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Numerical methods for piecewise deterministic Markov processes

with boundary

Christiane Cocozza-Thivent, Robert Eymard, Ludovic Goudenège and Michel Roussignol∗

December 11, 2013

Abstract

We study the approximation of the distribution of Piecewise Deterministic Markov Processes

jumping when the process reaches some boundary of the domain. We first introduce an equation to

which the marginal distributions of the process are solution, which generalizes Kolmogorov equations

in this case. We then prove the uniqueness of this solution, and propose a finite volume numerical

scheme for its approximation. This finite volume scheme enables the approximation of the asymptotic

steady problem. We then prove the convergence of this numerical scheme to the marginal distributions

of the process. We conclude this paper by some properties of the marginal distributions, directly

resulting from the generalized Kolmogorov equation with boundary.

keyword Piecewise Deterministic Markov Process with Boundary, Approximation using Finite Volume
Method, Generalized Kolmogorov Equations

1 Introduction

Piecewise Deterministic Markov Processes (PDMP) appear in many areas, such as engineering, operations
research, biology, economics... One can find the definition and many properties of these processes in the
founding book of M.H.A. Davis [7]. Some relations between PDMP without boundary and point processes
are developed in the book of M. Jacobsen [13]. Recently, C. Cocozza-Thivent has investigated the relations
between PDMP and Markov renewal theory and extended PDMP’s definition [3]. In all application areas,
most of interest quantities depend on the distribution of the process at each time, which means that the
approximation of the marginal distributions is requested. For this purpose, Monte Carlo methods are
widely used (see for instance [8, 14, 17, 18]), but it has been shown in [2, 4, 6, 9, 10, 11, 15] that
Finite volume schemes could also provide an efficient approximation of these marginal distributions.
These methods consist in solving numerically equations which are fulfilled by the marginal distributions,
namely generalized Kolmogorov equations. The characterization of the marginal distributions by these
equations is studied in [5] for a PDMP without boundary. Some of these schemes deal with PDMP with
boundary from a practical point of view ([9, 15]) without a precise study of their properties. The aim
of this paper is to fill up this gap and to propose a more efficient numerical scheme, handling as well
transient and asymptotic steady situations.
One studies the following class of PDMP with boundary. The state space of the process is an open subset
F of Rd and there exists a subset Γ of the topological boundary of F which will force the process to jump.
The PDMP (Xt)t≥0 is a jump stochastic process on F whose trajectories are deterministic between the
jump times. The deterministic trajectories are determined by a flow φ(x, t): if between s and t (s < t)
the process does not reach the boundary and does not jump, then Xt = φ(Xs, t− s). Of course the flow
has the ”Markov property” φ(φ(x, s), t) = φ(x, s + t) as far as the boundary is not reached. In [7] the
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flow is supposed to be solution of the differential equation ∂tφ(x, t) = v(φ(x, t)) and φ(x, 0) = x with v
locally Lipschitz continuous. In [3] and [13] this assumption is relaxed.
Two kinds of jumps can occur. First there are stochastic jumps from a position x ∈ F with a jump
rate λ(x) and a jump distribution Q(x, dy). Second when the process reaches a point x of the boundary
Γ, it jumps inside F with the distribution q(x, dy). These two kinds of jumps have different characters.
Roughly speaking, the first ones occur at random times with probability density functions while the
second ones occur at times with Dirac distributions.

Let us give a simple example related to the preventive maintenance of two components. The state of
two components is described by their virtual ages at each time. The system fails when one component
fails and then an immediate corrective maintenance occurs. The failure distribution of a component has
a probability density function. Il the failure occurs at virtual ages x = (x1, x2), after the corrective
maintenance the virtual ages are random variables with distribution Q(x, dy1dy2) (the support of Q is
close to (0, 0) and included in some square [0, Q1]× [0, Q1]). If the virtual age of a component reaches a
bound L at some state x = (L, x2) or x = (x1, L), an immediate preventive maintenance occurs. After the
preventive maintenance the virtual ages are random variables with distribution q(x, dy1dy2) (the support
of q is also close to (0, 0) and included in [0, Q1] × [0, Q1]). Of course Q1 < L. The random process
Xt describing the time evolution of the virtual ages is a PDMP in F = (0, L) × (0, L) with boundary
Γ = (0, L]× {L} ∪ {L} × (0, L]. The flow is φ((x1, x2), t) = (x1 + t, x2 + t).

We assume the following notations and hypotheses on the data, denoted by (H) in this paper.

1. d ∈ N
⋆ and P(Rd) is the set of probability measures on R

d with borelian algebra, P(A) is the subset
of P(Rd) with support in A for any measurable subset A ⊂ R

d.

2. The flow φ : R
d × R+ → R

d is assumed to be such that:

(a) φ : R
d × R+ → R

d is Lipschitz continuous with constant Lφ,

(b) φ(x, 0) = x for all x ∈ R
d and

∀x ∈ R
d, ∀t, s ∈ R+, φ(φ(x, t), s) = φ(x, t+ s)

(c) Let F ⊂ R
d be a non empty open set and G = Rd \F the complementary of F be a non-empty

closed set such that, for all x ∈ R
d, there exists t ∈ R+ such that φ(x, t) ∈ G . We then define

α : R
d → R+ by

α(x) = inf{t ≥ 0 : φ(x, t) ∈ G}.

Note that, for all x ∈ G, α(x) = 0, and that, for all x ∈ F , since φ is continuous and G is
closed, α(x) > 0. Note that the following property holds

∀x ∈ F, ∀t ∈ (0, α(x)), α(φ(x, t)) = α(x)− t.

We assume that the function α is Lipschitz continuous with constant Lα.

(d) We then denote Γ = {φ(x, α(x)) : x ∈ F}. We have Γ ⊂ F̄ \ F ⊂ G. We cannot state whether
Γ is open or closed.

3. The transition rate λ is such that λ ∈ Cb(F ,R+), where Cb(F ,R+) denotes the set of continuous
and bounded functions from F to R+. We denote by Λ > 0 a bound of λ.

4. The transition probability Q : F → P(F ) (we then denote by x 7→ Q(x, dy) this application) is
such that

(a) there exists a function fQ : R+ → R+ such that

fQ(r) = sup
x∈F

∫

{y∈F :|y|≥|x|+r}

Q(x, dy)
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and
lim
r→∞

fQ(r) = 0.

(b) for all ξ ∈ Cb(F,R), the function x→

∫
ξ(y)Q(x, dy) is continuous from F to R.

5. The transition probability q : Γ → P(F ) (we then denote by x 7→ q(x, dy) this application) is such
that

(a) there exists a function fq : R+ → R+ such that

fq(r) = sup
x∈Γ

∫

{y∈F :|y|≥|x|+r}

q(x, dy)

and
lim
r→∞

fq(r) = 0.

(b) for all ξ ∈ Cb(F,R), the function x→

∫
ξ(y)q(x, dy) is continuous from Γ to R.

(c) denoting 0 = exp(−B∞) for all B > 0, we assume that there exists a0 ∈ (0, 1) and B0 > 0
such that

sup
x∈Γ

∫

F

e−B0α(y)q(x, dy) ≤ 1− a0. (1)

6. We assume that ρini ∈ P(F ) is given.

Following [3], let us explain how the PDMP (Xt)t≥0, with parameters φ, λ, Q, α, q satisfying hypotheses
(H), is constructed.
Let (Tn, Yn)n≥0 be a non-delayed Markov renewal process with state space F and renewal kernel N
defined as follows :

N(x, dy, ds) = dFx(s)β(x, s; dy),

dFx(s) being the probability distribution of a random variable equals to the minimum of the constant α(x)

and of a random variable with values in [0,+∞] and probability density function λ(φ(x, s)) e−
∫

s

0
λ(φ(x,u)) du,

namely

1R+(s) dFx(s) = λ(φ(x, s)) e−
∫

s

0
λ(φ(x,u)) du 1{s<α(x)} ds+ 1{α(x)<+∞} e

−
∫ α(x)
0 λ(φ(x,u)) du δα(x)(ds)

where 1A ∈ {0, 1}, 1A = 1 if and only if A is true, and

β(x, s; dy) =

{
Q(φ(x, s), dy) if s < α(x),
q(φ(x, α(x)), dy) if s = α(x).

This means that (Tn)n≥0 is an increasing sequence of random variables with values in [0,+∞], (Yn)n≥0

is a sequence of random variables with values in F ∪ {∆} (∆ /∈ R
d is a cemetery point) and:

P(Tn < +∞, Yn ∈ F ) = P(Tn < +∞),

P(Tn+1 − Tn ≤ t, Yn+1 ∈ A/Y0, T1, Y1, . . . , Tn < +∞, Yn) = N(Yn, A×]0, t])

for any n ≥ 0, t ≥ 0 and Borel subset A of F . Consequently, the conditional probability distribution of
Tn+1 − Tn given Tn < +∞, Yn = x is dFx(s) and the conditional probability distribution of Yn+1 given
Tn < +∞, Yn = x, Tn+1 − Tn = s is β(x, s; dy).
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Then the PDMP (Xt)t≥0 is defined by

Xt = φ(Yn, t− Tn) if Tn ≤ t < Tn+1.

The condition E

(∑

n≥0

1{Tn≤t}

)
< +∞ which is assumed in the PDMP theory is satisfied thanks to

Hypotheses (H.3) and (H.7) (see [3]).

Let (Pt)t≥0 be the semi-group of the Markov process (Xt)t≥0, namely Ptf(x) = E(f(Xt)|X0 = x) for
any bounded real-valued Borel function f on F . The well-known forward Kolmogorov equations can be
written P ′

tf = PtLf for f ∈ D(L), (D(L), L) being the extended generator of the PDMP, i.e.

∀f ∈ D(L),

∫

F

f(x) ρt(dx) =

∫

F

f(x) ρ0(dx) +

∫ t

0

∫

F

Lf(x) ρs(dx) ds,

ρt being the probability distribution of Xt. These equations can be brought into the following more
general form:

∫

F

g(x, t) ρt(dx) =

∫

F

g(x, 0) ρ0(dx) +

∫ t

0

∫

F

∂g

∂s
(x, s) ρs(dx) ds+

∫ t

0

∫

F

Lgs(x) ρs(dx) ds

for functions g which are differentiable with respect to their second variable and such that gs ∈ D(L)
where gs(x) = g(x, s).
When the flow φ is generated by a differential equation, M.H.A. Davis proved in [7] that D(L) is the set
of measurable real-valued functions f on F satisfying the following conditions:

(D1) for all x ∈ F , the function t ∈ [0, α(x)[→ f(φ(x, t)) is absolutely continuous. Let ∂φf be such that

for all x ∈ F, t < α(x), f(φ(x, t))− f(x) =

∫ t

0

∂φf(φ(x, s)) ds,

(D2) for all x ∈ F such that α(x) < +∞, lim
t→α(x)

f(φ(x, t)) exists,

(D3) integrability conditions which are satisfied as soon as f and ∂φf are bounded,

(D4) for all x ∈ Γ, f(x) =

∫

F

f(y) q(x, dy).

Then we get:

∀f ∈ D(L), Lf(x) = ∂φf +

∫

F

(f(y)− f(x))λ(x)Q(x, dy).

Because of Condition (D4), the domain D(L) is not large enough to allow efficient numerical analysis of
forward Kolmogorov equations. In [3] these equations are generalized in order to overcome this difficulty.
The test functions which are used are real-valued measurable functions g defined on F × R+ such that
for all (x, a) ∈ F × R+, the functions t ∈ [0, α(x)[→ g(φ(x, t), a + t) are absolutely continuous. In this
paper we restrict a little the test function space to the following.

Definition 1 Let us define, for all T > 0, the space

CT
b = {g ∈ Cb(R

d × R+), ∀(x, t) ∈ R
d × [T,+∞[, g(x, t) = 0}, (2)

and let us denote by Cc
b(R

d × R+) =
⋃

T>0

CT
b .

We denote by T the set of all functions g such that there exists I, J ∈ Cc
b(R

d × R+) with

∀(x, t) ∈ R
d × R+, g(x, t) = J(φ(x, α(x)), t+ α(x))−

∫ α(x)

0

I(φ(x, s), t+ s)ds. (3)

We then denote g = T(I, J). We get T ⊂ Cc
b(R

d × R+).
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If g = T(I, J) ∈ T , it is easy to check that g = J on G× R+ and

∀(x, a) ∈ F × R+, ∀t < α(x), g(φ(x, t), a+ t)− g(x, a) =

∫ t

0

I(φ(x, s), a+ s) ds. (4)

Hence for x ∈ F and a ∈ R+, t ∈ [0, α(x)[→ g(φ(x, t), a + t) is absolutely continuous and I = ∂t,φg on
F × R+ where

∂t,φg(x, t) = lim
n→∞

g(φ(x, 1/n), t+ 1/n)− g(x, t)

1/n

The operator ∂t,φ is called the derivation along the flow.
Conversely if g satisfies (4) with I ∈ Cc

b(R
d × R+), letting t tends to α(x) we get

g(x, a) = g(φ(x, α(x)), a+ α(x))−

∫ α(x)

0

I(φ(x, s), a+ s) ds.

Moreover, for given I, J, Ĩ, J̃ ∈ Cc
b(R

d × R+), such that g = T(I, J) = T(Ĩ , J̃), we get I = Ĩ on F × R+.

We also have J = J̃ = g on G× R+.

Let us define the measure σ on Γ× R+ as follows:

σ(A× [0, t]) =
∑

n≥1

P(XTn− ∈ A, Tn ≤ t, Tn − Tn−1 = α(Yn−1))

for any Borel subset A ⊂ Γ and t ≥ 0. The measure σ is the intensity of the marked point process
(Tn, XTn−)n≥1 restricted to the jump times Tn which occur when the process reaches the boundary. It
describes the average number of times that the trajectories reach some parts of the boundary.

It is then shown in [3] that the PDMP distributions satisfy the following equation:
∫

F

g(x, t) ρt(dx) =

∫

F

g(x, 0) ρ0(dx) +

∫ t

0

∫

F

∂t,φg(x, s) ρs(dx) ds (5)

+

∫ t

0

∫

F

λ(x)

∫

F

(g(y, s)− g(x, s))Q(x, dy) ρs(dx) ds

+

∫

Γ×]0,t]

∫

F

(g(y, s)− g(x, s)) q(x, dy)σ(dx, ds), ∀g ∈ T .

Moreover it is shown that Hypotheses (H) imply ρt(R
d \ F ) = 0.

This paper is focused on the numerical approximation of these generalized Kolmogorov equations. We
propose a numerical scheme which approximates measures µ on F ×R+ and σ on Γ×R+ satisfying the
equation

0 =

∫

F

g(x, 0)ρini(dx) +

∫

F×R+

∂t,φg(x, t) µ(dx, dt) (6)

+

∫

F×R+

λ(x)

(∫

F

g(y, t)Q(x, dy)− g(x, t)

)
µ(dx, dt)

+

∫

Γ×R+

(∫

F

g(y, t)q(x, dy)− g(x, t)

)
σ(dx, dt), ∀g ∈ T .

Since the measures µ(dx, dt) = ρt(dx)dt and σ(dx, dt), resulting from the above probabilistic construction,
are such that equation 5 holds, they are therefore solutions to equation 6. The uniqueness of the solution
(µ, σ) to equation 6 will prove that µ = µ and σ = σ.
So in Section 2, we show this uniqueness, thanks to the resolution of the adjoint problem. In Section
3 a finite volume approximation is defined and its convergence is proved. Finally a few conclusions are
proposed. In an appendix we show, without using the probabilistic results, that the measure µ(dx, dt)
solution of equation (6) can be decomposed in ρt(dx)dt and that the support of µ is included in F ×R+.
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Remark 1 The results obtained in this paper can be extended to the following cases:

1. R
d can be replaced by

n⋃

i=1

{i} × R
di , and then F by

n⋃

i=1

{i} × Fi; then φ is assumed to be stable and

Lipschitz continuous on each Fi, α is assumes to be Lipschitz continuous or infinite on each Fi,
and suitable hypotheses are made on q and Q,

2. Hypothesis (H.5(c)) can be generalized by assuming that there exist B > 0, m ∈ N
∗, a ∈ [0, 1) such

that

sup
x0∈ F

∫

F

e−B(α(x1)+···+α(xm))q(φ(x0, α(x0)), dx1) · · · q(φ(xm−1, α(xm−1)), dxm) ≤ a. (7)

3. Hypothesis (H.2(c)) can be relaxed: we can have α(x) = +∞ for some x ∈ F .

These extended hypotheses cover a large number of interesting test cases (see [3]). We preferred focus
here on the mathematical difficulties arising in the continuous model and in the convergence analysis,
directly connected with the existence of a boundary.

2 Uniqueness

For simplicity, let us denote (µ, σ) solutions of equation (6) instead of (µ, σ).

Theorem 1 (Uniqueness) Under hypotheses (H), there exists at most a unique couple (µ, σ) which is
solution of equation (6).

Proof. Suppose there exist two solutions (µ1, σ1) and (µ2, σ2) to equation (6). Denote (µ̄, σ̄) the
measures such that µ̄ = µ1 − µ2 and σ̄ = σ1 − σ2. Then for all g = T (I, J) ∈ T , we have

0 =

∫

F×R+

I(x, t)µ̄(dx, dt)

+

∫

F×R+

λ(x)

(∫

F

g(y, t)Q(x, dy)− g(x, t)

)
µ̄(dx, dt)

+

∫

Γ×R+

(∫

F

g(x, t)q(z, dx)− g(z, t)

)
σ̄(dz, dt).

Let I, J ∈ Cc
b(R

d × R+). Using lemma 1, we can find I, J ∈ Cc
b(R

d × R+) such that g = T(I, J) verifies

∀(x, t) ∈ R
d × R+, I(x, t) = I(x, t) + λ(x)

(∫

F

g(y, t)Q(x, dy)− g(x, t)

)
,

and

∀(z, t) ∈ R
d × R+, J(z, t) =

∫

F

g(x, t)q(z, dx)− J(z, t).

Thus the measures µ̄ and σ̄ verify

∫

F×R+

I(x, t)µ̄(dx, dt) +

∫

Γ×R+

J(z, t)σ̄(dz, dt) = 0.

Since this equality is verified for all Ī , J̄ ∈ Cc
b(R

d × R+), it proves that the measures µ̄ and σ̄ vanish. �
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Lemma 1 (Operator’s inversion) Under hypotheses (H), let I, J ∈ Cc
b(R

d × R+). Then there exists
I, J ∈ Cc

b(R
d × R+) such that, setting g = T(I, J), we have

∀(x, t) ∈ R
d × R+, I(x, t) = I(x, t) + λ(x)

(∫

F

g(y, t)Q(x, dy)− g(x, t)

)
, (8)

and

∀(z, t) ∈ R
d × R+, J(z, t) =

∫

F

g(x, t)q(z, dx)− J(z, t). (9)

Proof. Let T > 0, and let us define α̂(x) = min(α(x), T ) for all x ∈ R
d. Then we get, from Definition 1,

∀(I, J) ∈ (CT
b )

2, ∀(x, t) ∈ R
d×R+, T(I, J)(x, t) = J(φ(x, α̂(x)), t+α̂(x))−

∫ α̂(x)

0

I(φ(x, s), t+s)ds, (10)

and T(I, J) ∈ CT
b . We define the following norm on CT

b by

∀g ∈ CT
b , ‖g‖A,B := sup

(x,t)∈Rd×[0,T ]

exp(Bα̂(x) +At) |g(x, t)|, (11)

for given A,B > 0 chosen later. Since the norm defined by (11) on CT
b is equivalent to the L∞ norm,

the space (CT
b , || · ||A,B) is then a Banach space. We define a sequence of functions (In, Jn)n∈N such that

I0 = J0 = 0 and for all n ∈ N

∀(x, t) ∈ R
d × R+, I

n+1(x, t) = I(x, t)− λ(x)

(∫

F

T(In, Jn)(y, t)Q(x, dy)− T(In, Jn)(x, t)

)
,

∀(z, t) ∈ R
d × R+, J

n+1(z, t) =

∫

F

T(In, Jn)(x, t)q(z, dx)− J(z, t).

We thus obtain a sequence (T(In, Jn))n∈N of elements of CT
b (the continuity can be proved straightfor-

wardly using Hypotheses (H) (see [12] for instance) where T(In+1, Jn+1) = Ψ(T(In, Jn). Let us prove
that this sequence converges. By fixed point theorem, it is sufficient to prove that there exists k ∈ (0, 1)
such that for all (I, J) ∈ (CT

b )
2 and (I ′, J ′) ∈ (CT

b )
2 we have

‖Ψ(T(I, J))−Ψ(T(I ′, J ′))‖A,B ≤ k‖T(I, J)− T(I ′, J ′)‖A,B .

Then, using the definition of (In+1, Jn+1) and the Lebesgue’s dominated convergence theorem, we get
that the sequence (In, Jn)n∈N is convergent as well and that the limit satisfies (8) and (9).

Let us set f = T(I − I ′, J − J ′), let (x, t) ∈ R
d × [0, T ]. We have

Ψ(T(I, J))−Ψ(T(I ′, J ′)(x, t) = T1 − T2 + T3,

with

T1 =

∫ α̂(x)

0

λ(φ(x, s))

∫

F

f(y, t+ s)Q(φ(x, s), dy)ds,

T2 =

∫ α̂(x)

0

λ(φ(x, s))f(φ(x, s), t+ s)ds,

and

T3 =

∫

F

f(y, t+ α̂(x))q(φ(x, α̂(x)), dy).
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We then have

|T1| ≤
∣∣∣
∫ α̂(x)

0

exp(−A(t+ s))λ(φ(x, s))

×

∫

F

exp(A(t+ s)) exp(−Bα̂(y)) exp(Bα̂(y))f(y, t+ s)Q(φ(x, s), dy)ds
∣∣∣

≤

∫ α̂(x)

0

exp(−A(t+ s))λ(φ(x, s))

∫

F

exp(−Bα̂(y))‖f‖A,BQ(φ(x, s), dy)ds

≤ ‖f‖A,B

∫ α̂(x)

0

exp(−A(t+ s))λ(φ(x, s))ds.

Therefore we get

exp(At+Bα̂(x))
∣∣∣T1
∣∣∣ ≤ ‖f‖A,B

∫ α̂(x)

0

exp(−As)|λ(φ(x, s))| exp(Bα̂(x))ds

≤
‖f‖A,BΛexp(BT )

A
.

In the same way, assuming A > B and using α(φ(x, s)) = α(x)− s which leads to α̂(φ(x, s)) ≥ α̂(x)− s,

exp(At+Bα̂(x))
∣∣∣T2
∣∣∣ = exp(Bα̂(x))

∣∣∣
∫ α̂(x)

0

exp(−As−Bα̂(φ(x, s)))λ(φ(x, s))

exp(Bα̂(φ(x, s)) +A(t+ s))f(φ(x, s), t+ s)ds
∣∣∣

≤ exp(Bα̂(x))‖f‖A,B

∫ α̂(x)

0

exp(−As−B(α̂(x)− s))|λ(φ(x, s))|ds

≤ Λ‖f‖A,B

∫ α̂(x)

0

exp((B −A)s)ds

≤ Λ‖f‖A,B

1

A−B
. (12)

Finally, for A > B, we have

exp(At+Bα̂(x))
∣∣∣T3
∣∣∣

≤ exp(−Aα̂(x) +Bα̂(x))

∫

F

exp(−Bα̂(y))

exp(A(t+ α̂(x)) +Bα̂(y))|f(y, t+ α̂(x))|q(φ(x, α̂(x)), dy)

≤ exp(−(A−B)α̂(x))

∫

F

exp(−Bα̂(y))‖f‖A,Bq(φ(x, α̂(x)), dy)

≤ ‖f‖A,B

∫

F

exp(−Bα̂(y))q(φ(x, α̂(x)), dy)

≤ ‖f‖A,B

(∫

F

exp(−Bα(y))q(φ(x, α(x)), dy) + exp(−BT )

)
.

Finally we need to choose sufficiently large constants A and B with A > B such that

sup
x∈Rd

(
Λ

A−B
+

Λexp(BT )

A
+

∫

F

exp(−Bα(y))q(φ(x, α(x)), dy) + exp(−BT )

)
≤ k < 1.

Thanks to Hypothesis (H.5(c)), setting first large B and next large A, we obtain the result. �
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Since the unique solution is equal to the measures µ(dx, dt) = ρt(dx)dt and σ(dx, dt) in Equation (5), it
has the properties of these measures : µ(Rd \ F × R+) = σ(Rd \ Γ× R+) = 0.

It is possible to prove directly with analysis tools that a solution of equation (6) has necessarily the
properties µ(dx, dt) = ρt(dx)dt and µ(Rd \ F × R+) = 0 without the probabilistic results explained in
the introduction. This is done in the appendix.

3 A finite volume scheme

3.1 Definition of the scheme

We now come to the presentation of the finite volume scheme, which has been used in [9] for the approx-
imation of a benchmark problem. Such schemes are not classically used in the framework of probabilistic
studies, since they have mainly be developed by engineers, in order to approximate the solutions of balance
equations. We then consider that (6) can be viewed as balance equations describing the conservation of
probability. We then introduce the finite volume discretization by the following notations and definitions.

1. We define a reference measure, denoted by dx or dy, on F , with respect to all borelian sets of Rd

restricted to F .

2. An admissible mesh M of F is a countable partition of F , therefore such that ∪K∈MK = F and
∀(K,L) ∈ M2,K 6= L⇒ K ∩ L = ∅.

3. ∀K ∈ M, |K| :=

∫

K

dx > 0.

4. sup
K∈M

diam(K) < +∞ where diam(K) = sup
{(x,y)∈K2}

|x− y|.

We then set h := sup
K∈M

diam(K).

5. τ > 0 and δt > 0 are given values, and we denote by D = (M, δt, τ).

The above notations and definitions are called in the following Hypotheses (HD). The value τ > 0, aimed
to tend to 0, is used for the definition, for all K ∈ M and L ∈ M, of the flux of probability mass from
K to L by

vKL =
1

τ
|{x ∈ K : α(x) > τ and φ(x, τ) ∈ L}|, ∀K ∈ M, ∀L ∈ M. (13)

We denote by

qK =
1

τ
|{x ∈ K : α(x) ≤ τ}|,

qKL =
1

τ

∫

{x∈K:α(x)≤τ}

∫

L

q(φ(x, α(x)), dy)dx, ∀K ∈ M, ∀L ∈ M.

(14)

Referring to Hypothesis (H.4), we define

λKL =

∫

K

λ(x)

∫

L

Q(x, dy)dx, ∀(K,L) ∈ M×M,

λK =

∫

K

λ(x)dx =
∑

L∈M

λKL, ∀K ∈ M.
(15)

9



We may now define a family
(
p(K)
n

)
n∈N,K∈M

of real values thanks to the following finite volume scheme,

which is time implicit.

|K|
p
(K)
n+1 − p

(K)
n

δt
+
∑

L∈M

(
vKLp

(K)
n+1 − vLKp

(L)
n+1

)

+ (λK + qK)p
(K)
n+1 −

∑

L∈M

p
(L)
n+1(λLK + qLK) = 0,

∀K ∈ M, ∀n ∈ N, (16)

with the initial condition

|K| p
(K)
0 =

∫

K

ρini(dx), ∀K ∈ M, (17)

Let us remark that the following property holds:

τ

(
∑

L∈M

vKL + qK

)
= |K|, ∀K ∈ M. (18)

Therefore, scheme (16) may be rewritten
((

1 +
δt

τ

)
|K|+ δtλK

)
p
(K)
n+1 − δt

∑

L∈M

p
(L)
n+1(vLK + λLK + qLK) = |K| p(K)

n ,

∀K ∈ M, ∀n ∈ N. (19)

We then define the approximation PD(dx, dt) (resp. σD(dx, dt)) of the measure µ(dx, dt) on F × R+

(resp. σ(dx, dt) on Γ× R+) by
∫

Rd×R+

f(x, t)PD(dx, dt) =
∑

n∈N

δt
∑

K∈M

p
(K)
n+1

∫

K

f(x, nδt)dx, (20)

for all bounded continuous function f ∈ Cc
b , and

∫

Rd×R+

f(x, t)σD(dx, dt) =
∑

n∈N

δt
∑

K∈M

p
(K)
n+1

1

τ

∫

{x∈K:α(x)≤τ}

f(φ(x, α(x)), nδt)dx, (21)

for all bounded continuous function f ∈ Cc
b . We also define the approximation PD(t)dx of ρt (defined by

(39)) by ∫

F

ξ(x)PD(t)dx =
∑

K∈M

p
(K)
Nt+1

∫

K

ξ(x)dx, ∀ξ ∈ Cb(R
d), (22)

with Nt given by Ntδt ≤ t < (Nt + 1)δt.
The specifications of this scheme, depending on the mesh and two parameters, τ and δt, are resulting
from the following observations:

1. An explicit version of the scheme could be defined, following the ideas of [6]. But the main draw-
back of an explicit scheme is that it cannot provide, in the general case, an approximation of the
asymptotic marginal distributions at large times, with an acceptable computing cost.

2. An implicit scheme has been provided in [10]. But in this scheme the considered flow is much more
regular (it is assumed to be the solution of an EDO).

3. An explicit scheme is introduced in [2] for Lipschitz flows. The present scheme uses the value τ > 0
in the same way as the time step is used in [2] (where the convergence of the scheme is proved for
general Lipschitz flow φ in the case δt→ 0 and h/δt→ 0).
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4. In [9], the asymptotic states at large times have been obtained letting δt→ ∞ in an implicit scheme.
Hence it is interesting to use the parameters h and τ which can tend to 0 independently of δt.

Since (16) is an infinite linear system, the existence and uniqueness of a positive solution must be first
addressed.

Lemma 2 (Existence of solution) Under Hypotheses (H) and (HD), there exists one and only one
solution (p(K)

n )K∈M,n∈N to Scheme (13), (14), (15), (16), (17) which satisfies:

p(K)
n ≥ 0, ∀K ∈ M, ∀n ∈ N, (23)
∑

K∈M

|K| p(K)
n = 1, ∀n ∈ N. (24)

Proof. Let us first show the existence of a solution to the scheme. We consider the values p
(K)
(k) defined,

for given n ∈ N and (p(K)
n )K∈M such that (23)-(24), by:

p
(K)
(0) = p(K)

n , ∀K ∈ M,
((

1 +
δt

τ

)
|K|+ δtλK

)
p
(K)
(k+1) = δt

∑

L∈M

p
(L)
(k) (vLK + λLK + qLK) + |K| p(K)

n ,

∀K ∈ M, ∀k ∈ N. (25)

Denoting, for k ∈ N
⋆ and K ∈ M, p̂

(K)
(k+1) = p

(K)
(k+1) − p

(K)
(k) , we have

((
1 +

δt

τ

)
|K|+ δtλK

)
p̂
(K)
(1) = δt

∑

L∈M

p(L)
n (vLK + λLK + qLK)

−

(
δt

τ
|K|+ δtλK

)
p(K)
n , ∀K ∈ M,

((
1 +

δt

τ

)
|K|+ δtλK

)
p̂
(K)
(k+1) = δt

∑

L∈M

p̂
(L)
(k) (vLK + λLK + qLK),

∀K ∈ M, ∀k ∈ N
⋆.

We notice that, thanks to (18) and (24), we have

∑

K∈M

((
1 +

δt

τ

)
|K|+ δtλK

)
|p̂

(K)
(1) | ≤ 2

(
δt

τ
+ Λδt

)
.

and

∑

K∈M

((
1 +

δt

τ

)
|K|+ δtλK

)
|p̂

(K)
(k+1)| ≤

∑

L∈M

(
δt

τ
|L|+ δtλL

)
|p̂

(L)
(k) |, ∀k ∈ N

⋆.

Then, by induction, we get that the value uk =
∑

L∈M

(
δt

τ
|L|+ δtλL

)
|p̂

(L)
(k) | is positive and nonincreasing

with respect to k ∈ N
⋆. We then deduce that the sequence (uk)k∈N⋆ is convergent. Writing

∑

K∈M

|K||p̂
(K)
(k+1)| ≤ uk − uk+1,

we deduce that p̂
(K)
(k+1) is the general term of an absolutely convergent series. Therefore the sequence

(p
(K)
(k+1))k∈N satisfying

p
(K)
(k+1) = p(K)

n +

k∑

m=0

p̂
(K)
(m+1),
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it converges to a value denoted by p
(K)
n+1. Passing to the limit in (25), we obtain that these values are

solution to the scheme. Moreover, they satisfy that
∑

K∈M

|K|p
(K)
(k) ≤ 1 + u1 − uk ≤ 1 + u1.

Therefore we can sum (16) on K ∈ M, obtaining by induction that (24) holds for n+ 1.

Let us now turn to the uniqueness of this solution. Denoting by p̂(K) the difference between two solutions
of (19), and using that the two solutions satisfy (23)-(24), one may write

((
1 +

δt

τ

)
|K|+ δtλK

)
|p̂(K)| ≤ δt

∑

L∈M

|p̂(L)|(vLK + λLK + qLK), ∀K ∈ M,

which provides, summing on K ∈ M,

∑

K∈M

((
1 +

δt

τ

)
|K|+ δtλK

)
|p̂(K)| ≤

∑

K∈M

(
δt

τ
|K|+ δtλK

)
|p̂(K)|,

and therefore
∑

K∈M

|K||p̂(K)| = 0. Hence the uniqueness proof. �

3.2 Finitness and tightness

The next lemma concerns the finitness of σD on the set Γ× [0, T ], for all T ∈ R+.

Lemma 3 [Finitness] Under Hypotheses (H) and (HD), let (p(K)
n )K∈M,n∈N be the solution to Scheme

(13), (14), (15), (16), (17) which satisfies (23)-(24). Then, for T > 0, h < τ and δt ≤ T , there exists
Cσ > 0, only depending on T , a0, B0, α, such that

∫

Γ×[0,T ]

σD(dx, dt) =
∑

n∈N,nδt≤T

δt
∑

K∈M

qK p(K)
n ≤ Cσ. (26)

Proof. Thanks to Hypothesis (H.5(c)), we choose a0 ∈ (0, 1) and B0 > 0 given by (1), and we define
θ(K) = e−B0αK , denoting by

αK = inf{α(x) ∈ R : x ∈ K}, ∀K ∈ M.

Denoting by N ∈ N such that (N − 1)δt < T ≤ Nδt, we then multiply (16) by δtθ(K), sum on n =
0, . . . , N − 1 and K ∈ M. We get

∑

K∈M

|K| (p
(K)
N − p

(K)
0 )θ(K) +

N−1∑

n=0

∑

K∈M

p
(K)
n+1δt

∑

L∈M

(vKL + λKL + qKL)(θ
(K) − θ(L)) = 0,

which leads to

N−1∑

n=0

δt
∑

K∈M

p
(K)
n+1

(
qKθ

(K)−
∑

L∈M

qKLθ
(L)
)
≤
∑

K∈M

|K| p
(K)
0 θ(K)+

N−1∑

n=0

∑

K∈M

p
(K)
n+1δt

∑

L∈M

vKL(θ
(L)−θ(K))

+

N−1∑

n=0

∑

K∈M

p
(K)
n+1δt

∑

L∈M

λKLθ
(L). (27)

The first term of the right hand side of (27) is lower than 1. Let us find a bound for the second term of
the right hand side of (27). Thanks to a first order expansion, we have

|θ(K) − θ(L)| ≤ θ(K)eB0 |αK−αL|B0|αK − αL|.
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For vKL 6= 0, there exists x0 ∈ K such that φ(x0, τ) ∈ L. Since

|α(x0)− αK | ≤ Lαh,

and
|α(φ(x0, τ))− αL| ≤ Lαh.

Since α(φ(x0, τ)) = α(x0)− τ , we get

|αK − αL| ≤ 2Lαh+ τ.

This implies that

δt
∑

L∈M

vKL(θ
(L) − θ(K)) ≤

δt

τ
|K|B0e

B0(2Lαh+τ)(2Lαh+ τ).

The third term of the right hand side of (27) may be bounded thanks to

δt
∑

L∈M

λKLθ
(L) ≤ δtΛ|K|.

Let us now turn to a lower bound of the left hand side of (27). We have

δtqKθ
(K) ≥ δtqKe

−B0τ ,

since, if qK > 0 then αK ≤ τ . We now have

δt
∑

L∈M

qKLθ
(L) =

δt

τ

∫

{x∈K:α(x)<τ}

∑

L∈M

∫

L

e−B0αLq(φ(x, α(x)), dy)dx.

Let us observe that, for y ∈ L,

e−B0αL − e−B0α(y) ≤ e−B0α(y)B0Lαhe
B0Lαh.

This leads to

δt
∑

L∈M

qKLθ
(L)

≤
δt

τ
(1 +B0Lαhe

B0Lαh)

∫

{x∈K:α(x)<τ}

∫

F

e−B0α(y)q(φ(x, α(x)), dy)dx.

Applying (1), we then get

δt
∑

L∈M

qKLθ
(L) ≤ (1− a0)(1 +B0Lαhe

B0Lαh)δtqK .

Hence we obtain

δt
(
qKθ

(K) −
∑

L∈M

qKLθ
(L)
)
≥ (e−B0τ − (1− a0)(1 +B0Lαhe

B0Lαh))δtqK .

We now choose η such that, for s ≤ η, we have B0Lαse
B0Lαs ≤ a0/4 and e−B0s ≥ 1− a0/4. This leads,

for h ≤ τ ≤ η, to

δt
(
qKθ

(K) −
∑

L∈M

qKLθ
(L)
)
≥
(
1−

a0
4

− (1− a0)−
a0
4

)
δtqK =

a0
2
δtqK .
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Therefore we get, from (27),

a0
2

N−1∑

n=0

δt
∑

K∈M

p
(K)
n+1qK ≤ 1 + (T + δt)(Λ +B0ηe

B0η(2Lα+1)(2Lα + 1))

If τ > η, then qK ≤
1

η
|K| and we have

N−1∑

n=0

δt
∑

K∈M

p
(K)
n+1qK ≤

1

η

N−1∑

n=0

δt
∑

K∈M

p
(K)
n+1|K| =

1

η
(T + δt).

This concludes the proof of (26). �

We now turn to the tightness proof of the family of measures PD(dx, dt).

Lemma 4 (Tightness of PD) Under hypotheses (H) and (HD), let T > δt. Let (p(K)
n )n∈N,K∈M be the

solution of Scheme (13), (14), (15), (16), (17) which satisfies (23)-(24).
Then, for all ε > 0, there exists R > 0 only depending on T , φ, α, such that

∫

(F\B(0,R))×[0,T ]

PD(dx, dt) ≤ ε, (28)

which implies the tightness of the family of probability measures, defined for the family F of all dis-
cretizations D in the sense of Hypotheses (HD), such that τ < 1 and h/τ < 1, by (PD(dx, dt))D∈F on
F × [0, T ].

Proof. Let ε > 0 be given. We assume that τ < 1 and h/τ < 1. We first choose R0 > 1 such that

∫

F\B(0,R0−1)

ρ0(dx) ≤ ε.

Thanks to Hypotheses (H.4(a)) and (H.5(a)), we also denote Rε > 2 + Lα a value such that we have

fQ(r) ≤ ε and fq(r) ≤ ε, ∀r ≥ Rε − 2− Lα. (29)

Let again N ∈ N be such that (N − 1)δt < T ≤ Nδt. Denoting by s+ = max(s, 0) for all s ∈ R, we define
for all n = 0, . . . , N and K ∈ M, θ(K)

n = (T −nδt)+(1− exp(−A(RK −R0)
+)), using a value A > 0 which

will be determined later as function of ε and of the data, and where RK is defined by

RK = inf{|x| ∈ R : x ∈ K}, ∀K ∈ M.

We then multiply (16) by δtθ(K)
n , sum on n ∈ N and K ∈ M. We get, remarking that θ

(K)
N = 0,

N−1∑

n=0

∑

K∈M

p
(K)
n+1|K|(θ(K)

n − θ
(K)
n+1)

=

N−1∑

n=0

∑

K∈M

p
(K)
n+1δt

∑

L∈M

(vKL + λKL + qKL)(θ
(L)
n − θ(K)

n ) +
∑

K∈M

|K|p
(K)
0 θ

(K)
0 .

Thanks to the choice of R0, we get that

∑

K∈M

|K|p
(K)
0 θ

(K)
0 ≤ Tε.
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Thanks to a first order Taylor expansion, we get that

|θ(L)
n − θ(K)

n | ≤ TA (RL −RK) ≤ TA(|y − x|+ 2h), ∀y ∈ L, ∀x ∈ K. (30)

We then first get that

∑

L∈M

vKL(θ
(L)
n − θ(K)

n ) =
∑

L∈M

1

τ

∫

{x∈K:φ(x,τ)∈L}

(θ(L)
n − θ(K)

n )

≤ AT
1

τ

∫

K

(|φ(x, τ)− x|+ 2h)dx ≤ AT
1

τ
(Lφτ + 2h)|K|,

leading, using Nδt ≤ T + δt, to

N−1∑

n=0

∑

K∈M

p
(K)
n+1δt

∑

L∈M

vKL(θ
(L)
n − θ(K)

n ) ≤ (T + δt)AT (Lφ + 2
h

τ
).

Turning to the terms in λ, we split M in three subsets: M1 = {L ∈ M : RL ≥ RK + Rε}, M2 =
{L ∈ M : RL < RK} and M3 = {L ∈ M : RK ≤ RL < RK + Rε}. We first have, using (29) and
θ(L)
n − θ(K)

n ≤ T ,

∑

L∈M1

λKL(θ
(L)
n − θ(K)

n ) ≤ T

∫

K

λ(x)

∫

{y∈F :|y|>|x|+Rε−2}

Q(x, dy)dx ≤ TΛ|K|ε.

For L ∈ M2, we have θ(L)
n < θ(K)

n and therefore

∑

L∈M2

λKL(θ
(L)
n − θ(K)

n ) ≤ 0.

We then use that 0 ≤ RL −RK ≤ Rε for L ∈ M3 and therefore θ(L)
n − θ(K)

n ≤ TARε, which leads to

∑

L∈M3

λKL(θ
(L)
n − θ(K)

n ) ≤ TΛ|K|ARε.

We then get that

N−1∑

n=0

∑

K∈M

p
(K)
n+1δt

∑

L∈M

λKL(θ
(L)
n − θ(K)

n ) ≤ (T + δt)ΛT (ε+ARε).

Similarly, using the same splitting for the study of the term
∑

L∈M

qKL(θ
(L)
n − θ(K)

n ), we remark that, for

any x ∈ K such that α(x) < τ , we get that |φ(x, α(x))| ≤ |x| + Lατ and therefore, for any y ∈ L such
that RL ≥ RK +Rε, we have |y| ≥ |x|+Rε − 2h ≥ |φ(x, α(x))|+Rε − 2h− Lατ . Therefore

∑

L∈M1

qKL(θ
(L)
n − θ(K)

n ) =
∑

L∈M1

1

τ

∫

{x∈K:α(x)<τ}

∫

L

q(φ(x, α(x)), dy)(θ(L)
n − θ(K)

n )dx

≤ T
1

τ

∫

{x∈K:α(x)<τ}

∫

{y∈F :|y|>|φ(x,α(x))|+Rε−2−Lα}

q(φ(x, α(x)), dy)dx

≤ TqKε.

We again have ∑

L∈M2

qKL(θ
(L)
n − θ(K)

n ) ≤ 0,
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and ∑

L∈M3

qKL(θ
(L)
n − θ(K)

n ) ≤ qKTARε.

It gives
N−1∑

n=0

∑

K∈M

p
(K)
n+1δt

∑

L∈M

qKL(θ
(L)
n − θ(K)

n ) ≤ CσT (ε+ARε).

We may now choose A = ε/Rε ≤ ε, which gives the conclusion of the proof of (28), up to a rescaling of
ǫ. �
Let us now turn to the tightness proof of σ.

Lemma 5 (Tightness of σD) Under Hypotheses (H) and (HD), let (p(K)
n )K∈M,n∈N be the solution to

to Scheme (13), (14), (15), (16), (17) which satisfies (23)-(24). Then, for all ε > 0, there exists R only
depending on T , α, such that

∫

(Γ\B(0,R))×[0,T ]

σD(dx, dt) ≤ ε, (31)

which implies the tightness of the family of probability measures, defined for the family F of all discretiza-
tions D such that τ < 1 and h/τ < 1, by

(
σD(x, t)dxdt

)
D∈F

on Γ× [0, T ].

Proof.
Thanks to Hypothesis (H.5(c)), we choose a0 ∈ (0, 1) and B0 > 0 given by (1).
Let ε > 0 be given.
Thanks to Hypothesis (H.4(a)), we let RQ > 0 be such that we have

fQ(r) ≤ ε, ∀r ≥ RQ − 2. (32)

We then choose Rρ such that ∫

F\B(0,Rρ−1)

ρ0(dx) ≤ ε,

and, using Lemma 4, ∑

n∈N,nδt≤T

δt
∑

K∈M

K∩B(0,Rρ−1)=∅

|K|p(K)
n ≤ ε. (33)

We let R0 = Rρ +RQ.
Thanks to Hypothesis (H.5(a)), we denote Rε > 2 + Lα a value such that we have

fq(r) ≤ ε, ∀r ≥ Rε − 2− Lα. (34)

Let us define A = ε/Rε.

We now define θ̂(K) = e−B0αKθ(K) with θ(K) = 1− exp(−A(RK −R0)
+), denoting by

αK = inf{α(x) ∈ R : x ∈ K}, ∀K ∈ M.

We then multiply (16) by δtθ̂(K), sum on n = 0, . . . , N − 1 and K ∈ M. We get

∑

K∈M

|K| (p
(K)
N − p

(K)
0 )θ̂(K) +

N−1∑

n=0

∑

K∈M

p
(K)
n+1δt

∑

L∈M

(vKL + λKL + qKL)(θ̂
(K) − θ̂(L)) = 0.

16



This gives

N−1∑

n=0

∑

K∈M

p
(K)
n+1δt

∑

L∈M

qKL(θ̂
(K) − θ̂(L)) ≤

∑

K∈M

|K| p
(K)
0 θ̂(K) +

N−1∑

n=0

∑

K∈M

p
(K)
n+1δt

∑

L∈M

(vKL + λKL)(θ̂
(L) − θ̂(K)).

Let us define R1 = R0 +
1

A
log(8/a0), and let us write

N−1∑

n=0

∑

K∈M

p
(K)
n+1δt

∑

L∈M

qKL(θ̂
(K) − θ̂(L)) = T3 + T4,

with

T4 =

N−1∑

n=0

∑

K∈M,RK≥R1

p
(K)
n+1δt

∑

L∈M

qKL(θ̂
(K) − θ̂(L)),

and

T3 =
N−1∑

n=0

∑

K∈M,RK<R1

p
(K)
n+1δt

∑

L∈M

qKL(θ̂
(K) − θ̂(L)).

For any K ∈ M such that exp(−A(RK − R0)) ≤ a0/8 (meaning that RK ≥ R1 := R0 +
1

A
log(8/a0)),

we have
∑

L∈M

qKLθ̂
(K) = qK θ̂

(K) ≥ qKe
−B0τ (1− exp(−A(RK −R0)

+)) ≥ (1−
a0
8
)qKe

−B0τ ,

since, if qK > 0 then αK ≤ τ . We now have

δt
∑

L∈M

qKLθ̂
(L) ≤

δt

τ

∫

{x∈K:α(x)<τ}

∑

L∈M

∫

L

e−B0αLq(φ(x, α(x)), dy)dx.

Let us observe that, for y ∈ L,

e−B0αL − e−B0α(y) ≤ e−B0α(y)B0Lαh exp(B0Lαh).

This leads to
∑

L∈M

qKLθ̂
(L)

≤
1

τ
(1 +B0Lαhe

B0Lαh)

∫

{x∈K:α(x)<τ}

∫

F

e−B0α(y)q(φ(x, α(x)), dy)dx.

We then get, using (1),

∑

L∈M

qKLθ̂
(L) ≤ (1− a0)(1 +B0Lαhe

B0Lαh)qK .

Hence we obtain, for all K ∈ M such that RK ≥ R1,

T4 ≥
N−1∑

n=0

∑

K∈M,RK≥R1

p
(K)
n+1δt

((
1−

a0
8

)
e−B0Lφτ − (1− a0) (1 +B0Lαhe

B0Lαh)
)
qK .
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Let us now turn to the study of a lower bound of T3. We have, since qKL 6= 0 implies αK ≤ τ ,

T3 ≥
N−1∑

n=0

∑

K∈M,RK<R1

p
(K)
n+1δt

∑

L∈M

qKL(e
−B0τθ(K) − e−B0αLθ(L)),

which leads to T3 ≥ T31 + T32 with

T31 =

N−1∑

n=0

∑

K∈M,RK<R1

p
(K)
n+1δt

∑

L∈M

qKL(e
−B0τ − 1)θ(K) = (e−B0τ − 1)

N−1∑

n=0

∑

K∈M,RK<R1

p
(K)
n+1δtqKθ

(K),

and

T32 =

N−1∑

n=0

∑

K∈M,RK<R1

p
(K)
n+1δt

∑

L∈M

qKLe
−B0αL(θ(K) − θ(L)).

For any K ∈ M such that RK < R1, following the proof of Lemma 4, we again split M in three subsets:
M1 = {L ∈ M : RL ≥ RK + Rε}, M2 = {L ∈ M : RL < RK} and M3 = {L ∈ M : RK ≤ RL <
RK +Rε}. We get

∑

L∈M1

qKLe
−B0αL(θ(K) − θ(L)) =

∑

L∈M1

e−B0αL
1

τ

∫

{x∈K:α(x)<τ}

∫

L

q(φ(x, α(x)), dy)(θ(K) − θ(L))dx

≥ −
1

τ

∫

{x∈K:α(x)<τ}

∫

{y∈F :|y|>|φ(x,α(x))|+Rε−2−Lα}

q(φ(x, α(x)), dy)dx

≥ −qKε.

We again have ∑

L∈M2

qKLe
−B0αL(θ(K) − θ(L)) ≥ 0,

and ∑

L∈M3

qKLe
−B0αL(θ(K) − θ(L)) ≥ −qKARε.

It gives
T32 ≥ −Cσ(ε+ARε) = −2Cσε,

thanks to the choice of A.
Turning to T31, we easily get

T31 ≥ Cσ(e
−B0τ − 1).

For any x ∈ K and y ∈ L such that there exists x0 ∈ K with φ(x0, τ) ∈ L, we have

|x− y| ≤ 2h+ LΦτ.

Since a Lipschitz constant of the function x 7→ e−B0α(x) is equal to B0Lα and that of the function
x 7→ 1− exp(−A(|x| −R0)

+) is A and denoting by Y (s, r) the function such that Y (s, r) = 1 if s > r and
0 if s ≤ r, we get

θ̂(L)−θ̂(K) ≤ (B0Lα+A)(2h+LΦτ)Y (RK−(2h+LΦτ), R0) ≤ (B0Lα+A)(2h+LΦτ)Y (RK−(2+LΦ), R0).

This implies that

∑

L∈M

vKL(θ̂
(L) − θ̂(K)) ≤ |K|(B0Lα +A)

(
2
h

τ
+ LΦ

)
Y (RK − (2 + LΦ), R0),
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which leads, using (33), to

N−1∑

n=0

∑

K∈M

p
(K)
n+1δt

∑

L∈M

vKL(θ̂
(L) − θ̂(K)) ≤ ε(B0Lα +A)(2

h

τ
+ LΦ).

We now observe that
N−1∑

n=0

δt
∑

K∈M

p
(K)
n+1

∑

L∈M

λKL(θ̂
(L) − θ̂(K)) ≤

N−1∑

n=0

δt
∑

K∈M

p
(K)
n+1

∑

L∈M

λKLθ̂
(L) ≤ T1 + T2,

with

T1 =
N−1∑

n=0

δt
∑

K∈M

p
(K)
n+1

∑

L∈M,RL≥RK+RQ

λKLθ̂
(L),

T2 =
N−1∑

n=0

δt
∑

K∈M

p
(K)
n+1

∑

L∈M,RL<RK+RQ

λKLθ̂
(L).

Considering T1, we have, bounding θ̂(L) by 1, using (32) and |y| − |x| ≥ RL − RK − 2h for y ∈ L and
x ∈ K, we get for h < 1,

∑

L∈M,RL≥RK+RQ

λKLθ̂
(L) =

∫

K

λ(x)

∫

{y∈F :|y|≥|x|+RQ−2}

Q(x, dy) ≤ Λ|K|ε

which implies
T1 ≤ TΛε.

Turning to T2, we have, for L such that RL < RK +RQ,

θ̂(L) ≤ (1− exp(−A(RL −R0)
+)) ≤ (1− exp(−A(RK +RQ −R0)

+)) = (1− exp(−A(RK −Rρ)
+))

and therefore, since
∑

L∈M,RL<RK+RQ

λKL ≤ λK ≤ Λ|K|,

T2 ≤
N−1∑

n=0

δt
∑

K∈M

p
(K)
n+1Λ|K|(1− exp(−A(RK −Rρ)

+)) ≤ Λε,

thanks to (33).
Gathering the above results, we get

N−1∑

n=0

∑

K∈M,RK≥R1

p
(K)
n+1δtqK

((
1−

a0
8

)
e−B0Lφτ − (1− a0)(1 +B0Lαhe

B0Lαh)
)
≤ Cσ(1−e

−B0τ )+2Cσε

+

(
1 + ε(B0Lα +A)

(
2
h

τ
+ LΦ

)
+ Λ(T + 1)

)
.

Choosing η such that, for s ≤ η, we have B0Lαse
B0Lαs ≤

a0
4

and e−B0Lφs ≥ 1−
a0
8
, we get, for h ≤ τ ≤ η,

a0
2

N−1∑

n=0

∑

K∈M,RK≥R1

p
(K)
n+1δtqK ≤ Cσ(1− e−B0τ ) + ε(2Cσ + 1 + (B0Lα +A)(2 + LΦ) + Λ(T + 1)).

For a sequence of discretizations (Dm)m∈N such that τm tends to zero, we split the sequence in two parts:

1. the first one is such that 1− e−B0τm ≤ ε,

2. the second one is finite, and therefore tight.

It now suffices to take a radius greater than R1 such that the tightness of the measures σDm
is also

controlled by ε for concluding the proof. �
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3.3 Convergence analysis

In the proof of convergence of the numerical scheme, we need test functions which are more regular than
the elements of T . So we define a new test space Tr ⊂ T which is shown to approximate the elements of
T in Lemma 6 and such that its elements have some regularity properties (see Lemma 7).

Definition 2 Let Cc
∞,b(R

d × R+) be the set of infinitely differentiable bounded functions with bounded
derivatives and compact support in time.
We denote by Tr the set of all functions g = T(I, J) such that I and J belong to Cc

∞,b(R
d × R+).

Lemma 6 Let ν ∈ Cb(R
d×R−) be a non negative infinitely differentiable function with compact support

and such that ∫

Rd×R−

ν(x, t)dxdt = 1.

For any f ∈ Cc
b(R

d × R+) and all n ∈ N
⋆, let us denote by Rnf ∈ Cc

b(R
d × R+) the function defined by

Rnf(x, t) = nd+1

∫

Rd×R+

f(y, s)ν(n(x− y), n(t− s))dyds.

Then

1. If I(x, t) = J(x, t) = 0 for all (x, t) ∈ R
d × [T,+∞[, then T (I, J)(x, t) = 0 for all (x, t) ∈ R

d ×
[T,+∞[ and ||T (I, J)||∞ ≤ ||J ||∞ + T ||I||∞.

2. If I, J ∈ Cc
b (R

d × R+) are Lipschitz continuous, then T (I, J) is Lipschitz continuous.

3. For all f ∈ Cc
b (R

d × R+), ||Rnf ||∞ ≤ ||f ||∞, Rnf is infinitely differentiable, its partial derivatives
are bounded and for all (x, t) ∈ R

d × R+, Rnf(x, t) converges to f(x, t) as n→ +∞.

4. If I, J ∈ Cc
b (R

d × R+) then T (RnI, RnJ)(x, t) converges to T (I, J)(x, t) as n→ +∞.

Proof. Assertion 1 is straightforward.
For assertion 2, we denote by LI and LJ Lipschitz constants of I and J respectively and T such that
I(x, t) = J(x, t) = 0 for x ∈ R

d; t ≥ T . We get:

|T (I, J)(x2, t2)− T (I, J)(x1, t1)| ≤ |J(φ(x2, α(x2)), t+ α(x2))− J(φ(x1, α(x1), t+ α(x1))|

+

∫ α(x2)

0

|I(φ(x2, s), t2 + s)− I(φ(x1, s), t1 + s)| ds+

∣∣∣∣∣

∫ α(x2)

α(x1)

I(φ(x1, s), t1 + s) ds

∣∣∣∣∣
≤ LJLφ(1 + Lα)|x2 − x1|+ LJ |x2 − x1|+ TLILφ|x2 − x1|+ LI |t2 − t1|+ ||I∞||Lα|x2 − x1|.

Assertion 3 is a standard consequence of the regularization by convolution.
Assertion 4 is a consequence of Assertion 3 and of the Lebesgue dominated convergence theorem. �

Lemma 7 Let g ∈ Tr be given. Then

1. g is Lipschitz continuous on R
d × R+,

2. ∂tg is Lipschitz continuous on R
d × R+ (we then denote Lt,g a Lipschitz constant for ∂tg),

3. the function ∂φg defined on F × R+ by ∂φg = ∂t,φg − ∂tg is Lipschitz continuous and bounded on
F × R+ and there exists Lφ,g, only depending on g and φ, such that, for all (x, t) ∈ F × R

+ and
τ ∈ (0, α(x)], then ∣∣∣∣

1

τ
(g(φ(x, τ), t)− g(x, t))− ∂φg(x, t)

∣∣∣∣ ≤ τLφ,g. (35)
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Proof. Item 1 is a consequence of Lemma 6. Let I, J ∈ Cc
∞,b(R

d × R+) be such that g = T(I, J).
Item 2 results from

∂tg(x, t) = ∂tJ(Φ(x, α(x)), t+ α(x))−

∫ α(x)

0

∂tI(Φ(x, s), t+ s)ds,

which shows that ∂tg = T(∂tI, ∂tJ). Since ∂tI and ∂tJ belong to Cc
∞,b(R

d × R+) as well, we get that
∂tg ∈ Tr, and is therefore Lipschitz continuous and bounded.
Turning to Item 3, we get that ∂φg is the difference between two bounded Lipschitz continuous functions.
We now write, for (x, t) ∈ F × R

+ and τ ∈ [0, α(x)],

g(φ(x, τ), t)− g(x, t) = g(φ(x, τ), t+ τ)− g(x, t)− (g(φ(x, τ), t+ τ)− g(φ(x, τ), t)),

which leads to

g(φ(x, τ), t)− g(x, t) =

∫ τ

0

∂t,φg(φ(x, s), t+ s)ds−

∫ τ

0

∂tg(φ(x, τ), t+ s)ds.

We thus obtain

g(φ(x, τ), t)− g(x, t)− τ∂φg(x, t)

=

∫ τ

0

(∂t,φg(φ(x, s), t+ s)− ∂t,φg(x, t))ds−

∫ τ

0

(∂tg(φ(x, τ), t+ s)− ∂tg(x, t))ds.

Since the functions φ, ∂t,φg and ∂tg are Lipschitz continuous, there exists Lφ,g, only depending on g and
φ, such that

|∂t,φg(φ(x, s), t+ s)− ∂t,φg(x, t)| ≤
1

2
Lφ,gτ,

and

|∂tg(φ(x, τ), t+ s)− ∂tg(x, t)| ≤
1

2
Lφ,gτ,

which completes the proof of (35). �
We now state a first convergence result

Theorem 2 Under hypotheses (H) and (HD), let T > δt. Let (p(K)
n )i∈E,n∈N,K∈M be the solution of

Scheme (13), (14), (15), (16), (17) which satisfies (23)-(24).
Then, assuming δt→ 0, τ → 0, and h/τ → 0, PD(dx, dt) (resp. σD(dx, dt)) tends to µ (resp. σ) unique
solution of equation (6) for the weak topology of the measures.

Proof. Thanks to Lemma 3, we may assume that, up to the definition of a sequence (Dm)m∈N that,
PDm

(dx, dt) (resp. σDm
(dx, dt)) tend to some bounded measure µ (resp. σ) for the weak topology of the

measures. We assume that τ < 1, h/τ < 1 and δt < 1. Thanks to Lemma 6, it suffices to prove that (6)
holds for µ, σ and g ∈ Tr.
Let Lg be a global Lipschitz constant for g and a bound of ∂φg, let T be such that g(x, t) = 0 for all

t ≥ T and let N ∈ N be such that (N − 1)δt ≤ T < Nδt. We multiply (16) by δt g(K)
n , with

g(K)
n =

1

|K|

∫

K

g(x, nδt)dx, ∀K ∈ M, ∀n ∈ N. (36)

We sum on K ∈ M and n ∈ N. We get Tm
1 + Tm

2 + Tm
3 + Tm

4 + Tm
5 = 0, with

Tm
1 = −

∑

K∈M

|K|p
(K)
0 g

(K)
0 ,

Tm
2 = −

∑

n∈N

∑

K∈M

|K|p
(K)
n+1(g

(K)
n+1 − g(K)

n ) = −
∑

n∈N

∑

K∈M

p
(K)
n+1

∫

K

∫ δt

0

∂tg(x, nδt+ s)dsdx,
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Tm
3 =

∑

n∈N

δt
∑

K∈M

∑

L∈M

(vKLp
(K)
n+1 − vLKp

(L)
n+1)g

(K)
n ,

Tm
4 =

∑

n∈N

δt
∑

K∈M

∑

L∈M

λKLp
(K)
n+1(g

(K)
n − g(L)

n ),

Tm
5 =

∑

n∈N

δt
∑

K∈M

∑

L∈M

qKLp
(K)
n+1(g

(K)
n − g(L)

n ).

Study of the limit of Tm
1 .

Since g is Lipschitz continuous, we get

|
∑

K∈M

∫

K

g(x, 0)ρini(dx) + Tm
1 | = |

∑

K∈M

∫

K

(g(x, 0)− g
(K)
0 )ρini(dx)| ≤ Lgh,

which implies

lim
m→∞

Tm
1 = −

∫

F

g(x, 0)ρini(dx).

Study of the limit of Tm
2 .

Let us define Tm
6 by

Tm
6 = −

∑

n∈N

δt
∑

K∈M

|K|p
(K)
n+1

∫

K

∂tg(x, nδt)dx = −

∫

F×R+

∂tg(x, t)PD(dx, dt).

Since PD is tight and ∂tg is continuous and bounded, we obtain that

lim
m→∞

Tm
6 = −

∫

F×R+

∂tg(x, t)µ(dx, dt).

Thanks to Lemma 7, for all s ∈ [0, δt], we have |∂tg(x, nδt+s)−∂tg(x, nδt)| ≤ Lt,gδt. Therefore we deduce
that lim

m→∞
|Tm

2 − Tm
6 | = 0, which implies

lim
m→∞

Tm
2 = −

∫

F×R+

∂tg(x, t)µ(dx, dt).

Study of the limit of Tm
3 .

Defining T
(K)
7 by

T
(K)
7 =

∑

L∈M

vKL(g
(K)
n − g(L)

n ),

we have
Tm
3 =

∑

n∈N

δt
∑

K∈M

p
(K)
n+1T

(K)
7 .

Let us compute T
(K)
8 − T

(K)
7 with T

(K)
8 defined by

T
(K)
8 = −

∫

{x∈K,α(x)>τ}

∂φg(x, nδt)dx.

Defining T
(K)
9 by

T
(K)
9 =

∫

{x∈K,α(x)>τ}

1

τ
(g(x, nδt)− g(φ(x, τ), nδt))dx,

22



we have

T
(K)
9 = −

∑

L∈M

∫

{x∈K,α(x)>τ and Φ(x,τ)∈L}

1

τ
(g(x, nδt)− g(φ(x, τ), nδt))dx.

Introducing the Lipschitz constant Lg of g, we get

|T
(K)
9 − T

(K)
7 | ≤ 2|K|

Lgh

τ
.

Applying Lemma 7, we can write

|T
(K)
8 − T

(K)
9 | ≤ Lφ,gτ |K|,

which finally gives

|T
(K)
8 − T

(K)
7 | ≤ Lφ,gτ |K|+ 2|K|

Lgh

τ
.

Hence, defining Tm
10 by

Tm
10 =

∑

n∈N

δt
∑

K∈M

p
(K)
n+1T

(K)
8 ,

we get

|Tm
10 − Tm

3 | ≤ (2
Lgh

τ
+ Lφ,gτ)(T + δt).

We now remark that, defining T
(K)
11 by

T
(K)
11 = −

∫

{x∈K:α(x)≤τ}

∂φg(x, nδt)dx,

and Tm
12 by

Tm
12 =

∑

n∈N

δt
∑

K∈M

p
(K)
n+1T

(K)
11 ,

we have

|Tm
12 | ≤ τLg

N−1∑

n=0

δt
∑

K∈M

qKp
(K)
n+1.

This shows, thanks to (26), that
lim

m→∞
Tm
12 = 0.

Now

Tm
10 + Tm

12 = −

∫

F×R+

∂φg(x, t)PD(dx, dt).

Thanks to the tightness of PD, we have

lim
m→∞

(Tm
10 + Tm

12) =

∫

F×R+

∂φg(x, t)µ(dx, dt).

Therefore, we conclude that

lim
m→∞

Tm
3 = −

∫

F×R+

∂φg(x, t)µ(dx, dt).

Study of the limit of Tm
4 .

We compare this term with Tm
13 defined by

Tm
13 =

∑

n∈N

δt
∑

K∈M

∫

K

λ(x)

(
g(x, nδt)−

∫

F

g(y, nδt)Q(x, dy)

)
dx p

(K)
n+1

=

∫

F×R+

λ(x)

(
g(x, t)−

∫

F

g(y, t)Q(x, dy)

)
PD(dx, dt),
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which satisfies, thanks to the tightness of PD(dx, dt),

lim
m→∞

Tm
13 =

∫

F×R+

λ(x)

(
g(x, t)−

∫

F

g(y, t)Q(x, dy)

)
µ(dx, dt).

We have

Tm
13 − Tm

4 =
∑

n∈N

δt
∑

K∈M

∫

K

λ(x)
(
(g(x, nδt)− g(K)

n )−
∑

L∈M

∫

L

(g(y, nδt)− g(L)
n )Q(x, dy)

)
dx p

(K)
n+1.

This shows that

|Tm
13 − Tm

4 | ≤ Lgh
N−1∑

n=0

δt
∑

K∈M

λKp
(K)
n+1 ≤ Lgh(T + δt) Λ,

showing that
lim

m→∞
|Tm

13 − Tm
4 | = 0,

hence proving that

lim
m→∞

Tm
4 =

∫

F×R+

λ(x)

(
g(x, t)−

∫

F

g(y, t)Q(x, dy)

)
µ(dx, dt).

Study of the limit of Tm
5 .

We use the measure σD(dx, dt), defined by (21). We define Tm
14 by

Tm
14 =

∫

Γ×R+

(
g(x, t)−

∫

F

g(y, t)q(x, dy)

)
σD(dx, dt),

which satisfies, since the sequence of measures σD(dx, dt) is tight,

lim
m→∞

Tm
14 =

∫

Γ×R+

(
g(x, t)−

∫

F

g(y, t)q(x, dy)

)
σ(dx, dt).

We have

Tm
14 =

∑

n∈N

δt
∑

K∈M

p
(K)
n+1

1

τ

∫

{x∈K:α(x)≤τ}

(
g(φ(x, α(x)), nδt)−

∫

F

g(y, nδt)q(φ(x, α(x)), dy)

)
dx.

Therefore, we get

Tm
5 − Tm

14 =
∑

n∈N

δt
∑

K∈M

p
(K)
n+1

1

τ

∫

{x∈K:α(x)≤τ}

(
g(K)
n − g(φ(x, α(x)), nδt)−

∑

L∈M

∫

L

(g(L)
n − g(y, nδt))q(φ(x, α(x)), dy)

)
dx.

Remarking that
∀x, y ∈ K, |φ(x, α(x))− y| ≤ h+ Lφτ,

this leads to
|Tm

5 − Tm
14 | ≤ (2h+ Lφτ)Lg

∑

n∈N

δt
∑

K∈M

qKp
(K)
n+1,

and therefore
lim

m→∞
|Tm

5 − Tm
14 | = 0.

We thus get that

lim
m→∞

Tm
5 =

∫

Γ×R+

(
g(x, t)−

∫

F

g(y, t)q(x, dy)

)
σ(dx, dt).

�
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Theorem 3 Under Hypotheses (H) and (HD), let (p(K)
n )n∈N,K∈M be the solution of Scheme (13), (14),

(15), (16), (17) which satisfies (23)-(24).
Then, assuming δt → 0, τ → 0, and h/τ → 0, PD(t)dx (defined by (22)) tends to ρt, unique solution of
(5) (or (41)), for the weak topology of the measures, for almost every t > 0.

Proof. Thanks to Theorem 2, we may assume that, up to the definition of a sequence (Dm)m∈N that,
PDm

(dx, dt) (resp. σDm
(dx, dt)) tend to measure µ (resp. σ) for the weak topology of the measures, with

hm/τm ≤ 1, hm ≤ 1, τm ≤ 1, δtm ≤ 1.
Step 1
Let g ∈ Cb(R

d) be a Lipschitz continuous function, such that Lg is both a bound of g and a Lipschitz con-

stant for g, and let T > 0 be given. We consider the function fmg : (0, T ) → R, fmg (t) =

∫

Rd

g(x)PD(t)dx.

We prolong this function by 0 outside of (0, T ). Let NT ∈ N be such that NT δt ≤ T < (NT + 1)δt. Since
this function is defined by (22) as a piecewise constant function on all ]nδt, (n+1)δt[, its BV ((0, T ))-norm
is such that

‖fmg ‖BV ((0,T )) ≤
NT∑

n=0

∣∣∣∣∣
∑

K∈M

|K|(p
(K)
n+1 − p(K)

n )g(K)

∣∣∣∣∣ , (37)

where

g(K) =
1

|K|

∫

K

g(x)dx, ∀K ∈ M. (38)

Note that, if we m ultiply (16) by δt g(K), we get that

NT∑

n=0

∣∣∣∣∣
∑

K∈M

|K|(p
(K)
n+1 − p(K)

n )g(K)

∣∣∣∣∣ ≤ Tm
3 + Tm

4 + Tm
5 ,

with

Tm
3 =

NT∑

n=0

δt
∑

K∈M

p
(K)
n+1

∑

L∈M

vKL|g
(K) − g(L)|,

Tm
4 =

NT∑

n=0

δt
∑

K∈M

∑

L∈M

λKLp
(K)
n+1|g

(K) − g(L)|,

Tm
5 =

NT∑

n=0

n1∑

n=n0+1

δt
∑

K∈M

∑

L∈M

qKLp
(K)
n+1|g

(K) − g(L)|.

Since g is Lipschitz continuous, we have

1

τ
|g(K) − g(L)| ≤ Lg

1

τ
(2h+ Lφτ) ≤ Lg(2 + Lφ),

we get

Tm
3 ≤ Lg(2 + Lφ)

∫

F×[0,T ]

PD(dx, dt).

We also have

Tm
4 ≤ 2Lg

NT∑

n=0

δt
∑

K∈M

λKp
(K)
n+1 ≤ 2ALg

∫

F×[0,T ]

PD(dx, dt).

Finally, we may write

Tm
5 ≤ 2Lg

NT∑

n=0

δt
∑

K∈M

∑

L∈M

qKLp
(K)
n+1 = 2Lg

∫

Γ×[0,T ]

σD(dx, dt).
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Gathering the above results and applying Lemma 3 , we get that there exists C1 , which does not depend
on the discretization data, such that

‖fmg ‖BV ((0,T )) ≤ C1 .

Applying Helly’s theorem of relative compactness of bounded sets in L∞ ∩BV , this proves that, up to a
subsequence, fmg converges in L1 to some function. This fu nction can only be fg : (0, T ) → R, fg(t) =∫

Rd

g(x)ρt(dx): indeed, thanks to Theorem 2 and to decomposition result Lemma 8, we get that, for all

continuous function ψ, the limit of

∫ T

0

ψ(t)fmg (t)dt, easily approximated by

∫ T

0

∫

Rd

ψ(t)g(x)PD(dx, ds),

is equal to

∫ T

0

∫

Rd

ψ(t)g(x)ρt(dx)dt =

∫ T

0

ψ(t)fg(t)dt. Therefore the whole sequence fmg converges in

L1((0, T )) to fg.
Step 2
By density of the set of Lipschitz continuous functions in Cb(R

d), we get that for all ξ ∈ Cb(R
d),

fmξ : (0, T ) → R, fmξ (t) =

∫

Rd

ξ(x)PD(t)dx converges in L1((0, T )) to fξ : (0, T ) → R, fξ(t) =
∫

Rd

ξ(x)ρt(dx). Indeed, it suffices to consider a sequence lipschitz c ontinuou s functions uniformly

converging to ξ.
Step 3
We consider a dense countable family ξn in the set C0(R

d) (functions which tend to 0 at infinity). For
n = 1, we extract a subsequence samely denoted, and a set A1 ⊂ (0, T ) whose complementary in (0, T )
has a zero measure, such that for all t ∈ A1 and n ∈ N, fmξ1 (t) converges to fξ1(t). From this sequence, we
consider n = 2, and we extract a subsequence samely denoted, and a set A2 ⊂ A1 whose complementary in

(0, T ) has a zero measure, such that for all t ∈ A2 and n ∈ N, fmξ2 (t) converges to fξ2(t). Letting A =
⋂

n∈N

(whose complementary in (0, T ) has a zero measure), the sequence such constructed by a diagonal process
is such that, for all t ∈ A and n ∈ N, fmξn(t) converges to fξn(t). By density, this achieves the proof of the

convergence, for a.e. t ∈ (0, t) and ξ ∈ C0(R
d), of fmξ (t) converges to fξ(t) and the proof of the theorem.

�

4 Conclusion

Most of the practical cases require hypotheses more general than those made in this paper. In this way
it is possible to rewrite the proofs in the case where F is an hybrid space and where α is infinite on some
subsets (see Remark 1). Furthermore the actual form of Hypothesis (H.5(c)) is in fact restrictive since
we expect that the process will be far away the boundary only after one jump at the boundary. It is
possible to rewrite the proofs with a more general hypothesis including several jumps (see Remark 1).
We have chosen these hypotheses in order to focus on the main ideas in the proofs, but the numerical
scheme seems effective in practical cases. The case where jumps on the boundary are allowed, which is
useful in some applications (see [3]) is still open.
It now remains to test the numerical method developed here for Piecewise Deterministic Markovian
Processes on various practical and theoretical cases with boundaries, in comparison with the classical
Monte-Carlo approach (in someway, this has already been done in [9]). Let us emphasize here the
advantage of this method, which is robust with respect to large values of δt, and which therefore permits
to approximate the asymptotic stationary states of a PDMP.
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Appendix

In this appendix some properties of the solution of equation (6) are proved thanks to analysis tools,
without using the probabilistic results provided in the introduction of this paper.

Lemma 8 (Decomposition) Let µ and σ be a solution of equation (6). Under Hypotheses (H), for any
T > 0, let ρT be the finite measure defined by

∫

Rd

ξ(x)ρT (dx) =

∫

F

ξ(φ(x, T ))ρini(dx)

+

∫

F×[0,T )

λ(x)

(∫

F

ξ(φ(y, T − t))Q(x, dy)− ξ(φ(x, T − t))

)
µ(dx, dt)

+

∫

Γ×[0,T )

(∫

F

ξ(φ(y, T − t))q(x, dy)− ξ(φ(x, T − t))

)
σ(dx, dt), ∀ξ ∈ Cb(R

d). (39)

Then ρT ∈ P(Rd) and, for all f ∈ Cb(R
d × R+,R), we have

∫

F×R+

f(x, t)µ(dx, dt) =

∫

R+

∫

F

f(x, T )ρT (dx)dT. (40)

Moreover, we have, for all g ∈ T with g = T(I, J),

∫

F

g(·, T )ρT (dx) =

∫

F

g(x, 0)ρini(dx) +

∫

F×[0,T )

I(x, t)µ(dx, dt)

+

∫

F×[0,T )

λ(x)

(∫

F

g(y, t)Q(x, dy)− g(x, t)

)
µ(dx, dt)

+

∫

Γ×[0,T )

(∫

F

g(y, t)q(x, dy)− g(x, t)

)
σ(dx, dt). (41)

Proof.

Let us first show that ρT ∈ P(Rd). Let ϕ ∈ C∞(R,R+) such that

∫

R

ϕ(x)dx = 1 and ϕ(x) = 0 for all

x < −1 and x > 0. Next, define the family (ψn)n∈N∗ such that

ψn(t) = n

∫ +∞

t

ϕ(n(x− T )) dx =

∫ +∞

n(t−T )

ϕ(v)dv

So ψn is decreasing such that ψn(t) = 1 for all t ≤ T −
1

n
and ψn(t) = 0 for all t ≥ T . Moreover

ψ′
n(t) = −nϕ(n(t− T )).

We then have that, for all ξ ∈ Cb(R
d), the function ξn(x, t) = ψn(t)ξ(φ(x, (T − t)+)) is such that

ξn = T(In, Jn), with In(x, t) = ψ′
n(t)ξ(φ(x, (T − t)+)) and Jn = ξn. By dominated convergence, we get

ρT (ξ) = lim
n→∞

ρn,T (ξ)

with

ρn,T (ξ) =

∫

F

ψn(0)ξ(φ(x, T ))ρini(dx)

+

∫

F×[0,T )

λ(x)ψn(t)

(∫

F

ξ(φ(y, T − t))Q(x, dy)− ξ(φ(x, T − t))

)
µ(dx, dt)

+

∫

Γ×[0,T )

ψn(t)

(∫

F

ξ(φ(y, T − t))q(x, dy)− ξ(φ(x, T − t))

)
σ(dx, dt),
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that, using (6) with g = ξn,

ρT (ξ) = − lim
n→∞

∫

F×R+

ψ′
n(t)ξ(φ(x, (T − t)+))µ(dx, dt).

This proves that ρT is positive. Moreover its support is included in F .

Remarking that, for any g = T(I, J), we have ψng = T(ψ′
ng + ψnI, ψnJ), we get from (6) that

−

∫

F×R+

ψ′
n(t)g(x, t)µ(dx, dt) =

∫

F

g(x, 0)ρini(dx) +

∫

F×R+

ψn(t)I(x, t)µ(dx, dt)

+

∫

F×[0,T )

λ(x)ψn(t)

(∫

F

g(y, t)Q(x, dy)− g(x, t)

)
µ(dx, dt)

+

∫

Γ×[0,T )

ψn(t)

(∫

F

g(y, t)q(x, dy)− g(x, t)

)
σ(dx, dt). (42)

Using the regularity g = T(I, J) of g, for s = T − t, we have g(φ(x, (T − t)+), T )− g(x, t) = g(Φ(x, s), t+

s)− g(x, t) =

∫ s

0

I(φ(x, u), t+ u)du. So we have by dominated convergence

lim
n→∞

∫

F×R+

ψ′
n(t)(g(φ(x, (T − t)+), T )− g(x, t))µ(dx, dt)

= − lim
n→∞

∫

F×R+

ns ϕ(1− ns)

(
1

s

∫ s

0

I(φ(x, u), t+ u)du

)
µ(dx, dt) = 0.

This shows that the left-hand side of (42) is

lim
n→∞

∫

F×R+

ψ′
n(t)g(x, t)µ(dx, dt) = lim

n→∞

∫

F×R+

ψ′
n(t)g(φ(x, (T − t)+), T )µ(dx, dt) = ρT (g(·, T )),

and concludes the proof of (41).

For all f ∈ Cc
b , let us define the function g by

g(x, t) =

∫ ∞

t

f(φ(x, T − t), T )dT.

Thanks to the properties

∫ α(x)

0

f(φ(x, s), t+ s)ds =

∫ t+α(x)

t

f(φ(x, T − t), T )dT,

and

g(φ(x, α(x)), t+ α(x)) =

∫ ∞

t+α(x)

f(φ(φ(x, α(x)), T − t− α(x)), T )dT =

∫ ∞

t+α(x)

f(φ(x, T − t), T )dT,

we get that g = T(−f, g). Therefore, integrating (39) for ξ = f(·, T ) on T ∈ R+, we get
∫

R+

∫

F

f(x, T )ρT (dx)dT =

∫

R+

∫

F

f(φ(x, T ), T )ρini(dx)dT

+

∫

R+

∫

F×[0,T )

λ(x)

(∫

F

f(φ(y, T − t), T )Q(x, dy)− f(φ(x, T − t), T )

)
µ(dx, dt)dT

+

∫

R+

∫

Γ×[0,T )

(∫

F

f(φ(y, T − t), T )q(x, dy)− f(φ(x, T − t), T )

)
σ(dx, dt)dT.
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Then, using Fubini’s theorem, we apply for some measures ν the equality

∫

R+

∫

Rd×[0,T )

f(φ(x, T − t), T )ν(dx, dt)dT =

∫

Rd×R+

∫ ∞

t

f(φ(x, T − t), T )dTν(dx, dt),

which leads to
∫

R+

∫

F

f(x, T )ρT (dx)dT =

∫

F

g(x, 0)ρini(dx)

+

∫

F×R+

λ(x)

(∫

F

g(y, t)Q(x, dy)− g(x, t)

)
µ(dx, dt)

+

∫

Γ×R+

(∫

F

g(y, t)q(x, dy)− g(x, t)

)
σ(dx, dt).

Since µ is solution of (6), and that g = T(−f, g), we get

0 =

∫

F

g(x, 0)ρini(dx)−

∫

F×R+

f(x, t)µ(dx, dt)

+

∫

F×R+

λ(x)

(∫

F

g(y, t)Q(x, dy)− g(x, t)

)
µ(dx, dt)

+

∫

Γ×R+

(∫

F

g(y, t)q(x, dy)− g(x, t)

)
σ(dx, dt),

which achieves the proof of (40). �

Lemma 9 Under Hypotheses (H), the support of the measure µ solution of (6) is included in F × R+.

Proof. Let T > 0 and ψ ∈ CT
b be given. Let 0 < k < 1, A and B be provided by the proof of Lemma 1

for the space CT
b . Now for all C > 0 consider the function fC ∈ T defined by

fC : Rd × R+ → R

(x, t) 7→ exp(−Cα(x))ψ(x, t).

Then, by Lemma 1 with I = fC and J = 0, there exists a function gC = T(I, J) ∈ T such that (6) leads
to

−

∫

F

gC(x, 0)ρini(dx) =

∫

F×R+

fC(x, t)µ(dx, dt) =

∫

F×R+

exp(−Cα(x))ψ(x, t)µ(dx, dt).

By the Lebesgue dominated convergence theorem, we get that the right hand side of the above equation

converges to

∫

(F\F )×R+

ψ(x, t)µ(dx, dt) as C → +∞. Let us now prove that the left hand side vanishes

as C → +∞. Thanks to the construction of Ψ’s fixed point, we can prove the following property by
induction 




(I0, J0) = (0, 0),
T(In+1, Jn+1) = Ψ(T(In, Jn)) for all n ∈ N,

‖T(In, Jn)‖A,B ≤ ‖ψ‖A,B

1

C(1− k)
for all n ∈ N.
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Indeed

exp(Bα̂(x) +At)|T(In+1, Jn+1)(x, t)|

≤ exp(Bα̂(x) +At)|T(In+1 − I1, Jn+1 − J1)(x, t)|+ exp(Bα̂(x) +At)|T(I1, J1)(x, t)|

≤ k‖T(In − I0, Jn − J0)‖A,B +

∫ α(x)

0

exp(Bα̂(x) +At)|ψ(t+ s)| exp(−Cα(φ(x, s)))ds

≤ k‖ψ‖A,B

1

C(1− k)
+

∫ α(x)

0

‖ψ‖A,B exp(−Cα(x) + Cs−As)ds

≤ k‖ψ‖A,B

1

C(1− k)
+ ‖ψ‖A,B

1

C

≤ ‖ψ‖A,B

1

C(1− k)
.

So the bound is verified by the fixed point gC , and since ‖ · ‖∞ ≤ ‖ · ‖A,B , we have

lim inf
C>0

∫

F

gC(x, 0)ρini(dx) ≤ lim inf
C>0

‖gC‖∞ρini(F ) ≤ inf
C>0

‖ψ‖A,B

1

C(1− k)
ρini(F ) = 0.

This proves that ∫

(F\F )×R+

ψ(x, t) µ(dx, dt) = 0,

which concludes the proof. �
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[16] A. Löpker, Z. Palmowski (2011), On time reversal of Piecewise Deterministic Markov Processes,
arXiv:1110.3813v1

[17] M. Marseguerra, E. Zio (1996) Monte Carlo approach to PSA for dynamic process systems, Reliability
Engineering & System Safety, Volume 52, Issue 3, 227–241.

[18] H. Zhang, F. Dufour, Y. Dutuit, K. Gonzalez (2008), Piecewise deterministic Markov processes and
dynamic reliability, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk
and Reliability, 222(4), pp. 545551. DOI: 10.1243/1748006XJRR181.

31


