
HAL Id: hal-00917197
https://hal.science/hal-00917197

Submitted on 11 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transfers in the on-demand transportation: the DARPT
Dial-a-Ride Problem with transfers allowed

Samuel Deleplanque, Alain Quilliot

To cite this version:
Samuel Deleplanque, Alain Quilliot. Transfers in the on-demand transportation: the DARPT Dial-a-
Ride Problem with transfers allowed. Multidisciplinary International Scheduling Conference: Theory
and Applications (MISTA), Aug 2013, Ghent, Belgium. pp.185-205. �hal-00917197�

https://hal.science/hal-00917197
https://hal.archives-ouvertes.fr

Samuel Deleplanque

LIMOS, UMR CNRS 6158, Bat. ISIMA, BLAISE PASCAL University, France

E-mail: deleplan@isima.fr

Alain Quilliot

LIMOS, UMR CNRS 6158, Bat. ISIMA, BLAISE PASCAL University, France

E-mail: quilliot@isima.fr

MISTA 2013

Transfers in the on-demand transportation: the DARPT

Dial-a-Ride Problem with transfers allowed

Samuel Deleplanque • Alain Quilliot

Abstract Today, the on-demand transportation is used for elderly and disabled people for short

distances. Each user provides a specific demand: a particular ride from an origin to a

destination with hard time constraints like time windows, maximum user ride time, maximum

route duration limits and precedence. This paper deals with the resolution of these problems

(Dial-a-Ride Problems – DARP), including the possibility of one transshipment from a transfer

point by request. We propose an algorithm based on insertion techniques and constraints

propagation.

1 Introduction

An important Operations Research model for the management of flexible reactive

transportation system is the Dial-a-Ride Problems. In the DARP, people (or a combination of

people and goods) can order a ride in which they define mobility demands, give a pick-up

location, a delivery location, two time windows, an upper bound on the duration of the

demand, and the load related to the demand. The majority of these problems uses are related to

the elderly and disabled people, but the latest research in transportation (connected cars,

autonomous cars, etc.) associated with technological advances (mobile communication, geo-

localization…) could provide new services for the optimization problem. DARP are also

related to a shared service transportation because several users could be in one vehicle at the

same time. This type of problem is complex because it incorporates hard time constraints like

time windows. The optimization consists of creating the route of a fleet of vehicles in order to

satisfy all (or the most possible) the mobility demands emanating from people. To determine

these routes, one has to find a balance between two opposite things: the quality of service, and

minimization of the total cost. This work integrates the possibility to make transshipment

between two vehicles in order to satisfy a request. This transshipment is done by a dynamic

transfer point, meaning this point is computed at the same time that the demand is included in a

vehicle planning.

DARP can be modeled in different ways. There exists a number of integer linear

programmings [8], but the problem complexity is too high to use, most of which are NP-Hard

because it also generalizes the Traveling Salesman Problem with Time Windows (TSPTW) [2]

Therefore, the problem must be handled through heuristic techniques. [2] is one of the most

important works on the subject and uses the Tabu search to solve it. Other techniques work

well like dynamic programming (e.g. [14] and [1]) or variable neighborhood searches (VNS)

(e.g. [13] and [6]). Moreover, a basic feature of DARP is that it usually derives from a

dynamic context. So, algorithms for static DARP should be designed in order to take into

account the fact that they will have to be adapted to dynamic and reactive context, which

means synchronization mechanisms, interactions between the users and the vehicles, and

uncertainty about fore coming demands. [15], and [9] later, developed the most used technique

in dynamic context or in a real exploitation is heuristics based on insertion techniques. These

techniques are a good solution when the people’s requests have to take into account in a short

time.

In this paper, we consider a generic DARP model with time windows and a mix

QoS/Economical-Cost performance criterion, and propose algorithms for this model which are

based upon randomized insertion techniques and constraint propagation, and so, which will

easily adapt themselves to dynamic contexts, where demand package has to be inserted into (or

eventually removed from) current vehicle schedules, in a very short time, while taking into

account some probabilistic knowledge about fore coming demand packages. But, the main

contribution of the paper is to allow transfer in the DARP. These transshipments are made

dynamically and can be located everywhere. Little has been published on this subject, only

[10]-[11] studied the problem. They express the problem by DARPT. The location of their

transshipments points are known before the resolution. The authors use Tabu research,

minimizing the total distance traveled by the fleet of vehicle. The closest problem is the Pickup

and Delivery Problem with Transfers (PDPT).

There exist some exact methods to solve the PDPT, like [7], where the transfer points are those

shaped by origin and destination nodes. [3] and [12] used a Branch-and-cut algorithm. As

stated previously, the exact methods are not a good solution for solving the problem because it

can’t be used in a reactive context. The approximate methods are able to solve the problem in

time. [4] created several rules for selecting the vehicle, assuming a demand given. Other rules

help to trace the routes. The VNS is also used for this problem, [16] tested it on big instances

(almost 200 requests). [17] worked on a heuristic where each pick-up and delivery nodes could

be a transfer point. Their solution is based on insertion techniques and they allow the

transshipments if the demand could not be inserted; [18] included the same algorithm in a

dynamic context.

This paper is organized in the following manner: The next section will propose a model of the

classic DARP. Then, we will explain how to handle the temporal constraints with a heuristic

solution based on insertion techniques using propagation constraints. After, we will continue

with the introduction of the DARPT model, framework and our updated solution based on

insertion and propagation techniques. In the last part of the paper, the computational results

will show the efficiency of our heuristics and we will compare the two solutions on the same

instances.

2 The DARP: model and framework

2.1 The general Dial-a-Ride Problem

A Dial a Ride problem instance is essentially defined by a vehicle fleet VH, a transit network

G = (V, E), which contains at least some specific node Depot, and a Demand set D = (Di, i 

I), any demand Di being defined as a 6-uple Di = (oi, di, i, F(oi), F(di), Qi), where oi V is the

origin node of the demand Di, di V is the destination node of the demand Di, i ≥ 0 is an

upper bound (transit bound) on the duration of demand Di’s processing, F(oi) is a time window

related to the time Di starts being processed, F(di) is a time window related to the time Di ends

being processed, and Qi is a description of the load related to Di.

Dealing with such an instance means planning the handling demands of D, by the fleet VH,

while taking into account the constraints which derive from the technical characteristics of the

network G, of the vehicle fleet VH, and of the 6-uples Di = (oi, di, i, F(oi), F(di), Qi), and

while optimizing some performance criteria which is usually a mix of an economical cost

(point of view of the fleet manager) and of QoS criteria (point of view of the users). This very

general problem may be specialized according to several ways, depending on the structure of

the fleet VH and on the way this fleet is allowed to answer various demands of D.

The fleet VH may be heterogeneous, or, conversely, homogenous. In the first case, part of the

problem consists in affecting the demands to the different classes of vehicles. The loads Qi, i 

I, may be described as a set of objects, all endowed with their own characteristics (weight,

volume, autonomous mobility…), or, conversely, summarized by a number (we say that they

are nominal), which identifies any demand as a volume or as a weight of identical objects

which are required to be transported from node oi to node di. In the first case, part of the

problem consists in identifying which combinations of objects may be simultaneously

transported by a given vehicle. Also, in such a case, one may have to take into account the fact

that loading and unloading processes are not neutral, and that their duration is likely to depend

on the current load of the involved vehicles.

Load pre-emption (split loads) may be allowed, which means that a given load Qi, i  I, may

be split into several blocks, every one being transported from node oi to node di while using

distinct vehicles, or while using twice a same vehicle. Vehicle pre-emption

(transfers/transhipments) may be allowed too, which means that a given load Qi, i  I, may be

transported in several steps, each step involving a specific vehicle: for instance, if we think

into Qi as into a single traveller, it may try to go from node oi to node di while first using a

shuttle and next a bus.

Temporal constraints related to the time windows F(oi), F(di), i  I, and to the transit bounds

i, i  I, may be more and less tight. The problem may have to handled according to a dynamic

context, (demands are not known in advance in an accurate way and must be processed “on

line”): in such a case, one must take into account the way the system is supervised and the way

its various components communicate with the users. Conversely, it may be set in a static

context: all data are known in advance; the planning is computed and is run by the system. In

this case, eventual divergences between the data which were used during the planning phases,

and the situation the system has to really face, put what is called robustness at stake.

Finally, additional constraints may have to be tackled, such that cumulative constraints

involving human, technical or financial mutualized renewable or non-renewable resources. In

such a case, one may thing into linking the reduced problem with the RCPSP (Resource

Constrained Project Scheduling Problem) framework.

Throughout this work, we deal with homogeneous fleets and with nominal demands, and

therefore limit ourselves to static points of view. Still, we do not intend to restrict ourselves to

Standard Dial a Ride: so, we pay special attention to cases when temporal constraints are tight,

and handle the case when the transfers are allowed.

2.2 The Standard Case Framework

The general notations of sequences and algorithms are described as follows. In any algorithmic

description, we use the symbol <- in order to denote the value assignment operator: x <- ,

means that the variable x receives the value . Thus, we only use symbol = as a comparator.

For any sequence (or list)  whose elements belong to some set Z, we set First() the first

element of  and Last() is the last element of . For any z in , Succ(, z) gives the successor

of z in  and Pred(, z) gives the predecessor of z in the route . For any z, z’ in , we note z

<< z’ if z is located before z’ in ; z <<
=
 z’ if z << z’ or z = z’.

We consider here that no pre-emption is allowed (i.e. no transfers and no split loads), and

that no additional cumulative constraint has to be taken into account. In such a case, it is

known that we do not need to consider the whole transit network G = (V, E), and that we may

restrict ourselves to the nodes which are either the origin or the destination of some demand,

while considering that any vehicle which visits two such nodes in a consecutive way does it

according to a shortest path strategy. This leads us to consider the node set {Depot, oi, di, i 

I} as made with pairwise distinct nodes, and provided with some distance function DIST,

which to any pair x, y in {Depot, oi, di, i  I}, makes correspond the shortest path distance

from x to y in the transit network G.

As a matter of fact, we also split the Depot node according to its arrival or departure status and

to the various vehicles of the fleet VH, and we consider the input data of a Standard Dial a

Ride instance as defined by the set {1..K = Card(VH)} of the vehicles of the homogenous fleet

VH, the common capacity CAP of a vehicle in VH, the node set X = {DepotD(k), DepotA(k), k

= 1..K}  {oi, di, i  I} and the distance matrix DIST, whose meaning is that, for any x, y in

X, DIST(x, y) is equal to the length, in the sense of the length function l, of a shortest path

which connect x to y in G: we suppose that DIST, satisfies the triangle inequality. Also, the

following characteristics, which, to any node x in X, make correspond:

- its status Status(x): Origin, Destination, DepotA, Depot D; we set Depot = DepotD 

Depot A;

- its demand index: Dem(x) = i if x = oi or di, and Dem(x) = 0 else;

- its vehicle index VI: VI(DepotA(k)) = VI(DepotD(k) = k and VI(x) = Undefined for

any other node x  X;

- its load CH(x): if Status(x)  Depot then CH(x) = 0; if Status(x) = Origin, and if then

CH(x) = Qi;

- its twin node Twin(x): if x = DepotA(k) then Twin(x) = DepotD(k) and conversely; if x

= oi then Twin(x) = di and conversely;

- its time window F(x): for any k = 1..K, F(DepotA(k)) = [0, +  [= F(DepotD(k)).

Also, we suppose that any F(x), x  X, is an interval, which may be written F(x) =

[F.min(x), F.max(x)];

- its transit bound (x): if x = oi or di, then (x) = i, and (x) =  else, where  is an

upper bound which is imposed on the duration of any vehicle tour.

According to this construction, we understand that the system works as follows: vehicle k 

{1..K}, starts its journey from DepotD(k) at some time t(DepotD(k)) and ends it into

DepotA(k) at some time t(DepotA(k)), after having taken in charge some subset D(k) = {Di, i

 I(k)} of D: that means that for any i in I(k), vehicle k arrived in oi at time t(oi)  F(oi),

loaded the whole load Qi, and kept it until it arrived in di at time t(di)  F(oi) and unloaded Qi,

in such a way that t(di) - t(oi) ≤ i. Clearly, solving the Standard Dial a Ride instance related to

those data (X, DIST, K, CAP) will mean computing the subsets D(k) = {Di, i  I(k)}, the

routes followed by the vehicles and the time values t(x), x  X, in such a way that both

economic performance and quality of service be the highest possible.

Remark on the Service Durations and the Waiting Times

Many authors include what they call service durations in their models. That means that they

suppose that loading and unloading processes related to the various nodes of X require some

time amount (x), (service time) and, so, that they distinguish, for any node x  X, time values

t(x) (beginning of the service) and t(x) + d(x) (end of the service). By the same way, some

authors suppose that the vehicles are always running at their maximal speed, and make a

difference between the time t*(x), x  X, when some vehicle arrives in x, and the time t(x)

when this vehicle starts servicing the related demand (loading or unloading process). We do

not do it. Taking into account service times, which tends to augment the size of the variables of

the model and to make it more complex it, has really sense only if we suppose that the service

times (x) depend on the current state (its current load) of the vehicle at the time the loading or

unloading process has to be launched. Making explicitly appear waiting times t(x) – t*(x) is

really useful if we make appear the speed profile as a component of the performance criteria.

In case none of the situation holds, the knowledge of the routes of the vehicles and of the time

value t(x), x  X, is enough to check the validity of a given solution and to evaluate its

performance, and then it turns out that ensuring the compatibility of the model with data which

involve service times and waiting times t(x) – t*(x), x  X, is only a matter of adapting the

times windows F(x), the transit bounds (x), x  X, and the distance matrix DIST.

Tours, Time-Valid Tours, Charge-Valid Tours, Valid Tour

In order to provide an accurate description of the output data of our standard Dial a Ride

instance (X, DIST, K, CAP), we need to talk about tours and related time value sets. A tour 

is a sequence of nodes of X, which is such that:

- Status(First()) = DepotD; = Status(End()) = DepotA;

- VI(First()) = VI(End());

- For any node x in , x ≠ First(), End(, Status(x)  Depot;

- No node x X appears twice in ;

- For any node x = oi (di) which appears in , the node Twin(x) is also in , and we

have: x << Twin(x) (Twin(x) << x).

This tour  is said to be load-valid iff: for any x in , x  First(), we have  y\y << x CH(y) ≤

CAP. And, this tour  is said to be time-valid iff it is possible to associate, with any node x in

, some time value t(x), in such a way that: (E1)

- for any x in , x  Last(), t(Succ(, x)) ≥ t(x) + DIST(x, Succ(, x));

- for any x in , t(Twin(x)) – t(x) ≤ (x) and for any x in , t(x)  F(x).

The tour  is said to be valid if it is both time valid and load valid. For any pair (, t) defined

by some time-valid tour  and by some valid related time value set t, we may set Glob(, t) =

t(End()) – t(First()): this quantity denotes the global duration of the tour  and Ride(, t) =

 x\Status(x) = Origin |Twin(x) - t(x)|: this other quantity may be viewed as a QoS criteria, and

denotes the sum of the duration of the individual trips of the demanders which are taken in

charge by tour . If A, B are two multi-criteria coefficients, we may define the performance

criteria CostA, B(, t) as follows: CostA, B(, t) = A.Glob(, t) + B.Ride(, t).

The Standard dial-a-ride model.

So, let us suppose that we deduced from the data G = (V, E), VH = (K, CAP), D = (Di = (oi, di,

i, F(oi), F(di), Qi), i  I), a 4-uple (X, DIST, K, CAP), and that we are also provided with 2

multi-criteria coefficients A and B ≥ 0. Then we see that solving the related Standard Dial a

Ride Problem instance means computing: for any vehicle index k in 1..K, a valid tour T(k) and

a time value set t = {t(x), x X} in such a way that: the restriction of t to any T(k), k = 1..K,

defines a valid time value set related to T(k), the tour set T = {T(k), k = 1..K} induces a

partition of X, and the quantity PerfA, B(T, t)  k = 1..K CostA, B(T(k), t) is the smallest possible.

3 Handling temporal constraints

Let  a tour. The algorithm which we are going to describe inside the next section 4 will

essentially be based upon the use of insertion techniques. Thus, we must be able to check in a

fast way, whether the insertion of some demand Di inside  will maintain the validity of , and

to get an evaluation of the quality of this insertion. We are first going to provide ourselves with

a package of constraint handling tools.

3.1 Testing the load-validity and the Time-validity

Checking the load-validity on is easy. In order to be able to test the impact of the insertion of

some demand into the tour  on the charge-validity of this tour, we associate, with any such a

tour, the quantities C(, x), x  , defined by: for any x in , C(, x) =  y\y <<or y = x CH(y).

Then it comes that  is load-valid iff for any x in , C(, x) ≤ CAP.

Checking the time validity of  according to a current time window set FS = {FS(x) =

[FS.min(x), FS.max(x)], x  } may be performed through propagation of the following

inference rules Ri, i = 1..5 performed by the Propagate procedure and we deduce the

proposition 1 ([5]):

- Rule R1: y = Succ(, x); FS.min(x) + DIST(x, y) > FS.min(y) |= FS.min(y) <-

FS.min(x) + DIST(x, y); NFact <- y;

- Rule R2: y = Succ(, x); FS.max(y) - DIST(x, y) < FS.max(x) |= FS.max(x) <-

FS.max(y) - DIST(x, y); NFact <- x;

- Rule R3: y = Twin(x); x << y ; FS.min(x) < FS.min(y) – (x) |= FS.min(x) <-

FS.min(y) - (x); NFact <- x;

- Rule R4: y = Twin(x); x << y ; FS.max(y) > FS.max(x) + (x) |= FS.max(y) <-

FS.max(x) + (x) ; NFact <- y;

- Rule R5: x  ; FS.min(x) > FS.max(x) |= Fail.

Procedure Propagate

Input : (: Tour, L: List of nodes, FS: Time windows set related to the node set of ):

Output : (Res: Boolean, FR: Time windows set related to node set of );

Continue <- true;

While L Nil and Continue do

 z <- First(L); L <- Tail(L);

For i = 1..5 do Compute all the pairs (x, y) which make possible an application of the rule

Ri and which are such that x = z or y = z;

For any such pair (x, y) do

Apply the rule Ri;

If NFact is not in L then Insert NFact in L;

If Fail then Continue <- false;

Propagate <- (Continue, FS);

Proposition 1.

The tour  is time-valid according to the input time window set FS if and only if the Res

component of the result of a call Propagate(FS, ) is equal to 1. In such a case, any valid time

value set t related to and FS is such that: for any x in , t(x)  FS(x).

Proof. The part (only if) of the above equivalence is trivial, as well as the second part of the

statement. As for the part (if), we only need to check that if we set, for any x in : FS(x) =

[FS.min(x), FS.max(x)] and t(x) = FS.min(x); then we get a time value set t ={t(x), x 

X()}which is compatible with  and FS. End-Proof.

We denote by FP() the time window set which result from a call Propagate( ,F). FP()

may be considered as the largest (in the inclusion sense) time window set which is included

into F and which is stable under the rules Ri, i = 1..5, and is called the window reduction of F

through .

3.2 Evaluating a tour

Let us consider now the tour , provided with the window reduction set FP(). We want to get

some fast estimation of the best possible value CostA, B(, t) = A.Glob(, t) + B.Ride(, t), t

Valid(). We already noticed that it could be done through linear programming or through

general shortest path and circuit cancelling techniques. Still, since we want to perform this

evaluation process in a fast way, we design two ad hoc procedures EVAL1 and EVAL2. The

EVAL1 procedure works in a greedy way, by first assigning to the node First() its largest

possible time value, and by next performing a Bellman process in order to assign to every

node x in  its smallest possible time value. The EVAL2 procedure starts from a solution

produced by EVAL1, and improves it by performing a sequence of local moves, each move

involving a single value t(x), x  . This procedures and the Proposition 2 are given below.

Procedure EVAL1. Input:(: Tour); Output: (Val: Number, : value set)

For any x in , let us set set: [a(x), b(x)] = FP();

(First()) <- b(First()); x <- First();

While x  Last() do

y < Succ(, x); (y) <- Sup(a(y), (x) + DIST(x, y)) ;

x <- y ;  <- {(x), x  }; Val <- CostA, B, C(, );

EVAL1 <- (Val, );

Procedure EVAL2. Input:(: Tour); Output: (Val: Number, : value set)

For any x in , let us set set: [a(x), b(x)] = FP();

For any x in  do (x) <- EVAL1(, FS).; Continue <- true;

While Continue do

Search for x in  such that one of the two statements (E2) or (E3) below is true:

o (E2): (x < 0)  (Status(x)  {Origin, DepotD})  ((x)  Inf(b(x), (Succ(, x) –

DIST(x, Succ(, x)));

o (E3): (x > 0)  (Status(x)  {Destination, DepotA})  ((x)  Sup(a(x), (Pred(,

x) + DIST(Succ(, x)), x));

If Fail(Search) then Continue <- false;

Else

If (E2) then (x) <- Inf(b(x), (Succ(, x) – DIST(x, Succ(, x)));

If (E3) then ((x) <- Sup(a(x), (Pred(, x) + DIST(Succ(, x)), x));

EVAL2 <- (Val = CostA, B(, )), );

Proposition 2.

Both EVAL1 and EVAL2 yield a time value set  which is compatible with  and F (with  and

FP()). Besides, if B = 0, then EVAL1 yields an optimal value Val, that means yields the

smallest possible value CostA, B(, ),   Valid(, F).

Proof. As in the description of both procedures EVAL1 and EVAL2, we suppose that for any x

in , the time window FP() may also be written FP() = [a(x), b(x)]. The first part of the

above statement is trivial. In case B = 0, minimizing CostA, B(, ) means minimizing

(Last()) – (First()). We must deal with two cases:

- First Case: there exists x  First() such that: (x) = a(x) and for any y such that x

<<
=
 y <<

Last(), we have: (Succ(, y)) – (y) = DIST(y, Succ(, y));

Then the stability of FP()(x) under the inference rule R3 allows us to deduce

(Last()) = a(Last()), and the result since (First()) = b(First()).

- Second Case: for any x in X(), x  Last(), we have (Succ(, x)) – (x) = DIST(x,

Succ(, x)).

Then the result comes in an immediate way. End-Proof.

 being some valid tour, we denote by VAL1() and VAL2() the values respectively

produced by the application of EVAL1 and EVAL2 to .

4 An insertion algorithm for tightly constrained instances of the standard DARP

4.1 The insertion mechanism

It works in a very natural way. Let  be some valid tour, let Di = (oi, di, i, F(oi), F(di), Qi) be

some demand whose origin and destination nodes are not in , and let x, y be two nodes in ,

such that x <<
=
 y. Then we denote by INSERT(, x, y, i) the tour which is obtained by

locating oi between x and Succ(, x) and locating di between y and Succ(, y). We say that the

tour INSERT(, x, y, i) results from the insertion of demand Di into the tour  according to

the insertion nodes x and y. The tour INSERT(, x, y, i) may not be valid. So, before anything

else, we must detail the way the validity of this tour is likely to be tested.

Testing the Load-Admissibility of INSERT(, x, y, i).

We only need to check with a procedure Test-Load, that for any z in Segment(, x, y) = { z

such that x <<
=
 z <<

=
 y} we have, C(, z) + Qi ≤ CAP.

Testing the Time-Admissibility of INSERT(, x, y, i).

It should be sufficient perform a call Propagate(, {oi, di}, FP()), while using the list {oi, di}

as a starting list. Still, such a call is likely to be time consuming. So, in order to make the

testing process go faster, we introduce several intermediary tests, which aim at interrupting the

testing process in case non-feasibility. The first test Test-Node aims at checking the feasibility

of the insertion of a node u, related to some load Q, between two consecutive node z and z’ of

a given tour . It only provides us with a necessary condition for the feasibility of this

insertion:

Procedure Test-Node

Input: (, z, z’: nodes in , u: node out , Q: load); Output: Boolean

Let us set, for any x in , [a(x), b(x)] = FP()(x); Let us set: [, ] = F(u);

Test node <- (a(z) + DIST(z, u) ≤ )  ( + DIST(u, z’) ≤ b(z’))  (a(z) + DIST(z, u) +

DIST(u, z’) ≤ b(z’))  (C(, z) + Q ≤ CAP);

The second test Test-Node1 (based on Test-Node) aims at checking the feasibility of the

insertion of an origin/destination node u, v, related to some load Q, between two consecutive

node z and z’ of a given tour . So, testing the admissibility of a tour INSERT(, x, y, i) may

be performed through the following procedure:

Procedure Test-Insert

Input: (, x, y, i); Output: (Test: Boolean, Val: Number);

If x  y then Test <- Test-Node(, x, Succ(, x), oi, Qi)  Test-Node(, y, Succ(, y), di, Qi)

Else Test <- Test-Node1(, x, Succ(, x), oi, di, Qi);

If Test = 1 then Test <- Test-Charge(, x, y, i);

If Test = 1 then (Test, F1) <- Propagate(, {oi, di}, FP();

If Test = 1 then Val <- EVAL1(INSERT(, x, y, i), F1).Val else Val <- Undefined;

Test-Insert <- (Test, Val – Val1());

4.2 The insertion process

So, this process takes as input the demand set D = (Di = (oi, di, i, F(oi), F(di), Qi), i  I), the 4-

uple (X, DIST, K, CAP) which we defined in section 2, and 2 multi-criteria coefficients A and

B ≥ 0, and it works in a greedy way through successive insertions of the various demands Di =

(oi, di, i, F(oi), F(di), Qi) of the demand set D. The basic point is that, since we are concerned

with tightly constrained time windows and transit bounds, we use, while designing the

INSERTION algorithm, several constraint propagations tricks. Namely, we make in such a

way that, at any time we enter the main loop of this algorithm, we are provided with:

- the set I1  I of the demands which have already been inserted into some tour T(k), k

= 1..K;

- current tours T(k), k = 1..K: for any such a tour T(k), we know the related time

windows FP(T(k))(x), x  T(k), as well as the load values C(T(k), x), x  T(k), and

the values VAL1(T(k)) and VAL2(T(k));

- the knowledge, for any i in J = (I - I1) of the set FREE(i) of all the 4-uple (k, x, y, v), k

= 1..K, x, y  T(k), v  Q, such that a call Test-Insert(T(k), x, y, i) yields a result (1,

v). We denote by N-FREE(i) the cardinality of the set V-FREE(i) = {k = 1..K, such

that there exists a 4-uple (k, x, y, v) in FREE(i)}: N-FREE(i) provides us with the

number of vehicles which are still able to deal with demand Di.

Then, the INSERTION algorithm works according to the following scheme (1-4):

1 – The process selects a demand i0 in J, among those demands which are the most

constrained, that means which are such that N-FREE(i0) and Card(Free(i0)) are small. (E4)

2 – Then, in a second step, it picks up (k0, x0, y0, v0) in FREE(i0) which simultaneously

corresponds to one of the smallest values v, and to one of the smallest values

EVAL2(INSERT(T(k), x, y, i0)).Val – VAL2(T(k)): more specifically it first builds the list L-

Candidate of the N1 (up to five) 4-uples (k, x, y, v) in FREE(i0) with best (smallest value v). For

any such a 4-uple, it computes the value w = EVAL2(INSERT(T(k), x, y, i0)).Val –

VAL2(T(k)), and it orders L-Candidate according to increasing values w. Then it randomly

chooses (k0, x0, y0, v0) among those N2 ≤ N1 first 4-uples in L-Candidate. N1 and N2 become two

parameters of the INSERTION procedure. (E5)

3 - It inserts the demand Di0 into T(k0) according to the insertion nodes x0, y0, which means

that it replaces T(k0) by INSERT(T(k0), x0, y0, i0). Then, it defines, for any i  J, the set (i)

as being the set of all pairs (x, y) such that there exists some 4-uple (k0, x’, y’, v) in FREE(i),

which satisfies: (E6)

- (x’ = x) or ((x’ = x0) and x’ = Pred(T(k0), x)) or ((x’ = x0 = y0) and (x’ =

Pred(Pred(T(k0), x))));

- (y’ = y) or ((y’ = y0) and y’ = Pred(T(k0), y)) or ((y’ = x0 = y0) and (y’ =

Pred(Pred(T(k0), y))))

4 - Finally, it performs, for any pair (x, y) in (i), a call Test-Insert(T(k0), x, y, i), and it

updates FREE(i) and N-FREE(i) consequently.

Procedure INSERTION

Input: (N1 and N2: Integer, the demand set D = (Di = (oi, di, i, F(oi), F(di), Qi), i  I), the 4-

uple (X, DIST, K, CAP) defined above, and 2 multi-criteria coefficients A and B ≥ 0);

Output: (T: tour set, t: time value set, Perf: induced PerfA, B(T, t) value, Reject: rejected demand

set);

For any k = 1..K do

T(k) <- {DepotD(k), DepotA(k)}; t(DepotD(k)) = t(DepotA(k)) <- 0;

I1 <- Nil ; J <- I ; Reject <- Nil;

For any i  J do

FREE(i) <- all the possible 4-uple (k, x, y, v), k = 1..K, x, y {DepotD(k), DepotA(k)}, x

<<T(k)
=
 y, v = EVAL2({DepotD(k), oi, di, DepotA(k)}).Val; N-FREE(i) <- K;

While J  Nil do

Pick up some demand i0 in J as in (E4); Remove i0 from J;

If FREE(i0) = Nil then Reject <- Reject  {i0}

Else

Derive from FREE(i0) the L-Candidate list and Pick up (k0, x0, y0, v0) in L-Candidate as

in (E5);

T(k0) <- INSERT(T(k0), x0, y0, i0);  <- EVAL2(T(k0)).; Insert i0 into I1 ;

For any x in T(k0) do t(x) <- (x);

For any i  J do

(i) <- {all pairs (x, y) such that there exists some 4-uple (k0, x’, y’, v) in

FREE(i), which satisfies (E6)

For any pair (x, y) in (i) do

(Test, Val) <- Test-Insert(T(k0), x, y, i);

Remove (k0, x, y, v) from FREE(i) in case such a 4-uple exists and update N-

FREE(i) consequently;

If Test = 1 then insert (k0, x, y, Val) into FREE(i) and update N-FREE(i)

consequently;

Perf <- PerfA, B(T, t);

INSERTION <- (T, t, Perf, Reject);

Since the above instruction may be written in a non-deterministic way, the whole INSERTION

algorithm becomes non-deterministic inside some MONTE-CARLO framework. This

process keeps the best result (the pair (T, t) such that |Reject| is the smallest possible, and which

is such that, among those pairs which minimize |Reject|, it yields the best PerfA, B(T, t) value).

5 Dial a ride problem with transfers

We are going to deal now with the case when transfers is allowed, that means then the load Qi

related to some demand Di = (oi, di, i, F(oi), F(di), Qi), may be handled in several successive

steps, each step involving some vehicle k  K, which make the charge Qi go from some origin

or relay node x to some relay or destination node y. Transfers means here that, at any time

during the transportation, while the load Qi is always handled as a whole, the route it follows

may be split into several sub-route, all those sub-routes being taken in charge by distinct

vehicles. As a matter of fact, we are going to restrict here ourselves to the case when no more

than 2 vehicles are allowed to perform such a transportation task: though this restriction is not

going to induce any true restriction on concepts and methods, it will help us in describing

them; also, practical applications are such that they will hardly allow a same demand to

be handled by more than 2 or 3 different vehicles.

5.1 The insertion mechanism

The basic point is here that, in case a given load Qi has to be successively handled by two

vehicles k and k’, the set X, which arises from a construction process involving only

origin/destination nodes, is likely not to be sufficient to describe the route of the vehicles: the

two related routes T(k), T(k’) will have to intersect and exchange load Qi in a relay node z,

which will be neither an origin node oj nor a destination node dj. Those relay nodes, which

may be nodes inside a large scale transit network, are not known in advance: so, we feel that

we should try to handle those exchange nodes in an implicit way and to deal with them in a

dynamic way.

Extending the node set X into an implicit node set Z.

In order to put this in a formal way, we first need to extend X in order to make appear the relay

nodes. Since we want to handle those relay node in a dynamic way, we suppose that X may be

embedded into some (eventually infinite) implicit node set Z such that X  Z: Z may be a large

scale, eventually infinite, set. For any pair of nodes z, z’ in Z, we suppose that we are able to

compute some distance Dist(z, z’), in such a way that for any x, x’ in X, Dist(x, x’) = DIST(x,

x’). Depending on the way Z is defined, this can be done in several ways: for instance, if nodes

of X are related to some point in the 2-dimensional affine plane R
2
, and if DIST represents the

Euclidian distance, then Z may be the whole 2-dimensional plane R
2
, and Dist may denote the

Euclidian distance, which we are able to compute in an effective way once we know the 2D-

coordinates of both points z and z’.

It comes that the input of the Dial a Ride problem with transfers (DARPT) is going to be

defined, as in the standard version, by a transit network G = (V, E), a vehicle fleet VH = (K,

CAP), a demand set D = (Di = (oi, di, i, F(oi), F(di), Qi), i  I), by a 4-uple (X, DIST, K, CAP),

and with 2 multi-criteria coefficients A and B ≥ 0, augmented with some node set Z, which

will derive from the transit network G and which will be such that X  Z, and by a function

Dist, with domain Z.Z, which will be such that: for any x, y in X, DIST(x, y) = Dist(x, y). Also,

since we are going to handle the node set Z a dynamic way, we should be able to create new

active nodes from existing ones. So, we suppose that we are provided with a function Midst,

which, from any pair of nodes z, z’ in Z, compute a new node z” = Midst(z, z’) in Z, in such a

way that Dist(z, z”) and Dist(z”, z) are no larger than some fraction .Dist(z, z’), with  < 1.

Building Relay Nodes: the Implicit Set Z*.

Additional nodes in Z – X are going to be used as relay nodes. Any such an active relay node

will appear in 2 tours, once as an emitter node and once as a receiver node. Since we would

like to keep on with the kind of model which we have been using for the standard version of

the Dial a Ride problem, we also would like to make in such a way that all nodes which are

going to appear in a tour family T be distinct. In order to do it, we define the implicit node set

Z* as follows:

- Z* = X  {(z, i, - 1), (z, i, 1), i I, z  Z}: the meaning of node (z, i, -1) is that if

such a node becomes active, then it will appear as emitter node for load Qi inside

some tour T(k), which means that load Qi is first going transported from oi to z by

vehicle k, and next from z to di by some other vehicle k’, k ≠ k’. It comes that node (z,

i, 1) will appear in a symmetric way in tour T(k’).

- for any node z in Z, we set: Node(z, i, -1) = Node(z, i, +1) = z;

- for any node x in X we set: Node(x) = x.

We extend the Status, Twin, Dem, CH, , and F functions by setting, for every z  Z, i  I:

- Status(z, i, -1) = Out-Reload, Status(z, i, +1) = In-Reload;

- Twin(z, i, +1) = {(z, i, - 1), Twin(z, i, -1) = {(z, i, + 1);

- Dem(z, i, +1) = Dem(z, i, -1) = i;

- CH(z, i, -1) = - Qi, Node(z, i, +1) = Qi;

- (z, i, -1) = (z, i, +1) = + ∞;

- F(z, i, -1) = F(z, i, +1) = [0, + ∞[.

Clearly, the distance function Dist may be also extended in a canonical way to Z*.Z*.

Tours, Valid Tours, Tour Family, Covering Tour Family, Active Nodes.

A tour, in the sense of the DARPT, becomes a sequence  of nodes of Z*, which is such that:

Status(Start()) = DepotD, Status(End()) = DepotA, VI(Start()) = VI(End()), for any node x

in : x ≠ Start(), x ≠ End(, Status(x)  Depot, no node x  Z* appears twice in , and for

any demand i  I, one of the configuration below occurs, which excludes the others:

- oi and di appear in , oi << di, and no node (z, i, ),   {-1, 1} is in ;

- none among oi, di , (z, i, ),   {-1, 1}, appears in ;

- oi and (z, i, -1) are in , such that oi << (z, i, -1), and none among di, (z, i, + 1), is in

;

- di and (z, i, +1) are in , such that (z, i, +1) << di, and none among oi, (z, i, - 1), is

in ;

As stated in the classic DARP section, we say that: such a tour  is load-valid iff : for any x in

, x  Start(), we have  y\y << x CH(y) ≤ CAP and such a tour  is time-valid iff it is possible

to associate, with any node x in , some time value (x) ≥ 0, in such a way that:

- for any x in , x  Last(), (Succ(, x)) ≥ (x) + Dist(x, Succ(, x));

- for any x in \ Status(x)  {Out-Reload, In-Reload},(Twin(x)) – (x) ≤ (z);

- for any x in , (x)  F(x).

In case exists, it is called a valid time value set related to . In case the tour  is both time-

valid and charge-valid, we say that it is valid. Clearly, a feasible solution of our Dial a Ride

with transfers problem cannot be defined as a family T = {T(k), k = 1..K} of pairwise disjoint

valid tours. We must link tours which involve Out-Reload and In-reload nodes related to a

same demand. In order to do it, we consider some subset J of the Demand Index set I, some

tour collection T = {T(1)..T(K)}, and we say that T defines a covering collection for J if the

tours T(1)..T(K) are pair-wise disjoint valid tours, their union contains the whole set {oi, di, i 

J} (they contain no node x such that Dem(x)  I – J), and every tour T(k), k = 1..K, starts with

the node DepotD(k) and ends with the node DepotA(k). The nodes (z, i, ), z  Z, i  J,  

{-1, 1} which appear in  k = 1..K T(k) define the active relay node set of the tour collection T.

We denote it by ACT(T). The tour collection T = {T(k), k = 1..K} is a valid covering

collection for J iff :

- for every k = 1..K, the tour T(k) is load-valid;

- the collection T = {T(k), k = 1..K} is a covering collection for J

- there exists some time value set t = {t(x), x   k = 1..K T(k)} such that: for any k =

1..K, the restriction of t to the nodes of T(k) defines a valid time value set related to

T(k); and, for every active Out-Reload node x in ACT(T), we have t(Twin(x)) ≥ t(x);

In case such a time value set t exists, we say that T is time-valid and t is called a valid time

value set related to T.

The Dial a Ride Problem with Transfers model.

Input: A transit network G = (V, E), a vehicle fleet VH = (K, CAP), a demand set D = (Di =

(oi, di, i, F(oi), F(di), Qi), i  I), by a 4-uple (X, DIST, K, CAP), and by 2 multi-criteria

coefficients A and B ≥ 0, augmented with the node set Z, such that X  Z, and with the function

Dist, with domain Z.Z, such that: for any x, y in X, DIST(x, y) = Dist(x, y).

Output: A valid covering collection T = {T(k), k = 1..K} for the Demand Index set I, a related

valid time value set = {t(x), x  ACT(T)}, such that the quantity PerfA, B(T, t) is the smallest

possible.

 5.2 Handling the relay nodes: an insertion mechanism

Once again, we want to deal with the above model by successively inserting the demands Di, i

 I, into a tour collection T, until this tour collection defines a valid covering collection for I.

In order to do it, we first need to explain which kind of insertion mechanisms we intend to use.

We are going to use two insertion operators: INSERT and INSERT2.

The INSERT operator works as in section 4.1: k being some vehicle index, x, y being two

nodes in T(k) such that x <<
=

T(k) y, i being some demand index which is such that neither oi nor

di is in T(k), INSERT(T(k), x, y, i) denotes the tour which is obtained through insertion of o i

between x and Succ(T(k), x) in T(k) and by insertion of di between y and Succ(T(k), y) in T(k).

The INSERT2 operator works by inserting demand Di into two distinct tours: k, k’ being two

distinct vehicle indices, x, y being two nodes in T(k) such that x <<
=

T(k) y, x’, y’ being two

nodes in T(k’) such that x’ <<
=

T(k’) y’, z being some relay node in Z, INSERT2(i, k, k’, x, y, x’,

y’ , z) denotes a pair of tours (INSERT2(i, k, k’, x, y, x’, y’ , z).First, INSERT2(i, k, k’, x, y, x’,

y’ , z).Second) in such a way that:

- INSERT2(i, k, k’, x, y, x’, y’, z).First is the tour which is obtained through insertion of

oi between x and Succ(T(k), x) in T(k) and by insertion of (z, i, -1) between y and

Succ(T(k), y) in T(k);

- INSERT2(i, k, k’, x, y, x’, y’, z).Second is the tour which is obtained through insertion

of (z, i, 1) between x’ and Succ(T(k’), x’) in T(k’) and by insertion of d i between y’

and Succ(T(k), y’) in T(k’).

5.3 A general insertion scheme

We notice that the two operators which we described above have quite different impacts on the

way a global insertion schema is going to work. While testing the feasibility of an application

of the INSERT operator is a local task, which only involve dealing with the T(k) tour, testing

the feasibility of the INSERT2 operator is likely to involve more than the T(k), T(k’) tours. By

the same way, handling the FREE(i) is going to become more complicated once we start

introducing relay nodes and linking constraints. For this reason, we decompose the resolution

process into two steps (1-2):

1 - We only use the INSERT operator, while proceeding as in the INSERTION procedure of

section 4.2. Since we would like to use transfers and the related INSERT2 operator in order to

make the whole tour system more efficient, we perform this first step while using stronger

transit bounds i, i  I, that means while making in such a way the riding times of the

demanders get improved;

2 – The first step is likely to yield rejected demands, because of the stronger transit. So, the

second step deals with those rejected demands while only using the INSERT2 operator.

That means that the whole process may be summarized as follows:

Dial-a-Ride with Transfers Insertion Algorithmic Scheme:

Continue <- true;

While Continue do

Compute updated transit bounds *i, i  I, such that for any i  I, *i ≤ i; (E7)

1 - Apply the INSERTION(N1, N2) procedure of section 4.2, while replacing, for any i 

I, i by *i;

Let Reject the resulting rejected demand index set, T the resulting valid covering

collection associated with I1 = I – Reject, and t the related valid time value set;

2 -: we keep on replacing, for any i  I, i by *i;

J <- Reject; Reject <- Nil; Initialize the sets FREE2(i), i  J;

While J  Nil do

Picks up some demand i0 in J; Remove i0 from J;

If FREE2(i0) = Nil then Reject <- Reject  {i0};

Else

Derive from FREE2(i0) a Weak-L-Candidate list of 7-uples; (E8)

Derive from Weak-L-Candidate a L-Candidate list, made with those 7-uples which are

such that the replacement of (T(k1), T(k2)) by INSERT2(i0, k1, k2, x1, y1, x2, y2 , z) is

going to maintain the validity of T; (E9)

If L-Candidate = Nil then Reject <- Reject  {i0}

Else

Picks up (k1, k2, x1, y1, x2, y2, z) in L-Candidate;

Create two new active nodes related to (z, i0, -1) and (z, i0,1);

(T(k1), T(k2)) <- INSERT2(i0, k1, k2, x1, y1, x2, y2 , z);

Update t; Update the time windows F(x), x   k = 1..K T(k); (E10)

Update the sets FREE2(i), i  J; Insert i0 into I1;

Update Continue;

Keep the best result (T, t, Reject, PerfA, B, C(T, t)) which was obtained during this process.

Update- imposes stronger transit bounds, creating this way a need for transfers in order to

achieve better PerfA, B(T, t) values, we specify (E7) with this procedure as follows:

Function Update-Input: ( : Number in Q,  > 1); Output: (*i, i  I);

For i in I do : If i > . DIST(oi, di) then *i <- . DIST(oi, di) else *i <- *i;

5.4 The sets FREE2 and the construction of the weak-L-Candidate list

For any i  J, the set FREE2-o(i) will be made with the pair (k, z) such that:

- the active node z is in T(k), different from Last(T(z)), [a(z), b(z)] denotes the time

window FP(T)(z), z’ gives Succ(T(k), z), and [, ] denotes the time window F(oi);

- (a(z) + DIST(z, oi) ≤ )  ( + DIST(oi, z’) ≤ b(z’))  (a(z) + DIST(z, oi) + DIST(oi,

z’) ≤ b(z’))  (C(, z) + Qi ≤ CAP).

In a same way, for any i  J, the set FREE2-d(i) will be made with the pair (k, z) such that:

- (a(z) + DIST(z, di) ≤ )  ( + DIST(di, z’) ≤ b(z’))  (a(z) + DIST(z, di) + DIST(di,

z’) ≤ b(z’))  (C(, z) + Qi ≤ CAP).

So, for any (x1, k1) in FREE1-o(i0), and for any (y2, k2) in FREE2-d(i0), k1 ≠ k2, we compute a

relay node z through the following process summarized in 2 steps.

1 – First, let us recall that we are provided with a function Midst, which, from any pair of nodes

z, z’ in the node set Z, compute a new node z” = Midst(z, z’) in Z, in such a way that Dist(z, z”)

and Dist(z”, z) are no larger than some fraction .Dist(z, z’), with  < 1;

2 - For any node y in T(k1), we denote by Close(y, k2) the first (in the sense of the relation

<<T(k2)) element x in T(k1) such that t(x) ≥ t(y). Then, we apply the following Exchange

function below.

Exchange function. Input: (x1, k1, y2, k2); Output: (y in T(k1), x in T(k2), z : relay node);

Compute y in T(k1), such that :

 x1 <<T(k) z, Close(y, k2) <<
=

T(k2) y2, and DIST(y, Close(y, k2) is the smallest possible ;

If y is undefined then Exchange <- Undefined

Else Exchange <- (y, Pred(Close(y, k2)), Midst(z, U(z, l)));

The result which is produced by Exchange(x1, k1, y2, k2) provides us with the parameters y1,

x2, z, which would eventually allow us to perform the (T(k1), T(k2)) <- INSERT2(i0, k1, k2, x1,

y1, x2, y2 , z) instruction. So, the Weak-L-Candidate list (E8) will be defined by those 7-uple (k1,

k2, x1, y1, x2, y2, z) which we obtain this way, and the L-Candidate list will defined by those

among those 7-uple which are such the validity of the tour collection T will be preserved

through application of the INSERT2 operator, ordered according to some auxiliary

performance criteria.

5.5 Evaluate and testing the validity of an application of the INSERT2 operator

What remains to be done is explaining the way we check the validity of the tour collection T,

in case we apply it some INSERT2 process. So, let us consider that we are provided with I1 

I, with a valid covering collection associated with I1, with i0  I - I1, with a 7-uple (k1, k2, x1,

y1, x2, y2, z) as above, and that we intend trying to perform INSERT2(k1, k2, x1, y1, x2, y2, z).

Clearly, checking the load validity of the two resulting tours T(k1) and T(k2) can be easily done

through application of the following procedure:

Procedure Test-Load2; Input: (i0, k1, k2, x1, y1, x2, y2, z); Output: Boolean;

Test-Load2 <- {For any z in Segment(T(k1), x1, y1), C(, z) + Qi0 ≤ CAP}  {For any z in

Segment(T(k2), x2, y2), C(, z) + Qi0 ≤ CAP}

As for the time validity, things become more difficult, since we need to take into account all

the existing linking constraints, which means that the whole collection T is involved in the test.

So, let us suppose that we just computed a copy  of the tour collection which would result

from the application of INSERT2(k1, k2, x1, y1, x2, y2, z), and that we just extend the DIST

matrix in order to take into account the new active nodes (z, i0, -1) and (z, i0, 1). We may use

the notation Succ and Pred for the whole collection  as well as for a specific tour, since a

given node in Z* is not going to appear more than once in . We denote by FS(x), x 

ACT() =  k = 1..K (k) the current time windows related to the nodes x which appear in .

What we do is to propagate the same 5 rules as in section 3.2 augmented with the following

rule R6 and R7:

- Rule R6: y = Twin(x); Status(x) = Out-Reload; FS.min(x) > FS.min(y) |= FS.min(y)

<- FS.min(x); NFact <- y;

- Rule R7: y = Twin(x); Status(x) = Out-Reload; FS.max(x) > FS.max(y) |= FS.max(x)

<- FS.max(y); NFact <- x;

So, checking the time validity of  according to a current time window set FS = {FS(x) =

[FS.min(x), FS.max(x)], x  ACT() =  k = 1..K (k)} is performed by application of a

procedure Propagate2 based on Propagate. We may consider, in case Res = 1, that the

resulting time window set FR = {FR(x), x  ACT()}, is completely determined by  and by

the original time window set F. So, we denote it by FP(), and we consider it as attached to

any time-valid tour collection . Like in section 3, the tour collection  is time valid iff the

Propogate2 function yields a positive Res signal.

As in Section 3, we need to evaluate the collection  in case it is time-valid and compute some

well-fitted related time value set . In order to do it, we only focus on the Glob component of

the Perf criteria, and we apply a Bellman process: we start by providing every DepotD node x

with a maximal FP()(x).max time value, and next, we do in such a way we assign any other

node x with a time value (x) which is the smallest possible, taking into account the initial

assignments (DepotD(k), k = 1..K, the current time windows FP()(x), x  ACT(), the

linking constraint and the distance constraints. Clearly, procedures Propagate2 and Evaluate2,

which will be at the core of the construction of the L-Candidate list in (E8), are also being

involved in (E10), when it will come to updating the time value set t and the current time

windows F: Once the “(T(k1), T(k2)) <- INSERT2(i0, k1, k2, x1, y1, x2, y2 , z);” instruction have

been performed, time windows FP(T) will be computed, as well as t = Evaluate2(T)..

5.6 Attempting an insertion with transfer and building the L-Candidate list.

So, let us suppose that we are provided with a non-inserted demand index i0 and with some 7-

uple (k1, k2, x1, y1, x2, y2, z). We want to try and, in case of success, to evaluate, an application

of the process INSERT2 to (i0, k1, k2, x1, y1, x2, y2, z). So, we perform the process Try-

Insert2(i0, k1, k2, x1, y1, x2, y2, z), while proceeding step by step:

First step: we perform a call Test-Load2(i0, k1, k2, x1, y1, x2, y2, z);

Second step: we check that DIST(oi0, Succ(T(k1), x1) + Length(T(k1), Succ(T(k), y1) +

Dist(y1, z) + Dist(z, Succ(T(k2), x2) + Length(T(k2), Succ(T(k2), x2), y2) + DIST(y2, di0) ≤ i0;

Third step: we create temporarily two new active nodes z-out = (z, i0, -1) and z-in = (z, i0, -1)

in Z*, and we augment the DIST matrix in such a way it will provide with the respective

distances between z-out and z-in and their resepctive neighbours in T(k1) and T(k2).

Fourth step: we perform a call INSERT2(i0, k1, k2, x1, y1, x2, y2, z) on ; Time windows

FS(x), in ACT() are the current time windows FR(T)(x), if x is in ACT(T), and they are:

F(oi0) if x = oi0, F(di0) if x = di0 and [0, + ∞[if x = z-in or z-out;

Fifth step: we run the Propagate2 procedure. In case of success, we run the Evaluate2

procedure and get a resulting value Val;

Sixth step: we restore the DIST matrix, the  collection, and the ACT() set.

At the end of this process, Try-Insert2(i0, k1, k2, x1, y1, x2, y2, z) provides us with a 6-uple

(Res: Boolean, Val: Number). The Boolean Res expresses the feasibility of an application of an

INSERT2(i0, k1, k2, x1, y1, x2, y2, z) call and the number Val provides us, in case Res = True,

with an evaluation of such a call. We are now able to summarize the whole resolution process

of the DARPT.

5.7 The whole process

The global process consists in a “for” loop, during which the parameter  progressively

decreases from an initial value  until 1: the length P of this loop is a parameter of the main

procedure. Any iteration inside this loop works as described in section 5.3.  values are

updated as in (E7). A first step involves a call INSERTION(N1, N2) and yields some Reject1

rejected demand index set, together with some pair (T, t), where T is a valid covering

collection for I – Reject1, and t is a related time value set. In case Reject1 is not empty, a second

step is performed, which involves a call to a procedure INSERTION2, which works while

trying to insert the rejected demands through applications of the INSERT2 operator. The

INSERTION2 procedure takes as input the 3-uple (T, t, Reject1) which was computed through

the first step, and proceeds, according to a “while” loop, in order to insert demands of Reject1

through the INSERT2 operator. Any time it enters this main “while” loop, it is provided with a

subset J of the Reject1 set, which contains the demands which remain to be inserted and a

current Reject set, a pair (T, t), related time windows FP(T)(x), x  ACT(T), and a related

current active set ACT(T), and finally the sets FREE2-o(i) and FREE2-d(i), i  J, defined as in

VIII.4; We denote by N-FREE-o(i) (N-FREE-d(i)) the number of vehicle which appear in

FREE2-o(i) (FREE2-d(i)). The process is composed of four main steps:

1. it picks up some demand i0 in J: if there exists i such that N-FREE-o(i) = 1 or N-FREE-d(i)

= 1, then i0 is chosen in a random way among those demands in J which such that N-FREE-

o(i) = 1 or N-FREE-d(i) = 1; else it is chosen in a random way among the demands in J which

minimize the quantity N-FREE-o(i) = 1 + N-FREE-d(i); (E11)

2. It builds the Weak-L-Candidate list as in section 8.4, with those 7-uple (k1, k2, x1, y1, x2, y2, z)

which are such that (k1, x1)  FREE2-o(i0), (k2, x2)  FREE2-d(i0), and (y1, x2, z) =

Exchange(x1, k1, y2, k2); (E12)

3. For any 7-uple (k1, k2, x1, y1, x2, y2, z) in Weak-L-Candidate, it tries the Try-Insert2(i0, k1, k2,

x1, y1, x2, y2, z) process, and, in case, the Res component of the result is true, it inserts (k1, k2,

x1, y1, x2, y2, z) into a L-Candidate list, ordered according to increasing to the related Val

component values; (E13)

4. In case L-Candidate is empty, then i0 is inserted into Reject, else:

- the process picks up (k1, k2, x1, y1, x2, y2, z) in L-Candidate: it proceeds through a

random choice among the up to N3 elements of L-Candidate. N3 becomes a parameter

of INSERTION2; (E14)

- It creates two new active nodes related to (z, i0, -1) and (z, i0,1) and it effectively

performs the insertion: (T(k1), T(k2)) <- INSERT2(i0, k1, k2, x1, y1, x2, y2, z);

- It updates t, together with the time windows FP(x), x  ACT(T), through application

of the Propagate2 and Evaluate2 procedures and the process updates the sets

FREE2(i), i  J;

Finally, the process keeps the best result (T, t, Reject, PerfA, B(T, t)) which was ever obtained

during this process. So the INSERTION2 and the DARPT-INSERTION procedure come may

be described as follows:

Procedure INSERTION2(T1: partial tour collection, t1: related time value set, Rej: Rejected

Demand set): (T: tour set, t: time value set, Perf: induced Perf(T, t) value, Reject: rejected

demand set, N3: integers);

 J <- Rej ; Reject <- Nil; T <- T1; t <- t1;

While J  Nil do

Pick up some demand i0 in J as in (E11); Remove i0 from J;

If FREE2-o(i0) = Nil or FREE2-d(i0) = Nil then Reject <- Reject  {i0}

Else

Compute the Weak-L-Candidate list according to (E12);

Build the L-Candidate list according to (E13);

If L-Candidate = Nil then Reject <- Reject  {i0}

Else

Picks up (k1, k2, x1, y1, x2, y2, z) in L-Candidate according to (E14);

Create two new active nodes related to (z, i0, -1) and (z, i0,1);

(T(k1), T(k2)) <- INSERT2(i0, k1, k2, x1, y1, x2, y2 , z);

Update t and PF(T) through application of the Propagate2 and Evaluate2

procedures;

For any i  J, update FREE2-o(i) and FREE2-d(i);

Perf <- Perf(T, t);

INSERTION2 <- (T, t, Perf, Reject);

DARPT-INSERTION

Input: (N1, N2 , N3, P: Integers, A transit network G = (V, E), a vehicle fleet VH = (K, CAP), a

demand set D = (Di = (oi, di, i, F(oi), F(di), Qi), i  I), by a 4-uple (X, DIST, K, CAP), and by

2 multi-criteria coefficients A and B ≥ 0, augmented with the node set Z, such that X  Z, and

with the function Dist, with domain Z.Z, such that: for any x, y in X, DIST(x, y) = Dist(x, y).

Output: (T: Tour collection, t: time valued set, Perf: Performance Value, Reject: Rejected

Demand Index set);

-Aux <- ; Initialize  with a large value ;

For p = 1..P do

 <- Update- (); (T1, t1, Perf1, Reject1) <- INSERTION1(N1, N2);

If Reject1 = Nil then DARPT-INSERTION <- (T, t, Perf, Reject)

Else (T, t, Perf, Reject) <- INSERTION2(T1, t1, Reject1, N3);

 <- -Aux ; Update :  <-  – 1/P.( – 1);

 Keep the best result (T, t, Reject, PerfA, B(T, t)) which was obtained during this process.

6 Computational experiments

All the insertion techniques based on the constraint propagation were implemented in C++ and

each replication was run on the same thread of an Intel Q8300 (2.5 GHz).

6.1 Experiments on the DARP

Our first experiments deal with the randomly generated instances of [2]. To analyse the

behaviour of our solution, we used the same objective function used in [19] and adapted in

[20]. The instances have between 24 and 144 requests which have to be supported by a fleet of

3 to 13 vehicles. The maximum route duration is 480 for each vehicle and for each instance.

The capacity is equal to 6 and the maximum ride time is 90. [19] used the objective function

given in equation (4), the terms penalizing the violations have been removed. Thus, we

minimize travel distance (c(s)), excess ride time (r(s), cf. (1)), passenger waiting (l(s), cf. (2)),

the total duration Glob (g(s)) and early arrival (e(s), cf. (3)). We set the weight like in [19] and

[20] to w1=8, w2=3, w3=1, w4=1, w5= |D|.

)),()(()(
1 ii

K

k ki
doDISTiRidesr   

 (1)

)))(,(C()(
1

)((

))((

)(xk

K

k

lastpred

Firstsuccx

xsucc qxsuccWaitsl
k

k

 






 (2)

 




 




K

k

lastpredpred

Firstx

k

k

xsuccMinF
se

1

))(((

)(succ(s)))DIST(x,(x)(

))((.
)(


 (3)

)()()()()(54321 sewsgwslwsrwscwCost  (4)

The table 1 gives the values of the COST obtained with the proposed insertion techniques using

constraint propagation. Gap is computed with the results of our insertion technique and the

VNS such as Gap<-100.(VNS-TI)/TI. We take best results over 25.10
4
 replications with a

variation in the values of N1 and N2 (each lower than 4). We noted only the objective function

of the two works. So we compare our Insertion Techniques (IT) with the Variable

Neighbourhood Search (VNS) and the Genetic Algorithm (GA). Refer to [19] and [20] for the

other values. As with the VNS technique, we obtained results always better than the GA.

Moreover, we often obtained better results than the variable neighbourhood search. So we

found a large difference between [19] and the others works, but solutions obtained by us and

[20] are close even though in R10a we obtain a large gap. In fact, time constraints of this

instance are very tight and we use a simple learning algorithm without computing a precise

order for introducing the demands already rejected.

Early arrivals have the largest weight in the objective function and our solution gives us

numbers close to 0 (except for R10a) for the majority of the results. In this case, no vehicle

arrives at a node before the beginning of a node’s time window. Each large gap obtained

(negative or positive) is related to the early arrivals. This is also why the solution based on a

genetic algorithm [19] resulted in a very large cost. Our CPU times are close (or lower) to the

VNS’ runs with the same number of iterations (e.g. for the 25.10
4
 replications we required less

than one minute for the smallest instance (R1a) and 38 minutes for the biggest and hardest

instance (R10a).

Table 1 - Insertion techniques (IT) compared to GA ([19]) and VNS ([20])

Inst. |D| GA [19] VNS [20] IT Gap

R1a 24 4696 3234.6 3371.4 -4.1

R2a 48 19426 14640.2 9025.7 62.2

R3a 72 65306 15969.1 10780.8 48.1

R5a 120 213420 23852.0 14054.2 69.7

R9a 108 333283 13806.4 14175.7 -2.6

R10a 144 740890 25016.5 35359.5 -29.3

R1b 24 4762 2825.5 2927.6 -3.5

R2b 48 13580 5003.1 5066.5 -1.3

R5b 120 98111 12360.5 12528.9 -1.3

R6b 144 185169 16499.4 16339.4 1.0

R7b 36 9169 4601.7 4523.1 1.7

R9b 108 167709 13412.8 13564.9 -1.1

R10b 144 474758 16420.0 17546.5 -6.4

Average 179252.2 12895.5 12251.1 5.3

6.1 Experiments on the DARPT

Figure 1 - Indirect minimization of the Ride times

For the first short experimentation on the DARP with transfers, the DARPT-INSERTION

algorithm was applied to the first instance of [2], the R1a, in order to analyse the evolution of

the Ride time caused by the variation of the maximum ride time We report in Figure 1

eleven Ride times, each with 10 replications, where all the demands have been included in

valid routes. These times are shorter and shorter (up to half of the first time) during all the

executions, the Glob times had a small raise but not comparable to the Ride time. In a real

context, so in a reactive context, depending on the time the system needs to accept or not the

demand (virtual insertion and synchronization mechanisms included), this QoS criterion could

be managed by the DARPT-INSERTION’s value p.

For the second experimentation on the DARPT, we applied our solution to solve the DARPT

on a set of randomly generated instances. Each instance is different by the size of the windows,

the number of demand, and the number of cars. Like in [2], we randomly generated the

coordinates of pick-up and drop-off nodes in the square of side 20. We split the square in 4

parts and the fleet VH in 4 sub-fleets VH1, VH2, VH3, and VH4 related to the sub-squares EP1,

EP2, EP3, and EP4. D is classified in two sets: the transverse demands which are its origin node

in a different sub-square than the destination and the local demands. For each instance studied

here, 50% of the demands are local and uniformly set to the 4 sub-squares. We generated a

different maximum user ride time which equal to the product of 20 and the distance between

the origin node and the destination node. The capacity CAP equals 6 for each vehicle. Each

demand has a large time windows (all the day, from 0 to 1440 minutes) and another tight (15

or 30 minutes), their Status is grant randomly. We performed 100 replications of 12 sets of 5

instances generated by the parameters written above. Table 3 gives the results. We provided

R1c which is the rate of the demand inserted in the routes when the transfers are forbidden R1 t

is the same rate when transfers are allowed. We computed Gap such as Gap <- (R1t- R1c)/(

R1c/100). All the results are average of the 100 replications. When comparing average rates

obtained by each resolution, about 11.9% of demand can be inserted if the transfers are

allowed in addition compared with no transfer. R1t and R1c are obviously better when the fleet

has more cars (K=5), but if the gap is more important it means there are more possibility to do

a transshipment. The first fourth instances have 3 times less demands inserted than the second

set (with the same fleet). The R1t and R1c for the first set are a little less than 3 times less than

the second set. That is explain by the fact the second set are a bigger choice to included his

demands.

Table 2. DARP classic Vs DARP with transfers

Inst. |D| K
Win.

RIc RIt
Gap

Inst. |D| K
Win.

RIc RIt
Gap

Size (%) Size (%)

1 32 4 15 54.59 62.76 14.95 7 64 5 15 39.06 46.12 18.08

2 32 4 30 61.84 68.32 10.47 8 64 5 30 45.17 48.20 6.72

3 32 5 15 70.28 86.02 22.40 9 96 4 15 22.43 24.16 7.74

4 32 5 30 77.00 89.07 15.67 10 96 4 30 25.92 27.02 4.24

5 64 4 15 29.37 34.34 16.94 11 96 5 15 28.64 32.62 13.93

6 64 4 30 35.29 37.05 4.97 12 96 5 30 33.26 35.35 6.30

Acknowledgements We wish to thank you the Conseil Regional d’Auvergne and the FEDER

of the European Union.

References

1. Chevrier, R., Canalda, P., Chatonnay, P., Josselin, D. (2006). Comparison of three

algorithms for solving the convergent demand responsive transportation problem,

ITSC’2006, 9th Int. IEEE Conf. on ITS, Toronto, Canada, 1096–1101.

2. Cordeau, J.-F., Laporte, G. (2003). A tabu search heuristic algorithm for the static multi-

 vehicle dial-a-ride problem, Transportation Research B 37, 579–594.

3. Cortes, C. E., Matamala, M., Contardo, C. (2010). The pickup and delivery problem with

transfers, European Journal of Operational Research 200 p711-724 .

4. Cortes, C. E., Jayakrishnan, R. (2002). Design and operational concepts of high-coverage

point-to-point transit system, Transportation Research Record 1783 p178-187.

5. Deleplanque, S., Quilliot, A. (2012). Insertion techniques and constraint propagation for the

DARP. FedCSIS. 393–400. IEEE conference publications.

6. Healy, P., Moll, R. (1995). A new extension of local search applied to the dial-a-ride

problem, European Journal of Operational Research 83, 83–104.

7. Kerivin, H., Lacroix, M., Mahjoub, A. R., Quilliot, A. (2008). The splittable pickup and

delivery problem with reloads, European Journal of Industrial Engineering 2 - p112-133.

8. Laporte, G., Cordeau, J.F. (2007). The dial-a-ride problem: models and algorithms. Annals

of Operations Research.

9. Madsen, O., Ravn, H., Rygaard, J. (1995). A heuristic algorithm for the DARP with time

windows, multiple capacities, and multiple objectives, Annals of OR 60, 193–208.

10. Masson, R., Lehuédé, F., Péton, O. (2011). A tabu search algorithm for the Dial-a-Ride

Problem with Transfers, Proceedings of the ICIESM.

11. Masson, R., Lehuédé, F., Péton, O. (2012). Simple Temporal Problems in Route

Scheduling for the Dial–a–Ride Problem with Transfers, 2012, Lecture Notes in

Computer Science, Volume 7298/2012, 275-291, DOI: 10.1007/978-3-642-29828-8_18.

12. Nakao, Y., Nagamochi, H. (2012). Worst case analysis for pickup and delivery problems

with transfer, IEICE Transactions on Fundamentals of Electronics, Communications and

Computer Sciences E91-A (9) p2328-2334 .

13. Parragh, S.N., Doerner, K.F., Hartl, R.F. (2010). Variable neighborhood search for the dial-

a-ride problem, Computers & Operations Research, 37, 1129–1138.

14. Psaraftis, H. (1983). An exact algorithm for the single vehicle many-to-many dial-a-ride

problem with time windows. Transportation Science 17, 351–357.

15. Psaraftis, H., Wilson, N., Jaw, J., Odoni, A. (1986). A heuristic algorithm for the multi-

vehicle many-to-many advance request DARP. Transportation Research B 20B, 243-257.

16. Masson, R., Lehuede, F., Peton, O. (2012). An adaptive large neighborhood search for the

pickup and delivery problem with transfers, Transportation Science in press.

17. Shang, J. S., Cu, C. K. (1996). Multicriteria pickup and delivery problem with transfer

opportunity. Computers & Industrial Engineering.

18. Thangiah, S., Fergany, A., Awam, S. (2007). Real-time split-delivery PDPTW with

transfers, Central European Journal of Operations Research - 15 329-349.

19. R.M. Jorgensen, J. Larsen, and K.B. Bergvinsdottir Solving the DARP using genetic

algorithms. Journal of the Operational Research Society, 58(10):1321-1331, 2007.

20. S.N. Parragh, K.F. Doerner, R.F. Hartl. Variable neighborhood search for the dial-a-ride

problem. Computers & Operations Research, 37 p. 1129–1138, 2010.

