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A NOTE ON GUE MINORS, MAXIMAL BROWNIAN FUNCTIONALS

AND LONGEST INCREASING SUBSEQUENCES

FLORENT BENAYCH-GEORGES AND CHRISTIAN HOUDRÉ

Abstract. We present equalities in law between the spectra of the minors of a GUE
matrix and some maximal functionals of independent Brownian motions. In turn, these
results allow to recover the limiting shape (properly centered and scaled) of the RSK
Young diagrams associated with a random word as a function of the spectra of these
minors. Since the length of the top row of the diagrams is the length of the longest
increasing subsequence of the random word, the corresponding limiting law also follows.

1. Introduction

It is by now well known that there exist strong and interesting connections between
directed percolation and random matrices. The precise results we have in mind have their
origins in the identity in law, due to Baryshnikov [2] and Gravner, Tracy and Widom [10],
between the maximal eigenvalue of an M ×M element of the GUE and a certain maximal
functional of standardM-dimensional Brownian motion originating in queuing theory, with
Glynn and Whitt [9]. This first result has seen many extensions and complements. For
example, O’Connell and Yor [24] as well as Bougerol and Jeulin [5] obtained identities in law
between (different) multivariate Brownian functionals and the spectrum of the GUE whose
equivalence is shown in Biane, Bougerol and O’Connell [3]. Various related representations
have also been put forward and studied for instance in Doumerc [7], Johansson [17, 19],
O’Connell [23] to name but a few authors and pieces of work.

Our interest in such representations comes from the identification by Its, Tracy and
Widom [25, 15, 16] of the limiting length (properly centered and scaled) of the longest
increasing subsequence of a random word as the maximal eigenvalue of a certain random
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matrix. For example, in the case of a word with i.i.d. uniformly distributed letters in an
alphabet of size M , the limiting law is the maximal eigenvalue of the M × M traceless
GUE. Moreover, positively answering a conjecture of Tracy and Widom, Johansson [18]
showed that the whole normalized limiting shape of the RSK Young diagrams associated
with the random word is the spectrum of the M × M traceless GUE. Since the length
of the top row of the diagrams is the length of the longest increasing subsequence of the
random word the maximal eigenvalue result of [25] followed.

Limiting laws expressed in terms of maximal Brownian functionals are also obtained in
[11]. These last representations involve dependent Brownian motions and do not clearly
recover the results of [25] or [15, 16], which themselves are mainly derived by analytical
techniques. To resolve this issue, we provide below an extension of Baryshnikov’s result
[2] on the identification of the multivariate law of the maximal eigenvalues of the principal
minors of a GUE matrix with some maximal functionals of a standard multidimensional
Brownian motion. This allows us to circumvent the analytical approach and provides a
mixed combinatorial/probabilistic methodology to the solutions of these finite alphabet
longest increasing subsequence problems. Our hope is that Theorem 1, below, will also be
helpful to fully identify eigenvalues of random matrices as the limiting laws in the corre-
sponding Markov random word problems (see Kuperberg’s Conjecture 7 in [21]). In the
Markovian setting, the analytical methodology is lacking, in contrast to the probabilistic
one, and to date the limiting laws are mainly only expressed as Brownian functionals. In-
deed, the multivatiate functional appearing in Theorem 1 is exactly the one giving the limit
law of the shape of the RSK image of a Markov random word in [12], the only difference
being that the Brownian motions in [12] are correlated. This correlation issue in maximal
functionals often amounts to adding a condition on the trace of the random matrix (as in
[25, 18, 15, 16]). However, for general Markov random words the full identification of these
functionals via random matrices remains open. For Markov random words with cyclic and
symmetric transition matrix, the longest increasing subsequence will be asymptotically
identified to the eigenvalues of some random matrices once we will have a more general
version of Theorem 1 below where the Brownian motions are correlated. Our intuition is
that to get such a generalization of Theorem 1, one needs to consider the minors of more
general random matrices, namely Gaussian Hermitian matrices with general Gaussian vec-
tor as diagonal, independent of the off-diagonal entries, who are i.i.d. Besides providing
the final touch to an essentially probabilistic proof of the random word asymptotics prob-
lem, our results also allow us to shed new lights on the queuing framework by providing,
for example, joint limiting laws involving departing times and service times of individual
customers.
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2. Statements and proofs of the results

Throughout, fix a positive integer M and consider:

• an M ×M GUE matrix H = [hij ], i.e. , a standard Gaussian variable on the space
of M ×M Hermitian matrices endowed with the Euclidean scalar product given for
any two such matrices X and Y by X · Y = TrXY ,

• an M-dimensional standard Brownian motion B = (Bk(t))t∈[0,1],k=1,...,M .

For each k = 1, . . . ,M , denote by

(1) µk
1 ≥ · · · ≥ µk

k,

the eigenvalues of the principal k × k minor of H . Next, introduce the set

P := {π : [0, 1] → {1, . . . ,M} càdlàg, non-decreasing},
and for π ∈ P, let

∆π(B) :=

∫ 1

0

dBπ(t)(t) =
M∑

j=1

(Bj(tj)−Bj(tj−1)),

where 0 = t0 ≤ t1 ≤ · · · ≤ tM = 1 are such that

π(·) =
M−1∑

j=1

j × 1[tj−1 ,tj)(·) +M × 1[tM−1 ,tM ](·).

To complete our notations, for π1, π2 ∈ P, we write π1 < π2 whenever π1(t) < π2(t), for all
t ∈ [0, 1]. Let us now state our first result which, in particular, when ℓ = 1 below, identifies
the joint law of the maximal eigenvalue of the principal minors of H and is therefore, in
that case, already present in [2].

Theorem 1. The following equality in law holds true:
(

ℓ∑

i=1

µk
i

)

1≤ℓ≤k≤M

law
=

(
sup

{
ℓ∑

i=1

∆πi
(B) ; π1, . . . , πℓ ∈ P, π1 < · · · < πℓ ≤ k

})

1≤ℓ≤k≤M

This theorem, which is certainly of interest on its own right and also has a process
version (where the matrix H is replaced by a Dyson Brownian motion, see [1], and B is
taken up to time t and not to time 1), is proved at the end of the paper. Let us present
and prove at first some of its corollaries which motivated, in part, the present study. When
combined with [11], the first corollary provides an alternative approach to [25] or [15, 16].
The second corollary makes full use of Theorem 1 and, when combined with [14] or [12],
provides an alternative approach to [18], [15], [16]. In both results, and throughout, =⇒
indicates convergence in distribution.

Let us briefly recall the framework of the works just cited. Let (Xi)i≥1 be a sequence
of i.i.d. random variables on a totally ordered finite alphabet A of cardinality k. Denote
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the elements of A by α1, . . . , αk listed in such a way that if pi := P(X1 = αi), i = 1, . . . , k,
then p1 ≥ · · · · · · ≥ pk (therefore this indexing of the letters in A has nothing to do with
the order used on A). Next, decompose the alphabet A into subsets A1, . . . ,An in such
a way that αi and αj belong to the same Am, m = 1, . . . , n ≤ k, if and only if pi = pj .
Finally, let LIN be the length of the longest increasing subsequence of the random word

X1 · · · · · ·XN .

Corollary 2. Let pmax := p1, k1 := #A1 and let H = [hij] be a k1 × k1 GUE matrix with

largest eigenvalue µmax. Then, as N tends to infinity,

LIN −Npmax√
Npmax

=⇒
√
1− k1pmax − 1

k1

k1∑

j=1

hjj + µmax.(2)

Proof. From Theorem 1, with the notation introduced above, and if B is now a k1–
dimensional standard Brownian motion,

(3) (µj
1)1≤j≤k1∪(hjj)1≤j≤k1

law
=

(
max

0=t0≤···≤tj=1

j∑

i=1

(Bi(ti)− Bi(ti−1))

)

1≤j≤k1

∪ (Bj(1))1≤j≤k1,

since h11 = µ1
1 and for all j = 2, . . . , k1, hjj =

∑j
i=1 µ

j
i −
∑j−1

i=1 µ
j−1
i . Next, Corollary 3.3 in

[11] asserts that

(4)
LIN −Npmax√

Npmax

=⇒
√
1− k1pmax − 1

k1

k1∑

j=1

Bj(1) + max
0=t0≤···≤tk1=1

k1∑

i=1

(Bi(ti)−Bi(ti−1)) ,

combining (3) and (4) gives (2). �

Denote by λ1 ≥ · · · ≥ λk the shape of the Young diagrams obtained by applying the
RSK algorithm to the random word

X1 · · · · · ·XN ,

and let

ξi =
λi −Npi√

Npi
,

1 ≤ i ≤ k, be the corresponding rescaled variables. Introduce next some independent GUE
matrices H1, . . . , Hn, where each Hj has size kj := #Aj , and let

H :=



H1

. . .

Hn


 and



H̃1

. . .

H̃n


 := H − Tr(HJ)J,

where

J = diag(
√
p1, . . . ,

√
pk).
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Remark 3. Note that J is a unit vector of the space Hk1 × · · · × Hkn endowed with the
Euclidean product structure, so H − Tr(HJ)J is the orthogonal projection onto J⊥, so
that its law is the law of H conditioned to belong to J⊥.

Finally, define the random vector (µ1, . . . , µk) by

(µ1, . . . , µk) := (ordered spectrum of H̃1, . . . . . . , ordered spectrum of H̃n).

Corollary 4. As N → ∞,

(ξ1, . . . , ξk) =⇒ (µ1, . . . , µk).

Remark 5. The limiting law of LIN , rescaled, is simply the law of µ1 and is given by

(5) λmax(H1)− p1Tr(H1)−
√

p1(1− k1p1)Z,

where Z is a standard Gaussian random variable, independent of H1. Note also that this
law only depends on p1 and k1.

Proof. First,

Tr(HJ) =

n∑

j=1

√
p(j)TrHj ,

where for all j, p(j) := pℓ for ℓ ∈ Aj. So for each i, we have

H̃i = Hi −
(
√
pi

n∑

j=1

√
p(j)TrHj

)
I,

where I is the corresponding identity matrix. Then, Theorem 3.1 and Remark 3.2 (iv)
in [14] together with Theorem 1 allow to conclude. �

In case the i.i.d. random variables generating the random word are replaced by an (ir-
reducible, aperiodic) homogeneous Markov chain, with state space A of cardinality k, the
corresponding limiting laws are also given in terms of maximal Brownian functionals sim-
ilar to those in Theorem 1 (see [12]). However, an important difference is that now the

standard Brownian motion B is replaced by a correlated one B̃ with, say, covariance matrix
Σ instead of I. The possible identification of (the law of) these functionals as (the law of)
maximal eigenvalues (or spectra) of random matrices has not been fully accomplished yet.
In particular, for cyclic transition matrices P , in which case the stationary distribution is
the uniform one, there is a curious dichotomy between alphabets of size at most three and
size four or more. Indeed for k ≤ 3, the cyclic hypothesis forces Σ to have a permutation-
symmetric structure seen in the i.i.d. uniform case. For example, for k = 3, Σ is, a rescaled
version of,

(6) Σu :=




1 −1/2 −1/2
−1/2 1 −1/2
−1/2 −1/2 1


 ,
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and so (up to a multiplicative constant) and with k = k1 = 3, pmax = p1 = 1/3, (2)
continues to hold for cyclic Markov chains. For k ≥ 4, the cyclicity constraint on P forces
Σ to be cyclic but does no longer force the permutation-symmetric structure, and, say, for
k = 4, Σ might differ from, a rescaled version of,

(7) Σu :=




1 −1/3 −1/3 −1/3
−1/3 1 −1/3 −1/3
−1/3 −1/3 1 −1/3
−1/3 −1/3 −1/3 1


 .

In fact, if

(8) P =




p1 p2 p3 p4
p4 p1 p2 p3
p3 p4 p1 p2
p2 p3 p4 p1


 ,

then Σ is a rescaled version of Σu if and only if p23 = p2p4. Nevertheless, see [12], for k ≥ 2,

LIN −N/k

σ
√
N

=⇒ sup
{
∆π(B̃); π ∈ P, π ≤ k

}
= max

0=t0≤···≤tk=1

k∑

j=1

(
B̃j(tj)− B̃j(tj−1)

)
.(9)

Assuming that in addition to be cyclic, P is also symmetric (for k = 2 the cyclic and
symmetric assumptions are the same, and Chistyakov and Götze [6], see also [13], showed
that the corresponding limiting law is a maximal eigenvalue) a diagonalization argument,
combined with (9), leads to the following result.

Proposition 6. Let P := (pi,j)1≤i,j≤k be cyclic and symmetric, i.e., P = (p(j − i))1≤i,j≤k,

where p is a k-periodic function defined on Z such that p(r) = p(−r), for all r ∈ Z. Let

(10) λℓ :=

k∑

r=1

p(r) cos (2π(ℓ− 1)r/k) (1 ≤ ℓ ≤ k),

and let (Bj)j=2,...,k be a (k − 1)-dimensional standard Brownian motion on [0, 1]. Then,

LIN −N/k

σ
√
N

=⇒ max
0=t0≤···≤tk=1





√
2

k

k∑

j=1

⌊k−1

2
⌋∑

r=1

√
1 + λr+1

1− λr+1

(
cos

(
2πjr

k

)
(B2r(tj)−

B2r(tj−1)) + sin

(
2πjr

k

)
(B2r+1(tj)− B2r+1(tj−1))

)

− 1√
k

√√√√1 + λ k
2
+1

1− λ k
2
+1

(
2

k∑

j=1

(Bk(tj)− Bk(tj−1))− Bk(1)

)

 ,(11)

where the last term above is only present for k even.
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Proof. Since P is symmetric, it can be diagonalized as P = SΛS⊤, where Λ is the diagonal
matrix formed with its eigenvalues (λℓ)1≤ℓ≤k (we will see below that these are the quantities
defined at (10)) and where S is a matrix formed by the orthonormal column eigenvectors

(uℓ)1≤ℓ≤k where u⊤
1 = (1/

√
k, . . . , 1/

√
k). Next, by Theorem 4.3 in [12], Σ, the covariance

matrix of the k–dimensional correlated Brownian motion B̃, is given by Σ = SΛΣS
⊤, where

ΛΣ is the diagonal matrix with diagonal entries 0, (1 + λ2)/(1− λ2), . . . , (1 + λk)/(1− λk).

Therefore, B̃ = S
√
ΛΣB, where now B is a standard k–dimensional Brownian motion.

Now the symmetric and cyclic structures imply that the eigenvalues of P are in fact the
λℓ’s defined at (10): λℓ =

∑k
r=1 p(r) cos (2π(ℓ− 1)r/k), 1 ≤ ℓ ≤ k, (clearly they are

not all simple since λℓ = λk−ℓ+2, ℓ = 2, . . . , k). The corresponding orthonormal column
eigenvectors are

vℓ := (vj,ℓ)1≤j≤k = (
√
2 cos(2π(ℓ− 1)j/k)/

√
k)1≤j≤k , ℓ = 1, 2, . . . , ⌊k/2⌋+ 1,

and

wℓ := (wj,ℓ)1≤j≤k = (
√
2 sin(2π(ℓ− 1)j/k)/

√
k)1≤j≤k , ℓ = 2, 3, . . . , ⌊(k − 1)/2⌋+ 1.

Clearly, v1 = u1 is an eigenvector corresponding to the simple eigenvalue 1, while if k
is even, v(k/2)+1 = (1/

√
k,−1/

√
k, . . . , 1/

√
k,−1/

√
k) is an eigenvector corresponding to

the simple eigenvalue
∑k

r=1 p(r) cos (2π(k/2 + 1− 1)r/k) =
∑k

r=1(−1)rp(r). Moreover, for
ℓ = 2, 3, . . . , ⌊(k − 1)/2⌋+ 1, vℓ and wℓ share the same eigenvalue λℓ. Therefore,

S =
(
v1, v2, w2, . . . , v⌊k−1

2
⌋+1, w⌊k−1

2
⌋+1, v k

2
+1

)
,

where, above, the last column is only present if k is even. Next, from the transformation
B̃ = S

√
ΛΣB, and since

(√
ΛΣB

)
ℓ
=
√
(1 + λ⌊ℓ/2⌋+1)/(1− λ⌊ℓ/2⌋+1)Bℓ, ℓ = 2, . . . , k, and(√

ΛΣB
)
1
= 0, then for j = 1, . . . , k,

B̃j =

k∑

ℓ=2

uj,ℓ

√√√√1 + λ⌊ ℓ
2
⌋+1

1− λ⌊ ℓ
2
⌋+1

Bℓ,(12)

where uj,ℓ = vj,⌊ℓ/2⌋+1 or uj,ℓ = wj,⌊ℓ/2⌋+1, for ℓ even or odd. Therefore, for j = 1, . . . , k,

B̃j =

√
2

k

⌊k−1

2
⌋∑

r=1

√
1 + λr+1

1− λr+1

(
cos

(
2πrj

k

)
B2r + sin

(
2πrj

k

)
B2r+1

)
(13)

+
(−1)j+1

√
k

√√√√1 + λ k
2
+1

1− λ k
2
+1

Bk,
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where the last term on the right of (13) is only present for k even. With (13), the sum on
the right hand side of (9) becomes:

√
2

k

k∑

j=1

⌊k−1

2
⌋∑

r=1

√
1 + λr+1

1− λr+1

(
cos

(
2πjr

k

)
B2r(tj) + sin

(
2πjr

k

)
B2r+1(tj)(14)

− cos

(
2πjr

k

)
B2r(tj−1)− sin

(
2πjr

k

)
B2r+1(tj−1)

)

+
1√
k

√√√√1 + λ k
2
+1

1− λ k
2
+1

k∑

j=1

(−1)j+1 (Bk(tj)−Bk(tj−1)) ,

an expression only involving standard Brownian motions and where, again, the last term

1√
k

√√√√1 + λ k
2
+1

1− λ k
2
+1

k∑

j=1

(−1)j+1 (Bk(tj)− Bk(tj−1))(15)

=
−1√
k

√√√√1 + λ k
2
+1

1− λ k
2
+1

(
Bk(1) +

k−1∑

j=1

2(−1)jBk(tj)

)

=
−1√
k

√√√√1 + λ k
2
+1

1− λ k
2
+1

(
2

k∑

j=1

(Bk(tj)−Bk(tj−1))− Bk(1)

)
,(16)

is only present if k is even.

�

Remark 7. Let us try to specialize the previous results in instances where further simpli-
fications and identifications occur.

(i) For k = 3, and up to the factor
√

2(1 + λ2)/(k(1− λ2)) =
√
2(1 + 3p1)/(3(3− 3p1)),

the right-hand side of (11) becomes

max
0=t0≤t1≤t2≤t3=1

3∑

j=1

(
cos

(
2πj

3

)
(B2(tj)−B2(tj−1)) + sin

(
2πj

3

)
(B3(tj)− B3(tj−1))

)

= max
0≤t1≤t2≤1

(
B2(1) +

√
3B3(t1)−

√
3

2
B3(t2)−

3

2
B2(t2)

)

law
=

√
2

3
max

0≤t1≤t2≤t3=1

2∑

j=1

(
−
√

j

j + 1
Bj(tj+1) +

√
j

j + 1
Bj(tj)

)
,

law
=

√
2

3

(
max

0=t0≤t1≤t2≤t3=1

3∑

j=1

(Bj(tj)−Bj(tj−1))−
1

3

3∑

j=1

Bj(1)

)
,
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where the last equality, in law, follows either by using, in (9), the simple linear transfor-
mation

(17) B̃j =

√
2(1 + λ2)

3(1− λ2)

(√
2

3
Bj −

√
1

6

3∑

i=1,i 6=j

Bi

)
, j = 1, 2, 3,

which, by comparing covariances, is easily verified from (13); or, still by comparing covari-
ances, by arguments such as those in the proof of Theorem 3.2 in [11]. Therefore, with
the help of Theorem 1, and up to a scaling factor, the limiting law of LIN is that of the
maximal eigenvalue of the 3× 3 traceless GUE.

(ii) For k = 4, Σ, the covariance matrix of B̃ = (B̃j)j=1,...,4 is given, up to a scaling
constant, by:

(18) Σ :=




2η2 + η3 −η3 −2η2 + η3 −η3
−η3 2η2 + η3 −η3 −2η2 + η3

−2η2 + η3 −η3 2η2 + η3 −η3
−η3 −2η2 + η3 −η3 2η2 + η3


 .

where η2 = (1+ λ2)/(1− λ2), λ2 = p1 − p3, and η3 = (1+ λ3)/(1− λ3), λ3 = p1 − 2p2 + p3.
Clearly, Σ can differ from Σu, e.g., let 2η2 = η3, i.e., let

P =




p1 p2
p2(1−2p2)
1+2p2

p2

p2 p1 p2
p2(1−2p2)
1+2p2

p2(1−2p2)
1+2p2

p2 p1 p2

p2
p2(1−2p2)
1+2p2

p2 p1


 .

Then, and up to the multiplicative constant 4η2, Σ becomes:

Σ :=




1 −1/2 0 −1/2
−1/2 1 −1/2 0
0 −1/2 1 −1/2

−1/2 0 −1/2 1


 ,

which is clearly different from, a rescaled version of, (7). In fact, if Σ = Σu, then clearly

(19) B̃j =

√
3

2
Bj −

1

2
√
3

4∑

i=1,i 6=j

Bi, j = 1, 2, 3, 4.

Conversely, and as easily seen, for a linear transformation such as

B̃j = αjBj −
4∑

i=1,i 6=j

βiBi, j = 1, 2, 3, 4,
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to lead to Σ, one needs to Σ to be permutation-symmetric and, up to a multiplicative
constant, the right-hand side of (11) becomes equal in law to

max
0=t0≤t1≤t2≤t3≤t4=1

4∑

j=1

(Bj(tj)− Bj(tj−1))−
1

4

4∑

j=1

Bj(1),

and corresponds to the matrix P in (8) with p2 = p3 = p4.

(iii) Finally, it is easy to see that the properties just described continue to hold for
arbitrary dimension k ≥ 4. In arbitrary dimension, if Σ = Σu (the k-dimensional version
of the matrix defined at (6) and (7)), then the linear transformation corresponding to (19)
is given by

B̃j =

√
k − 1

k
Bj −

√
1

k(k − 1)

k∑

i=1,i 6=j

Bi, j = 1, . . . , k,

Conversely, for a linear transformation such as

B̃j = αjBj −
k∑

i=1,i 6=j

βiBi, j = 1, 2, . . . , k,

to lead to Σ, one needs to Σ to be permutation-symmetric. In either instance, and up to
a multiplicative constant, the right-hand side of (11) has the same law as

max
0=t0≤···≤tk=1

k∑

j=1

(Bj(tj)−Bj(tj−1))−
1

k

k∑

j=1

Bj(1),

which, in turn, via Theorem 1, is equal in law to the maximal eigenvalue of an element of
the k × k traceless GUE.

In order to present our last corollary, we recall elements of the queuing framework where
some of these maximal Brownian functionals originated (see [9]). There, one considers N
single servers in series each with unlimited waiting space and FIFO discipline. At first the
queuing system is empty then k customers are placed in the first queue. The service times
Vi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ N , of all the customers at all the queues are i.i.d. with mean 1 and
variance σ2. Finally, let Di,j be the departure time of customer i, 1 ≤ i ≤ k, from queue
j, 1 ≤ j ≤ N .

Introduce also the rescaled final departure time of customer i, 1 ≤ i ≤ k,

ζi :=
Di,N −N√

Nσ2
,

and the rescaled total service time of the customer i, 1 ≤ i ≤ k,

φi :=

∑N
j=1 Vi,j −N
√
Nσ2

.
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The next corollary extends a result of Glynn and Whitt [9], who showed the weak conver-
gence of ζk towards the µk

1.

Corollary 8. Let H = [hij ] be a k × k GUE matrix, and for each ℓ = 1, . . . , k, let µℓ
1 be

the maximal eigenvalue of the ℓ× ℓ principal minor of H. Then, as N tends to infinity,

(ζ1, . . . , ζk, φ1, . . . , φk) =⇒
(
µ1
1, µ

2
1, . . . , µ

k
1, h11, . . . , hℓℓ

)
.

Proof. The techniques of [9] and [12], combined with Theorem 1, give the result noticing

again that h11 = µ1
1, hℓℓ =

∑ℓ
j=1 µ

ℓ
j −

∑ℓ−1
j=1 µ

ℓ−1
j , 1 ≤ ℓ ≤ k. �

3. Proof of Theorem 1

Let wN,M := [wij ] (i = 1, . . . , N , j = 1, . . . ,M) be an array of i.i.d. geometric random
variables with parameter q ∈ (0, 1), i.e., with law

∑
k≥0 q

k(1 − q)δk. Such variables have

mean e := q/(1− q) and variance v := q/(1− q)2.

Applying the RSK correspondence to wN,M (see e.g., [22] for an introduction to the RSK
correspondence applied to arrays of integers) gives a pair (P,Q) of Young diagrams with
the same shape. Let us denote the shape of these Young diagrams by

λM
1 ≥ · · · ≥ λM

M .

The exponent M is here to emphasize on the dependence on the dimension M of the GUE
matrix H (the dependence on N is implicit). In the same way, one can of course define,
for each k = 1, . . . ,M , the shape

λk
1 ≥ · · · ≥ λk

k,

of the Young diagrams obtained by applying the RSK correspondence to the array wN,k,
which is the array wN,M where all but the first k columns have been removed. Note that




λ1
1

λ2
1 λ2

2

λ3
1 λ3

2 λ3
3

. . . . . . . . .
λM
1 . . . . . . λM

M




,

is a Gelfand-Tsetlin pattern, i.e., satisfies the interlacing inequalities λk
i ≥ λk−1

i ≥ λk
i+1

(1 ≤ i < k ≤ M).

Let us now define the random variables

(20) ξki :=
λk
i − eN√
vN

.

Then it is not hard to deduce the following lemma from [2] (this lemma is also stated as
Proposition 2.12 in [20], with slightly different notation).
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Lemma 9. As N tends to infinity,



ξ11
ξ21 ξ22

ξ31 ξ32 ξ33
. . . . . . . . .

ξM1 . . . . . . ξMM




=⇒




µ1
1

µ2
1 µ2

2

µ3
1 µ3

2 µ3
3

. . . . . . . . .
µM
1 . . . . . . µM

M




,

where the µk
i s are the ones introduced in (1).

Next, for π, π′ any two up-right paths in the set {1, . . . , N}×{1, . . . , k}, we write π < π′,
if for any n ∈ {1, . . . , N}, the intersection of the support of π with {n}×{1, . . . , k} is located
strictly below the intersection of the support of π′ with {n}×{1, . . . , k}. We will also need
the following lemma.

Lemma 10. For each 1 ≤ ℓ ≤ k ≤ M ,

(21) λk
1 + · · ·+ λk

ℓ = max
π1,...,πℓ

ℓ∑

r=1

∑

(i,j)∈πr

wij ,

where the max is over collections {π1 < · · · < πℓ} of up-right paths in the set

{1, . . . , N} × {1, . . . , k}
starting in the subset {1} × {1, . . . , k} and ending in the subset {N} × {1, . . . , k}.

Proof. It is well known that (21) is true when the paths are only required to be pairwise
disjoint, without any condition on the starting and ending points (see e.g., the third chapter
of [8] and use the words/arrays equivalence described in [2] or [22]). Then, it is easy to
see that any set of pairwise disjoint paths can be changed into a set of pairwise disjoint
paths starting in {1} × {1, . . . , k} in such a way that the union of their supports does
not decrease. Then, one can also change these paths in such a way to make them end in
{N}×{1, . . . , k} but also such that the union of their supports does not decrease and that
the starting points still have first coordinate 1. Note that a collection of such pairwise
disjoint paths can always be re-indexed in such a way that π1 < · · · < πℓ. To finish the
proof, it suffices then to notice that since the wijs are non-negative, enlarging the union of
the supports of the paths never decreases the total weight. �

To complete the proof of the theorem, note that any up-right path πr as described in
the previous lemma is a concatenation of at most k paths with fixed second coordinate
and has length between N and N + M . Moreover, by Donsker theorem (see [4, 9]), the
M-dimensional process 

 1√
vN

⌊Nt⌋∑

i=1

(wik − e)




k=1,...,M
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converges in distribution (for the Skorohod topology) to the M–dimensional Brownian mo-
tion B. To finish the proof, apply both Lemma 9 and Lemma 10 . �
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