree of the network. Now optimizing the worst-case message propagation delays over a spanning tree is naturally achieved by reducing the diameter to a minimum (see Sect. 1.2); especially in high-speed networks (where the message delay is essentially equal to the propagation delay). However, when communication links fail or come up, and when processors crash or recover, the spanning tree may have to be rebuilt. When the network's topology changes, one option is to perform anew the entire computation of a spanning tree with a minimum diameter from scratch. We thus examine the question of designing an efficient fault-tolerant algorithm, which constructs and dynamically maintains a minimum diameter spanning tree of any anonymous network. The type of fault-tolerance we require is so-called "self-stabilization", which means, informally, that an algorithm must be able to "recover" from any arbitrary transient fault. In this setting, we exhibit a self-stabilizing minimum diameter spanning tree. Our algorithm is asynchronous, it works for arbitrary anonymous network topologies (unique processes ID's are not required), it is uniform (i.e., every process executes the same code; processes are identical), symmetry is broken by randomization, and it stabilizes in efficient time complexity.

Self-Stabilizing Protocols

We consider distributed networks where processes and links from time to time can crash and recover (i.e., dynamic networks), where additionally, when processes recover, their memory may be recovered within an arbitrary inconsistent state (to model arbitrary memory corruption). Despite these faults, we wish the network to be able to maintain and/or to be able to rebuilt certain information about itself (e.g., in this particular case, maintaining a minimum diameter spanning tree). When the intermediate period between one recovery and the next failure is long enough, the system stabilizes.

The theoretical formulation of this model was put forth in the seminal paper of Dijkstra [START_REF] Dijkstra | Self-stabilizing systems in spite of distributed control[END_REF], who, roughly, defined the network to be "self-stabilizing" if starting from an arbitrary initial state (i.e., after any sequence of faults), the network after some bounded period of time (denoted as stabilization time) exhibits a behaviour as if it was started from a good initial state (i.e, stabilizes to a "good" behaviour, or "legitimate state"). Notice that such a formulation does not allow any faults during computation, but allows an arbitrary initial state. Thus, if new faults occur during computation, it is modelled in a self-stabilizing formulation as if it were a new initial state from which the network again must recover. In summary, self-stabilization is a very strong faulttolerance property which covers many types of faults and provides a uniform approach to the design of a variety of fault-tolerant algorithms.

The Minimum Diameter Spanning Tree (MDST) Problem

The use of a control structure spanning the entire network is a fundamental issue in distributed systems and interconnection networks. Since all distributed total algorithms have a time complexity Ω(D), where D is the network diameter, a spanning tree of minimum diameter makes it possible to design a wide variety of time efficient distributed algorithms.

Let G = (V (G), E(G)) be a connected, undirected, positively real-weighted graph. The (MDST) problem is to find a spanning tree of G of minimum diameter.

In the remainder of the paper, we denote the problem (MDST), MDST denotes the protocol and MDST abbreviates the "Minimum Diameter Spanning Tree".

Related Works and Results

The few literature related to the (MDST) problem mostly deals either with graph problems in the Euclidian plane (Geometric Minimum Diameter Spanning Tree), or with the Steiner spanning tree construction (see [START_REF] Ho | Minimum diameter spanning trees related problems[END_REF][START_REF] Ihler | On shortest networks for classes of points in the plane[END_REF]). The (MDST) problem is clearly a generalization of the (GMDST) problem. Note that when edge weights are real numbers (possibly negative), The (MDST) problem is NP-complete.

Surprisingly, although the importance of having a MDST is well-known, only few papers have addressed the question of how to design algorithms which construct such spanning trees. While the problem of finding and dynamically maintaining a minimum spanning tree has been extensively studied in the literature (e.g., [START_REF] Awerbuch | Optimal distributed algorithms for minimum weight spanning tree, counting, leader election and related problems[END_REF][START_REF] Gallager | A distributed algorithm for minimum weight spanning trees[END_REF] and [START_REF] Awerbuch | Communication-optimal maintenance of replicated information[END_REF][START_REF] Eppstein | Maintenance of a minimum spanning forest in a dynamic plane graph[END_REF]), there exist no algorithms that construct and maintain dynamically information about the diameter, despite the great importance of this issue in the applications. (Very recently, the distributed (MDST) problem was addressed in [START_REF] Bui | Minimum diameter spanning tree[END_REF][START_REF] Lavault | Évaluation des algorithmes distribués : analyse, complexité, méthode[END_REF]). In this paper, we present an algorithm which is robust to transient failures, and dynamically maintains a minimum diameter spanning tree of any anonymous network: a much more efficient (computationally cheaper) solution indeed than recomputing from scratch over and over again.

As opposed to the (quasi-) absence of investigations dealing with the (MDST) problem, and although self-stabilization is quite a new strand of research in distributed computing, a large number of self-stabilizing algorithms and theoretical related results were proposed during the past few years (e.g., [START_REF] Afek | Self-stabilization of the alternating-bit protocol[END_REF][START_REF] Anagnostou | Memory adaptative self-stabilizing protocols[END_REF][START_REF] Awerbuch | Time optimal self-stabilizing synchronization[END_REF][START_REF] Awerbuch | Self-stabilization by local checking global reset[END_REF][START_REF] Dolev | Resource bounds on self-stabilizing message driven protocols[END_REF][START_REF] Dolev | Uniform dynamic self-stabilizing leader election Part 1: Complete graph protocols[END_REF][START_REF] Dolev | Self-stabilization of dynamic systems assuming read/write atomicity[END_REF][START_REF] Dolev | Uniform self-stabilizing leader election Part 2: General graph protocol[END_REF][START_REF] Katz | Self-stabilizing extensions for message-passing systems[END_REF][START_REF] Shukla | Observations on self-stabilizing graph algorithm for anonymous networks[END_REF][START_REF] Varghese | Self-stabilization by counter flushing[END_REF]). Due to their features, self-stabilizing protocols were first used in the design of many existing systems (e.g., DECNET protocols [START_REF] Perlman | Fault-tolerant broadcast of routing information[END_REF]).

Our distributed self-stabilizing algorithm is composed of a first uniform stabilizing randomized stage protocol UN of "unique naming" for arbitrary anonymous networks and of a second stabilizing stage protocol MDST, which constructs a MDST. The second stage performs a MDST protocol for named networks which results after the first stage stabilizes. This second stage is itself constructed as the fair composition [START_REF] Dolev | Self-stabilization of dynamic systems assuming read/write atomicity[END_REF][START_REF] Dolev | Uniform self-stabilizing leader election Part 2: General graph protocol[END_REF][START_REF] Shukla | Observations on self-stabilizing graph algorithm for anonymous networks[END_REF] of Merlin-Segall's stabilizing distributed routing protocol and a new deterministic protocol for the (MDST) problem. The resulting algorithm A is thus a composition of the two stages (see Sect. 4.2) to obtain a randomized, uniform, self-stabilizing MDST algorithm A for general anonymous graph systems.

The complexity of protocols is analyzed by the following complexity measures. The Time Complexity of a self-stabilizing algorithm is mainly defined as the time required for stabilization (or "round complexity"). More formally, the stabilization time of a self-stabilizing deterministic (resp. randomized) algorithm is the maximal (resp. maximal expected) number of rounds that takes the system to reach a legitimate configuration, where the maximum is taken over all possible executions (see the model M in Sect. 2). The Space Complexity of a self-stabilizing algorithm can be expressed as the number of bits required to store the state of each process; i.e., in the message passing model, the maximal size of local memory used by a process. The Communication Complexity is measured in terms of the number of bits of the registers; i.e., in the message passing model, the maximal number of bits exchanged by the processes until an execution of the algorithm stabilizes. The time, space and communication complexities of a composed algorithm are the sum of the complexities of the combined protocols.

Main contributions of the present paper

• A first stage consisting of a uniform stabilizing randomized UN protocol for any arbitrary network G, which is an adapted variant of the UN protocol designed in [START_REF] Anagnostou | Memory adaptative self-stabilizing protocols[END_REF]. In model M, our randomized UN protocol stabilizes in O(n log log n) expected time, with a space complexity O(n 2 log n).

• An original second stage stabilizing protocol MDST, which is designed as the fair composition of Merlin-Segall's stabilizing routing protocol and a new deterministic protocol for the (MDST) problem. The second stage thus constructs a MDST of the named network G. In the model M, the protocol MDST stabilizes in O(n∆ + D 2) time, and its space complexity is O(n log n + n log W) bits (where ∆ is the maximum degree of G, D is the diameter in terms of hops and W is the largest edge weight).

• In model M, the resulting randomized composed algorithm A stabilizes in O(n∆ + D 2 + n log log n) expected time and uses O(n 2 log n + n log W) memory bits. To our knowledge, it appears to be the very first algorithm to distributively solve the (MDST) problem. Moreover, our randomized distributed algorithm A is fault-tolerant and works for any anonymous arbitrary network.

The remainder of the paper is organized as follows: in Sect. 2, we define the formal model M and requirements for uniform, self-stabilizing protocols, and in Sect. 3 we present the stages of the composed uniform self-stabilizing MDST algorithm A. Section 4.2 and Sect. 5 are devoted to the correctness proof, and to the complexity analysis of stabilizing protocols (UN, MDST, and algorithm A), respectively. The paper ends with concluding remarks in Sect. 6.

Model M (Message Passing)

Formal definitions regarding Input/Output Automata are omitted from this abstract [START_REF] Awerbuch | Self-stabilization by local checking global reset[END_REF][START_REF] Varghese | Self-stabilization by counter flushing[END_REF].

IO Automata, Stabilization, Time Complexity -An Input/Output Automaton (IOA) is a state machine with state transitions which are given labels called actions. There are three kinds of actions. The environment affects the automaton through input actions which must be responded to in any state. The automaton affects the environment through output actions; these actions are controlled by the automaton to only occur in certain states. Internal actions only change the state of the automaton without affecting the environment.

Formally, an IOA is defined by a state set S, an action set L, a signature Z (which classifies L into input, output, and internal actions), a transition relation T ⊆ S × L × S, and a non-empty set of initial states I ⊆ S. We mostly deal with uninitialized IOA, for which I = S (S finite). An action a is said to be enabled in state s if there exist s ′ ∈ S such that (s, a, s ′) ∈ T ; input actions are always enabled. When an IOA "runs", it produces an execution. An execution fragment is an alternating sequence of states and actions (s 0 , a 1 , s 1 . . .), such that (s i , a i , s i+1) ∈ T for all i ≥ 0. An execution fragment is fair if any internal or output action which is continuously enabled eventually occurs. An execution is an execution fragment which starts with an initial state and is fair. A schedule is a subsequence of an execution consisting only of the actions. A behaviour is a subsequence of a schedule consisting only of its input and output actions. Each IOA generates a set of behaviours. Finally, let A and B denote two IOA, we say that A stabilizes to B if every behaviour of A has a suffix which is also a behaviour of B.

For time complexity, we assume that every internal or output action which is continuously enabled occurs in one unit of time. We say that A stabilizes to B in time t if A stabilizes to B and every behaviour of A has a suffix which occurs within time t. The stabilization time from A to B is the smallest t such that A stabilizes to B in time t.

Network Model -The model M is for message passing protocols. The system is a standard point-to-point asynchronous distributed network consisting of n communicating processes connected by m bidirectional links. As usual, the network topology is described by a connected undirected graph G = (V, E), devoid of multiple edges and loop-free. G is defined on a set V of vertices representing the processes and E is a set of edges representing the bidirectional communication links operating between neighbouring vertices: in the sequel, |V | = n, and |E| = m. We view communication interconnection networks as undirected graphs. Henceforth, we use the terms graph (resp. nodes/edges) and network (resp. processes/links) interchangeably.

Each node and link is modelled by an IOA [START_REF] Awerbuch | Self-stabilization by local checking global reset[END_REF][START_REF] Varghese | Self-stabilization by counter flushing[END_REF]. A protocol is uniform if all processes perform the same protocol and are indistinguishable; i.e., in our model, we do not assume that processes have unique identities (ID's). We drop the adjective "uniform" from now on. The model M assumes that the messages are transferred on links in FIFO order, and in a finite but unbounded delay. It is also assumed that any non-empty set of processes may start the algorithm (such starting processes are "initiators"), while each non-initiator remains quiescent until reached by some message. In model M, processes have no global knowledge about the system (no structural information is assumed), but only know their neighbours in the network (through the mere knowledge of their ports). In particular, the model M assumes that nothing is known about the network size n or the diameter D(G) (no upper bound on n or on D(G) is either known). Regarding the use of memory, M is such that the amount of memory used by the protocols remains bounded, i.e., only a bounded number of messages are stored on each link at any instant. The justification for this assumption is twofold: first, not much can be done with unbounded links in a stabilizing setting [START_REF] Awerbuch | Self-stabilization by local checking global reset[END_REF][START_REF] Dolev | Resource bounds on self-stabilizing message driven protocols[END_REF][START_REF] Varghese | Self-stabilization by counter flushing[END_REF], and secondly, real channels are inherently bounded anyway. In other words, we model bounded links as unit capacity data links which can store at any given instant at most one circulating message. A link uv from node u to node v is modelled as a queue Q uv , which can store at most one message from some message alphabet Σ at any instant time. The external interface to the link uv includes an input action Send uv (m) ("send message m from u"), an output action Receive uv (m) ("deliver message m at v"), and an output action Free uv ("the link uv is currently free"). If a Send uv (m) occurs when Q uv = ∅, the effect is that Q uv = {m}; when Q uv = ∅, Free uv is enabled. If a Send uv (m) occurs when Q uv = ∅, there is no change of state. Note that by the above timing assumptions, a message stored in a link will be delivered in one unit of time.

We refer to [START_REF] Awerbuch | Self-stabilization by local checking global reset[END_REF] for detailed and formal definitions of the notions of queued node automaton, network automaton for a graph G, and similarly for the notions of internal reset and stabilization by local checking and global reset. (See Sect. 4.2 for the definition of local checkability and the statement of the two main theorems used in the correctness proof of the algorithm).

The Algorithm

Let G = (V (G), E(G)) be a connected, undirected, positively real-weighted graph, where the weight of an edge e = uv ∈ E(G) is given by ω uv . In the remainder of the paper, we use the graph theoretical terminology and notation. The weight of a path [u 0 , . . . ,

u k] of G (u i ∈ V (G)) is defined as k-1
i=0 ω uiui+1 . For all nodes u and v, the distance from u to v, denoted d G (u, v), is the lowest weight of any path length from u to v in G (∞ if no such path exists). The distance d G (u, v) represents the shortest path from u to v, and the largest (maximal) distance from node v to all other nodes in

V (G), denoted s G (v), is the separation of node v: viz. s G (v) = max u∈V (G) d G (u, v) [10]. D(G) denotes the diameter of G, defined as D(G) = max v∈V (G) s G (v)
, and D(G) the diameter in terms of hops. R(G) denotes the radius of G, defined as R(G) = min v∈V s G (v). Ψ G (u) represents a shortest-paths tree (SPT) rooted at node u:

(∀v ∈ V (G)) d Ψ G (u) (u, v) = d G (u, v). The set of all SPT's of G is then denoted Ψ(G).
The name of the graph will be omitted when it is clear from the context.

A High-Level Description

Unique Naming Protocol

The unique naming protocol solves the (UN) problem, where each process u must select one ID distinct from all other processes'. The protocol executes propagation of information (propagation of the ID of process u) and feedback (u collects the ID's of all other processes): i.e., a "PIF" protocol. Our randomized stabilizing protocol UN is a variant of the memory adaptive UN PIF protocol presented in [START_REF] Anagnostou | Memory adaptative self-stabilizing protocols[END_REF] and slightly differs in the following respects. First, our results hold for the message passing model M, even though they can easily be transposed in the link register model (and vice versa: the results in [START_REF] Anagnostou | Memory adaptative self-stabilizing protocols[END_REF] can easily be extended to the message passing model). Next, we do not use the ranking phase designed in the original protocol, but a simple ID's conflict checking phase. Besides, our maximum estimate for the size of the network is arbitrarily chosen to be ≤ lg n (see the proof of Theorem 5.1 in [START_REF] Butelle | A uniform self-stabilizing minimum diameter spanning tree algorithm[END_REF]), instead of n 1/2n 1/3 in [START_REF] Anagnostou | Memory adaptative self-stabilizing protocols[END_REF]. Note that the model M assumes that nothing is known about n or D(G) (not even an upper bound), therefore, the UN Monte-Carlo protocol in [START_REF] Anagnostou | Memory adaptative self-stabilizing protocols[END_REF] cannot be turned into a randomized Las Vegas protocol (e.g., a protocol solving the (UN) problem with probability 1).

Due to the lack of space, we do not give a detailed description of our protocol UN herein. A full description of the three phases executed in the protocol can be found in [START_REF] Anagnostou | Memory adaptative self-stabilizing protocols[END_REF] (for the original version) and in [START_REF] Butelle | A uniform self-stabilizing minimum diameter spanning tree algorithm[END_REF] (for our own variant). However, for better understanding of self-stabilization (showed in Sect. 4.2), let us just point out the behaviour of protocol UN in phase 3. Each process in phase 3 repeatedly broadcasts a message with its ID. At the end of each broadcast, if u detects a conflict, it initiates a Reset. In addition, u collects the ID's of all other processes (provided by feedback) and checks that all processes have unique ID's. The variable IDList contains the list of ID's of the visited processes. At the beginning of each broadcast, it is set to the initiator's ID; each visited process attaches its own ID to the list before forwarding it to its neighbours. After stabilization, every process remains forever in phase 3.

Construction of a MDST

The definition of separation must be generalized to "dummy nodes" (so-called in contrast to actual vertices of V). Such a fictitious node may possibly be inserted on any edge e ∈ E. Thus, let e = uv be an edge of weight ω uv , a dummy node γ inserted on e is defined by specifying the weight α of the segment uγ. According to the definition, the separation s(γ) of a general node γ, whether it is an actual vertex in V or a dummy node, is clearly given by: s(γ) = max z∈V d(γ, z). A node γ * such that s(γ *) = min γ s(γ) is called an absolute center of the graph. Recall that γ * always exists in a connected graph, and that is not unique in general. Similarly, the definition of Ψ(u) is also generalized so as to take these dummy nodes into account. Finding a MDST actually amounts to search for an absolute center γ * of G, and the SPT rooted at γ * is then a MDST of G. Such is the purpose of the following Lemma: Lemma 3.1 [START_REF] Camerini | Complexity of spanning tree problems: Part I[END_REF] The (MDST) problem for a given graph G is (polynomially) reducible to the problem of finding an absolute center of G.

Computation of an absolute center of a graph

According to the results in [START_REF] Christophides | Graph Theory: An algorithmic approach[END_REF], we use the following Lemma to find an absolute center of G. Lemma 3.2 Let G = (V, E) be a weighted graph. An absolute center γ * of G is constructed as follows:

(i) On each edge e ∈ E, find a general node γ e of minimum separation.

(ii) Among all the above γ e 's, γ * is a node achieving the smallest separation.

Proof: (the proof is constructive)

(i) This first step is performed as follows: for each edge e = uv, let α = d(u, γ). Since the distance d(γ, z) is the length of either a path [γ, u, . . . , z], or a path [γ, v, . . . , z],

s(γ) = max z∈V d(γ, z) = max z∈V min{α + d(u, z), ω uv -α + d(v, z)}.
(1)

If we plot f + z (α) = α + d(u, z) and f - z (α) = -α + ω uv + d(v, z) in Cartesian coordinates for fixed z = z 0 , the real-valued functions f + z0 (α) and f - z0 (α) (separately depending on α in the range [0, ω e]) are represented by two line segments (S 1) z0 and (S -1) z0 , with slope +1 and -1, respectively. For a given z = z 0 , the smallest of the two terms f + z0 (α) and f - z0 (α) (in (1)) is thus found by taking the convex cone of (S 1) z0 and (S -1) z0 . By repeating the above process for each node z ∈ V , all convex cones of segments (S 1) z∈V and (S -1) z∈V are clearly obtained (see Fig. 2). Now we can draw the upper boundary B e (α) (α ∈ [0, ω e]) of all the above convex cones of segments (S 1) z∈V and (S -1) z∈V . B e (α) is thus a curve made up of piecewise linear segments, which passes through several local minima (see Fig. 2). The point γ achieving the smallest minimum value (i.e., the global minimum) of B e (α) represents the absolute center γ * e of the edge e.

(d 1 , d 2) / (∀z ∈ V) d 1 = d(u, z), d 2 = d(v, z)} Now, a pair (d ′ 1 , d ′ 2) is said to dominate a pair (d 1 , d 2) iff d 1 ≤ d ′ 1 , and d 2 ≤ d ′ 2 (viz. the convex cone of (d ′ 1 , d ′ 2) is over the convex cone of (d 1 , d 2)
). Any such pair (d 1 , d 2) will be ignored when it is dominated by another pair

(d ′ 1 , d ′ 2)
. Notice that the local minima of the upper boundary B e (α) (numbered from 1 to 3 in Fig. 2) are located at the intersection of segments f - i (α) and f + i+1 (α), when all dominated pairs are removed. If we sort the set C e in descending order with respect to the first term of each remaining pair

All-Pairs Shortest-Paths Protocol (APSP)

In the previous paragraph, we consider distances d(u, z) and d(v, z), for all z ∈ V and each edge e = uv. Such distances must be computed by a failsafe distributed routing protocol, e.g., Merlin-Segall's APSP protocol designed in [START_REF] Merlin | A failsafe distributed routing protocol[END_REF].

The justification for this choice is threefold. First, shortest paths to each destination v are computed by executing the protocol independently for each v. Thus, an essential property of Merlin-Segall's algorithm is that the routing tables are cycle-free at any time (Property (a) in [START_REF] Merlin | A failsafe distributed routing protocol[END_REF]). Next, the protocol is also adapted to any change in the topology and the weight of edges (Property (b)). Finally, the protocol converges in dynamic networks and is indeed self-stabilizing (Property (c)). (See Lemma 4.1).

A Formal Description

Assume the list L e defined above (in Paragraph 3.1.3) to be already constructed (for example with a heap, whenever the routing tables are computed), the following procedure computes the value of γ * e for any fixed edge e.

Procedure Gamma_star(e) var min, α : real

Init min ← +∞ ; α ← 0 ; For i=1 to |L e | do compute the intersection (x, y) of segments f - i and f + i+1 : x = 1 2 (ω e -a i + b i+1) ; y = 1 2 (ω e + b i+1 + a i) if y < min then min ← y ; α ← x ; Return(α,min)
The distributed protocol MDST finds a MDST of an input graph G = (V, E) by computing the diameter of the SPT's for all nodes. Initially, an edge weight ω uv is only known by its two endpoints u and v. In the first stage, the randomized, stabilizing protocol UN provides each process u with its unique ID, denoted ID u (see Sect. [START_REF] Awerbuch | Optimal distributed algorithms for minimum weight spanning tree, counting, leader election and related problems[END_REF]

.1.1).

(ii) There exists s ∈ S(N) such that s satisfies LP uv for all LP uv ∈ L. (iii) Each LP uv ∈ L is stable: for all transitions (s, a, s ′) of N , if s satisfies LP uv then so does s ′ .

The main theorem in [START_REF] Awerbuch | Self-stabilization by local checking global reset[END_REF] is about self-stabilization by local checking and global reset. Roughly, it shows that any protocol which is locally checkable for some global property can be transformed into an equivalent protocol, which stabilizes to a variant of the protocol in which the global property holds in its initial state. This transformation increases the time complexity by an overhead given in [START_REF] Awerbuch | Self-stabilization by local checking global reset[END_REF]Theorem 10].

Also recall the fundamental Theorem 4.1 which states the fair composition of two stabilizing protocols P 1 and P 2 [START_REF] Dolev | Self-stabilization of dynamic systems assuming read/write atomicity[END_REF].

Theorem
LP uv ≡ {(∀ ID i , ID j ∈ IDList u) i = j =⇒ ID i = ID j } ∧ {(∀ ID i , ID j ∈ IDList v) i = j =⇒ ID i = ID j }
∧ (u and v are both in phase 3) for predicate ψ ≡ (∀uv ∈ E) LP uv ,

where the variable IDList is defined in Sect. 3.1.1. And, similarly,

LP ′ uv ≡ (d u [v] < +∞) ∧ (d v [u] < +∞), for predicate ψ ′ ≡ (∀uv ∈ E) LP ′ uv .
Note that this does not mean that the estimate values d u [v] are exact, but that they are not too bad. Of course, if some distances d u [v] are wrong, it may cause the construction of a MDST to fail. However, the routing protocol is self-stabilizing, and after a while the estimate distances shall be correct and a MDST will be found. Lemma 4.1 Let L = {LP uv } be the set of local predicates over the variables of the randomized protocol UN. A network automaton N is locally checkable for ψ using L.

Proof:

(By Definition 4.1). Condition (i) clearly holds by the definition of ψ. Condition (ii) holds for a state s ∈ S(N) such that processes ID's are all distinct in phase 3. Now suppose s ∈ S(N) satisfies LP uv . In the case when no failures occur, u and v obviously remain in phase 3 by construction of protocol UN. In the case when nodes recoveries occur (with arbitrary ID's), u and v are able to detect conflicts and if necessary they initiate a Reset. After a while, each process (and especially u and v) returns to phase 3 with one unique ID. Therefore, condition (iii) holds. Lemma 5.2 If n processes choose random ID's from the set [N] = {1, . . . , N }, where N ≥ n 2 /ǫ, all ID's will be unique with probability p > 1ǫ, for all 0 < ǫ < 1.

Proof:

The probability p that all processes randomly choose distinct ID's is

p = N (N -1) • • • (N -n + 1) N n = n-1 i=1 (1 -i/N). Assuming that n/N ≤ 1/2, or N ≥ 2n yields p > n-1 i=1 e -2i/N > e -n 2 /N .
Since (∀ 0 < ǫ < 1) e -ǫ > 1ǫ, we have that p > 1ǫ when N ≥ n 2 /ǫ. Hence, it is sufficient to randomly select the n identities from the set [N], with N ≥ n 2 /ǫ, in which case the identities are all distinct with probability > 1ǫ, for fixed 0 < ǫ < 1.

Lemma 5.3 If after a Reset there exist n ′ < n distinct ID's in the network, then a Reset is initiated by the end of phase 2 with probability ≥ 1 -2 n ′ -n .

Theorem 5.1 Let ∆ be the maximum degree of the network. Starting from any state, the probability that the system will stabilize in O (n(1 + log log nlog log(∆ + 1))) rounds is ≥ 1δ, for some constant 0 < δ < 1 which does not depend on the network. The expected number of rounds until protocol UN stabilizes is O(n log log n). The maximal memory size used by each process in any execution of protocol UN is at most O(n 2 log n) bits.

Protocol M DST

Proof:

It is shown in [START_REF] Merlin | A failsafe distributed routing protocol[END_REF] that after i update rounds, all shortest paths of at most i hops have been correctly computed, so that after at most D rounds, all shortest paths to node u are computed. Shortest paths to each destination are computed by executing the protocol independently for each destination. Since a round costs O(D) time, the stabilization time of Merlin-Segall's protocol is O(D 2). Now, the computation of γ * requires a minimum finding over a tree (viz., O(n)) and local computations on each adjacent edge of G (viz., O(∆), where ∆ is the maximum degree). Hence, the stabilization time of the protocol MDST is O(n∆ + D 2).

Finally, O(n log n + n log W) space complexity is needed to maintain global routing tables.

Note that since D ≤ D ≤ W D, the "hop time complexity" used above is more accurate.

Complexity Measures of Algorithm A

The following theorem summarizes our main result, and its proof follows from the previous Lemma.

Theorem 5.2 Starting from any state, the probability that algorithm A will stabilize is ≥ 1δ, for some constant 0 < δ < 1 which does not depend on the network. Recall D be the diameter of G in terms of hops, ∆ the maximum degree, and W the largest edge weight. The expected time complexity of A is O(n∆ + D 2 + n log log n), and its space complexity is at most O(n 2 log n + n log W) bits.

Since the number of messages required in Merlin-Segall's protocol is at most O(n 2 m), the communication complexity of A is O(n 2 mK) bits (where K = O(log n+log W) bits is the largest message size).

Concluding Remarks

We proposed a uniform self-stabilizing algorithm for distributively finding a MDST of a positively weighted graph. Our algorithm is new. It works for arbitrary anonymous networks topologies, symmetry is broken by randomization; it stabilizes in O(n∆ + D 2 + n log log n) expected time, and requires at most O(n 2 log n + n log W) memory bits. The assumptions of our model M are quite general, and in some sense, the algorithm might be considered reasonably efficient in such a setting (even though the communication complexity appears to be the weak point of such algorithms). Whatsoever, the stabilization complexities can be improved in terms of time and space efficiency by restricting the model's assumptions and using the very recent results proposed in [START_REF] Dolev | Optimal Time Self-Stabilization in Uniform Dynamic Systems[END_REF] and [START_REF] Awerbuch | Time optimal self-stabilizing synchronization[END_REF]. First, the randomized uniform self-stabilizing protocol presented in [START_REF] Dolev | Optimal Time Self-Stabilization in Uniform Dynamic Systems[END_REF] provides each (anonymous) process of a uniform system with a distinct identity. This protocol for unique naming uses a predefined fixed amount of memory and stabilizes within Θ(D) expected time (where D is the diameter of the network). Secondly, following [START_REF] Awerbuch | Time optimal self-stabilizing synchronization[END_REF], we may restrict our model and assume that a pre-specified bound B(D) on the diameter D is known. In O(D) time units, the stabilizing protocol in [START_REF] Awerbuch | Time optimal self-stabilizing synchronization[END_REF] produces a shortest paths tree rooted at the minimal ID node of the network; in addition, the complexity of the space requirement and messages size is O(log B(D)). In this restricted model (i.e., assuming the knowledge of an upper bound on D), the fair composition of the two protocols yields a randomized uniform self-stabilizing algorithm which finds a MDST with stabilization time (at most) O(n) and space complexity O(log B(D)). In this setting, the fact that the space complexity does not depend on n makes the solution more adequate for dynamic networks.

Figure 1 :

 1 Figure 1: Example of a MDST T * (D(G) = 22 and D(T *) = 27)

 (ii) By definition of the γ * e 's, min γ s(γ) = min γ * e s(γ * e), and γ * achieves the smallest separation. Therefore, an absolute center of the graph is found at any point where the minimum of all s(γ * e)'s is attained.

Figure 2 :

 2 Figure 2: Example of an upper boundary B e (α) By Lemma 3.2, we may consider this method from an algorithmic viewpoint. For each e = uv, let C e be the set of pairs{(d 1 , d 2) / (∀z ∈ V) d 1 = d(u, z), d 2 = d(v, z)} Now, a pair (d ′ 1 , d ′ 2) is said to dominate a pair (d 1 , d 2) iff d 1 ≤ d ′ 1 , and d 2 ≤ d ′ 2 (viz. the convex cone of (d ′ 1 , d ′ 2) is over the convex cone of (d 1 , d 2)).Any such pair (d 1 , d 2) will be ignored when it is dominated by another pair (d ′ 1 , d ′ 2). Notice that the local minima of the upper boundary B e (α) (numbered from 1 to 3 in Fig. 2) are located at the intersection of segments f - i (α) and f + i+1 (α), when all dominated pairs are removed. If we sort the set C e in descending order with respect to the first term of each remaining pair (d 1 , d 2), we thus obtain the list L e = ((a 1 , b 1), . . . , (a |Le| , b |Le|) consisting in all such remaining ordered pairs. Hence, the smallest minimum of B e (α) for a given edge e clearly provides an absolute center γ * e . (See Procedure Gamma_star(e) in Sect. 3.2). By Lemma 3.2, once all the γ * e 's are computed, an absolute center γ * of the graph is obtained. By Lemma 3.1, finding a MDST of the graph reduces to the problem of computing γ * .

(d 1

 1 , d 2), we thus obtain the list L e = ((a 1 , b 1), . . . , (a |Le| , b |Le|) consisting in all such remaining ordered pairs. Hence, the smallest minimum of B e (α) for a given edge e clearly provides an absolute center γ * e . (See Procedure Gamma_star(e) in Sect. 3.2). By Lemma 3.2, once all the γ * e 's are computed, an absolute center γ * of the graph is obtained. By Lemma 3.1, finding a MDST of the graph reduces to the problem of computing γ * .

Lemma 5 . 4

 54 The time complexity of protocol MDST is at most O(n∆ + D 2), and its space complexity is O(n log n + n log W) bits, where W is the largest edge weight.

 4.1 If the four conditions hold, (i) protocol P 1 stabilizes to ψ 1 ; (ii) protocol P 2 stabilizes to ψ 2 if ψ 1 holds; (iii) protocol P 1 does not change variables used by P 2 once ψ 1 holds; and, (iv) all executions are fair w.r.t. both P 1 and P 2 , then the fair composition of P 1 and P 2 stabilizes to ψ 2 .Let ψ be a predicate over the variables of protocol UN, and ψ ′ a predicate over the variables of protocol MDST (see Sect. 2). Now, protocol MDST is the fair combination of two subprotocols. The first protocol uses Merlin-Segall's APSP routing algorithm (see Sect. 3.1.4), while the second subprotocol deterministically computes the value γ * (see Sect. 3.1.3). Hence, the local predicates LP uv and LP ′ uv corresponding to the predicates ψ and ψ ′ , respectively, are defined by

	4.2 Correctness Proof

Remark In order to complete self-stabilization, the deterministic protocol MDST must be repeatedly executed .

A sequential algorithm for the (MDST) problem may also be derived from the above protocol, since Ψ(γ) is then a MDST of G, where γ is the general node s.t. s(γ) = upbound.

Improvements: In practice, some improvements in protocol MDST can easily be carried out. Indeed, reducing the enumeration of dummy nodes may be done by discarding several edges of G from the exploration. To be able to discard an edge, we only need to know bounds on the minimum diameter D * of all spanning trees of G. Note that the lower bound on D * is obviously D(G), and that D * is also bounded from above by the minimum diameter taken over all SPT's, viz. D * ≤ min T ∈Ψ(G) D(T). In the example of Fig. 1, such improvements lead to discard from the exploration the edges EF, AB, AC, BF, CD, DE, EG, FG. (See [START_REF] Butelle | A uniform self-stabilizing minimum diameter spanning tree algorithm[END_REF]).

Correctness

Self-Stabilization

Fix a network automaton N for a given graph G, the definition of local checkability is stated as follows [START_REF] Awerbuch | Self-stabilization by local checking global reset[END_REF]. Definition 4.1 Let L = {LP uv } be a set of local predicates, and let ψ be any predicate of N . A network automaton N is locally checkable for ψ using L if the following conditions hold.

(i) For all states s ∈ S(N), if s satisfies LP uv for all LP uv ∈ L, then s ∈ ψ.

Lemma 4.2 Let L ′ = {LP ′ uv } be the set of local predicates over the variables of Merlin-Segall's APSP protocol. A network automaton N is locally checkable for ψ ′ using L ′ .

Proof:

(By Definition 4.1). Condition (i) clearly holds by the definition of ψ ′ . Since G is connected, there exists a path [u, . . . , v] such that the distance d G (u, v) is finite. Hence, condition (ii) holds for the corresponding state s ∈ S(N). Finally, condition (iii) clearly holds by convergence of Merlin-Segall's routing protocol. (See [23, Property (c)], and Sect. 3.1.4).

Recall that ϕ * u .upbound denotes the best value of s(γ *) computed so far at node u. We show now that both protocols MDST and A stabilize to the desired postcondition θ defined by:

The local predicate LP ′′ uv corresponding to θ is defined by:

Lemma 4.3 Assume processes ID's are all distinct, the protocol MDST stabilizes to θ.

Proof:

(Sketch) First, protocol MDST is locally checkable for θ using the set L ′′ = {LP ′′ uv }. By Definition 4.1, conditions (i) and (ii) clearly hold. Condition (iii) derives from the fact that Merlin-Segall's protocol stabilizes to ψ ′ , while the computation of γ * is deterministic. Consequently, protocol MDST is locally checkable and stabilizes to θ by [START_REF] Awerbuch | Self-stabilization by local checking global reset[END_REF]Theorem 10].

Proof:

The following conditions hold. (iv) Since protocol MDST terminates, there are only finitely many executions of MDST between two executions of UN. The protocol UN stabilizes to θ with probability 1 and since θ is true, each ID remains unchanged, and so does the computation of γ * . Therefore, all executions are fair w.r.t. to both UN and MDST.

By Theorem 4.1, algorithm A which is the fair composition of UN and MDST stabilizes to θ with probability 1.

Analysis

Protocol U N

The three phases executed in protocol UN are described in [START_REF] Anagnostou | Memory adaptative self-stabilizing protocols[END_REF][START_REF] Butelle | A uniform self-stabilizing minimum diameter spanning tree algorithm[END_REF]. (See Sect. 3.1.1). Lemma 5.1 Each Reset lasts at most 2D + n rounds. If two processes have the same ID, then within at most O(n) rounds some process in the network will order a Reset. After a Reset, it takes the system 4n rounds either to perform global memory adaptation, or to complete another Reset.

Note that the maximum number of rounds needed for the completion of phases 1 and 2 is exactly 4n.