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Transfers in the on-demand transportation: the DARPT 

Dial-a-Ride Problem with transfers allowed 

Samuel Deleplanque • Alain Quilliot 

Abstract Today, the on-demand transportation is used for elderly and disabled people for short 

distances. Each user provides a specific demand: a particular ride from an origin to a 

destination with hard time constraints like time windows, maximum user ride time, maximum 

route duration limits and precedence. This paper deals with the resolution of these problems 

(Dial-a-Ride Problems – DARP), including the possibility of one transshipment from a transfer 

point by request. We propose an algorithm based on insertion techniques and constraints 

propagation. 

1 Introduction 

An important Operations Research model for the management of flexible reactive 

transportation system is the Dial-a-Ride Problems. In the DARP, people (or a combination of 

people and goods) can order a ride in which they define mobility demands, give a pick-up 

location, a delivery location, two time windows, an upper bound on the duration of the 

demand, and the load related to the demand. The majority of these problems uses are related to 

the elderly and disabled people, but the latest research in transportation (connected cars, 

autonomous cars, etc.) associated with technological advances (mobile communication, geo-

localization…) could provide new services for the optimization problem. DARP are also 

related to a shared service transportation because several users could be in one vehicle at the 

same time. This type of problem is complex because it incorporates hard time constraints like 

time windows. The optimization consists of creating the route of a fleet of vehicles in order to 

satisfy all (or the most possible) the mobility demands emanating from people. To determine 

these routes, one has to find a balance between two opposite things: the quality of service, and 

minimization of the total cost. This work integrates the possibility to make transshipment 

between two vehicles in order to satisfy a request. This transshipment is done by a dynamic 

transfer point, meaning this point is computed at the same time that the demand is included in a 

vehicle planning.  



DARP can be modeled in different ways. There exists a number of integer linear 

programmings [8], but the problem complexity is too high to use, most of which are NP-Hard 

because it also generalizes the Traveling Salesman Problem with Time Windows (TSPTW) [2] 

Therefore, the problem must be handled through heuristic techniques. [2] is one of the most 

important works on the subject and uses the Tabu search to solve it. Other techniques work 

well like dynamic programming (e.g. [14] and [1]) or variable neighborhood searches (VNS) 

(e.g. [13] and [6]). Moreover, a basic feature of DARP is that it usually derives from a 

dynamic context. So, algorithms for static DARP should be designed in order to take into 

account the fact that they will have to be adapted to dynamic and reactive context, which 

means synchronization mechanisms, interactions between the users and the vehicles, and 

uncertainty about fore coming demands. [15], and [9] later, developed the most used technique 

in dynamic context or in a real exploitation is heuristics based on insertion techniques. These 

techniques are a good solution when the people’s requests have to take into account in a short 

time. 

In this paper, we consider a generic DARP model with time windows and a mix 

QoS/Economical-Cost  performance criterion, and propose algorithms for this model which are 

based upon randomized insertion techniques  and  constraint  propagation,  and  so, which  will  

easily adapt themselves to dynamic contexts, where demand package has to be inserted into (or 

eventually removed from) current vehicle schedules, in a very short time, while taking into  

account some probabilistic knowledge about fore coming demand packages. But, the main 

contribution of the paper is to allow transfer in the DARP. These transshipments are made 

dynamically and can be located everywhere. Little has been published on this subject, only 

[10]-[11] studied the problem. They express the problem by DARPT. The location of their 

transshipments points are known before the resolution. The authors use Tabu research, 

minimizing the total distance traveled by the fleet of vehicle. The closest problem is the Pickup 

and Delivery Problem with Transfers (PDPT). 

There exist some exact methods to solve the PDPT, like [7], where the transfer points are those 

shaped by origin and destination nodes. [3] and [12] used a Branch-and-cut algorithm. As 

stated previously, the exact methods are not a good solution for solving the problem because it 

can’t be used in a reactive context. The approximate methods are able to solve the problem in 

time. [4] created several rules for selecting the vehicle, assuming a demand given. Other rules 

help to trace the routes. The VNS is also used for this problem, [16] tested it on big instances 

(almost 200 requests). [17] worked on a heuristic where each pick-up and delivery nodes could 

be a transfer point. Their solution is based on insertion techniques and they allow the 

transshipments if the demand could not be inserted; [18] included the same algorithm in a 

dynamic context. 

This paper is organized in the following manner: The next section will propose a model of the 

classic DARP. Then, we will explain how to handle the temporal constraints with a heuristic 

solution based on insertion techniques using propagation constraints. After, we will continue 

with the introduction of the DARPT model, framework and our updated solution based on 

insertion and propagation techniques. In the last part of the paper, the computational results 

will show the efficiency of our heuristics and we will compare the two solutions on the same 

instances.  

2 The DARP: model and framework 

2.1 The general Dial-a-Ride Problem 

A Dial a Ride problem instance is essentially defined by a vehicle fleet VH, a transit network 

G = (V, E), which contains at least some specific node Depot, and a Demand set D = (Di, i  

I), any demand Di being defined as a 6-uple Di = (oi, di, i, F(oi), F(di), Qi), where oi V is the 

origin node of the demand Di, di V is the destination node of the demand Di, i ≥ 0 is an 



upper bound (transit bound) on the duration of demand Di’s processing, F(oi) is a time window 

related to the time Di starts being processed, F(di) is a time window related to the time Di ends 

being processed, and Qi is a description of the load related to Di. 

Dealing with such an instance means planning the handling demands of D, by the fleet VH, 

while taking into account the constraints which derive from the technical characteristics of the 

network G, of the vehicle fleet VH, and of the 6-uples Di = (oi, di, i, F(oi), F(di), Qi), and 

while optimizing some performance criteria which is usually a mix of an economical cost 

(point of view of the fleet manager) and of QoS criteria (point of view of the users). This very 

general problem may be specialized according to several ways, depending on the structure of 

the fleet VH and on the way this fleet is allowed to answer various demands of D. 

The fleet VH may be heterogeneous, or, conversely, homogenous. In the first case, part of the 

problem consists in affecting the demands to the different classes of vehicles. The loads Qi, i  

I, may be described as a set of objects, all endowed with their own characteristics (weight, 

volume, autonomous mobility…), or, conversely, summarized by a number (we say that they 

are nominal), which identifies any demand as a volume or as a weight of identical objects 

which are required to be transported from node oi to node di. In the first case, part of the 

problem consists in identifying which combinations of objects may be simultaneously 

transported by a given vehicle. Also, in such a case, one may have to take into account the fact 

that loading and unloading processes are not neutral, and that their duration is likely to depend 

on the current load of the involved vehicles. 

Load pre-emption (split loads) may be allowed, which means that a given load Qi, i  I, may 

be split into several blocks, every one being transported from node oi to node di while using 

distinct vehicles, or while using twice a same vehicle. Vehicle pre-emption 

(transfers/transhipments) may be allowed too, which means that a given load Qi, i  I, may be 

transported in several steps, each step involving a specific vehicle: for instance, if we think 

into Qi as into a single traveller, it may try to go from node oi to node di while first using a 

shuttle and next a bus. 

Temporal constraints related to the time windows F(oi),  F(di),  i  I, and to the transit bounds 

i, i  I, may be more and less tight. The problem may have to handled according to a dynamic 

context, (demands are not known in advance in an accurate way and must be processed “on 

line”): in such a case, one must take into account the way the system is supervised and the way 

its various components communicate with the users. Conversely, it may be set in a static 

context: all data are known in advance; the planning is computed and is run by the system. In 

this case, eventual divergences between the data which were used during the planning phases, 

and the situation the system has to really face, put what is called robustness at stake.    

Finally, additional constraints may have to be tackled, such that cumulative constraints 

involving human, technical or financial mutualized renewable or non-renewable resources. In 

such a case, one may thing into linking the reduced problem with the RCPSP (Resource 

Constrained Project Scheduling Problem) framework. 

Throughout this work, we deal with homogeneous fleets and with nominal demands, and 

therefore limit ourselves to static points of view. Still, we do not intend to restrict ourselves to 

Standard Dial a Ride: so, we pay special attention to cases when temporal constraints are tight, 

and handle the case when the transfers are allowed.    

2.2 The Standard Case Framework 

The general notations of sequences and algorithms are described as follows. In any algorithmic 

description, we use the symbol <- in order to denote the value assignment operator: x <- , 

means that the variable x receives the value .  Thus, we only use symbol = as a comparator. 

For any sequence (or list)  whose elements belong to some set Z, we set First() the first 

element of  and Last() is the last element of . For any z in , Succ(, z) gives the successor 



of z in  and Pred(, z) gives the predecessor of z in the route . For any z, z’ in , we note z 

<< z’ if z is located before z’ in ; z <<
=
 z’ if z << z’ or z = z’.  

We consider here that no pre-emption is allowed (i.e. no transfers and no split loads), and 

that no additional cumulative constraint has to be taken into account. In such a case, it is 

known that we do not need to consider the whole transit network G = (V, E), and that we may 

restrict ourselves to the nodes which are either the origin or the destination of some demand, 

while considering that any vehicle which visits two such nodes in a consecutive way does it 

according to a shortest path strategy. This leads us to consider the node set {Depot, oi, di, i  

I} as made with pairwise distinct nodes, and provided with some distance function DIST, 

which to any pair x, y in {Depot, oi, di, i  I}, makes correspond the shortest path distance 

from x to y in the transit network G.     

As a matter of fact, we also split the Depot node according to its arrival or departure status and 

to the various vehicles of the fleet VH, and we consider the input data of a Standard Dial a 

Ride instance as defined by the set {1..K = Card(VH)} of the vehicles of the homogenous fleet 

VH, the common capacity CAP of a vehicle in VH, the node set X = {DepotD(k), DepotA(k), k 

= 1..K}  {oi, di, i  I} and the distance matrix DIST, whose meaning is that, for any x, y in 

X, DIST(x, y) is equal to the length, in the sense of the length function l, of a shortest path 

which connect x to y in G: we suppose that DIST, satisfies the triangle inequality. Also, the 

following characteristics, which, to any node x in X, make correspond:  

- its status Status(x): Origin, Destination, DepotA, Depot D; we set Depot = DepotD  

Depot A; 

- its demand index:  Dem(x) = i if x = oi or di, and Dem(x) = 0 else; 

- its vehicle index VI: VI(DepotA(k)) = VI(DepotD(k) = k and VI(x) = Undefined for 

any other node x  X; 

- its load CH(x):  if Status(x)  Depot then CH(x) = 0; if Status(x) = Origin, and if then 

CH(x) = Qi;          

- its twin node Twin(x): if x = DepotA(k) then Twin(x) = DepotD(k) and conversely; if x 

= oi then Twin(x) = di and conversely; 

- its time window F(x): for any k = 1..K,  F(DepotA(k)) = [0, +  [ = F(DepotD(k)). 

Also, we suppose that any F(x), x  X, is an interval, which may be written F(x) = 

[F.min(x), F.max(x)];  

- its transit bound (x): if x = oi or di, then (x) = i, and (x) =  else, where  is an 

upper bound which is imposed on the duration of any vehicle tour.   

According to this construction, we understand that the system works as follows: vehicle k   

{1..K}, starts its journey from DepotD(k) at some time t(DepotD(k)) and ends it into 

DepotA(k) at some time t(DepotA(k)), after having taken in charge some subset D(k) =  {Di, i 

 I(k)} of D: that means that for any i in I(k), vehicle k arrived in  oi at time t(oi)  F(oi), 

loaded the whole load Qi, and kept it until it arrived in di at time t(di)  F(oi) and unloaded Qi, 

in such a way that t(di) - t(oi) ≤ i. Clearly, solving the Standard Dial a Ride instance related to 

those data (X, DIST, K, CAP) will mean computing the subsets D(k) =  {Di, i  I(k)}, the 

routes followed by the vehicles and the time values t(x), x  X,  in such a way that both 

economic performance and quality of service be the highest possible.  

 

Remark on the Service Durations and the Waiting Times 

Many authors include what they call service durations in their models.  That means that they 

suppose that loading and unloading processes related to the various nodes of X require some 

time amount (x), (service time) and, so, that they distinguish, for any node x  X, time values 

t(x) (beginning of the service) and t(x) + d(x) (end of the service). By the same way, some 

authors suppose that the vehicles are always running at their maximal speed, and make a 

difference between the time t*(x), x  X, when some vehicle arrives in x, and the time t(x) 

when this vehicle starts servicing the related demand (loading or unloading process). We do 

not do it. Taking into account service times, which tends to augment the size of the variables of 



the model and to make it more complex it, has really sense only if we suppose that the service 

times (x) depend on the current state (its current load) of the vehicle at the time the loading or 

unloading process has to be launched. Making explicitly appear waiting times t(x) – t*(x)  is 

really useful if we make appear the speed profile as a component of the performance criteria. 

In case none of the situation holds, the knowledge of the routes of the vehicles and of the time 

value t(x), x  X, is enough to check the validity of a given solution and to evaluate its 

performance, and then it turns out that ensuring the compatibility of the model with data which 

involve service times and waiting times t(x) – t*(x), x  X, is only a matter of adapting the 

times windows F(x), the transit bounds (x), x  X, and the distance matrix DIST. 

 

Tours, Time-Valid Tours, Charge-Valid Tours, Valid Tour 

In order to provide an accurate description of the output data of our standard Dial a Ride 

instance (X, DIST, K, CAP), we need to talk about tours and related time value sets.  A tour  

is a sequence of nodes of X, which is such that:  

- Status(First()) = DepotD; = Status(End()) = DepotA;  

- VI(First()) = VI(End());  

-  For any node x in , x ≠ First(), End(, Status(x)  Depot;  

- No node x X appears twice in ; 

- For any node x = oi (di) which appears in , the node Twin(x) is also in , and we 

have: x << Twin(x) (Twin(x) <<  x). 

This tour  is said to be load-valid iff: for any x in , x  First(), we have  y\y << x CH(y)  ≤ 

CAP. And, this tour  is said to be time-valid iff it is possible to associate, with any node x in 

, some time value t(x), in such a way that:            (E1) 

- for any x in , x  Last(), t(Succ(, x)) ≥ t(x) + DIST(x, Succ(, x));   

- for any x in , t(Twin(x)) – t(x) ≤  (x) and for any x in , t(x)   F(x). 

The tour  is said to be valid if it is both time valid and load valid. For any pair (, t) defined 

by some time-valid tour  and by some valid related time value set t, we may set Glob(, t) = 

t(End()) – t(First()): this quantity denotes the global duration of the tour  and Ride(, t) = 

 x\Status(x) = Origin |Twin(x) - t(x)|: this other quantity may be viewed as a QoS criteria, and 

denotes the sum of the duration of the individual trips of the demanders which are taken in 

charge by tour . If A, B are two multi-criteria coefficients, we may define the performance 

criteria CostA, B(, t) as follows: CostA, B(, t) = A.Glob(, t)  + B.Ride(, t).  

 

The Standard dial-a-ride model.  

So, let us suppose that we deduced from the data G = (V, E), VH = (K, CAP), D = (Di = (oi, di, 

i, F(oi), F(di), Qi), i  I), a 4-uple (X, DIST, K, CAP), and that we are also provided with 2 

multi-criteria coefficients A and B ≥ 0. Then we see that solving the related Standard Dial a 

Ride Problem instance means computing: for any vehicle index k in 1..K, a valid tour T(k) and 

a time value set t = {t(x), x X} in such a way that: the restriction of t to any T(k), k = 1..K, 

defines a valid time value set related to T(k), the tour set T = {T(k), k = 1..K} induces a 

partition of X, and the quantity PerfA, B(T, t)   k = 1..K CostA, B(T(k), t) is the smallest possible.  

3 Handling temporal constraints 

Let  a tour. The algorithm which we are going to describe inside the next section 4 will 

essentially be based upon the use of insertion techniques. Thus, we must be able to check in a 

fast way, whether the insertion of some demand Di inside  will maintain the validity of , and 

to get an evaluation of the quality of this insertion. We are first going to provide ourselves with 

a package of constraint handling tools. 



3.1 Testing the load-validity and the Time-validity 

Checking the load-validity on is easy. In order to be able to test the impact of the insertion of 

some demand into the tour  on the charge-validity of this tour, we associate, with any such a 

tour, the quantities C(, x), x   , defined by:  for any x in , C(, x)  =  y\y <<or y = x CH(y).  

Then it comes that  is load-valid iff for any x in , C(, x)  ≤ CAP.  

Checking the time validity of  according to a current time window set FS = {FS(x) = 

[FS.min(x), FS.max(x)], x  } may be performed through propagation of the following 

inference rules Ri, i = 1..5 performed by the Propagate procedure and we deduce the 

proposition 1 ([5]): 

- Rule R1: y = Succ(, x); FS.min(x) + DIST(x, y) >  FS.min(y) |=  FS.min(y) <- 

FS.min(x) + DIST(x, y); NFact <- y; 

- Rule R2: y = Succ(, x); FS.max(y) - DIST(x, y) <  FS.max(x) |=  FS.max(x) <- 

FS.max(y) - DIST(x, y); NFact <- x; 

- Rule R3: y = Twin(x); x <<  y ; FS.min(x) <  FS.min(y) – (x) |=  FS.min(x) <- 

FS.min(y) - (x); NFact <- x; 

- Rule R4: y = Twin(x); x <<  y ; FS.max(y) >  FS.max(x) + (x) |=  FS.max(y) <-  

FS.max(x) + (x) ; NFact <- y; 

- Rule R5:  x  ; FS.min(x) > FS.max(x) |=  Fail. 

 

Procedure Propagate 

Input : (: Tour,  L: List of nodes, FS: Time windows set related to the node set of ):  

Output : (Res: Boolean, FR: Time windows set related to node set of );  

Continue <- true;  

While L Nil and Continue do 

 z <- First(L); L <- Tail(L); 

For i = 1..5 do Compute all the pairs (x, y) which make possible an application of the rule 

Ri and which are such that x = z or y = z; 

For any such pair (x, y) do  

Apply the rule Ri;   

If NFact is not in L then Insert NFact in L; 

If Fail then Continue <- false;  

Propagate <- (Continue, FS);  

 

Proposition 1. 

The tour  is time-valid according to the input time window set FS if and only if the Res 

component of the result of a call Propagate(FS, ) is equal to 1. In such a case, any valid time 

value set t related to and FS is such that: for any x in , t(x)  FS(x).      

 

Proof. The part (only if) of the above equivalence is trivial, as well as the second part of the 

statement. As for the part (if), we only need to check that if we set, for any x in : FS(x) = 

[FS.min(x), FS.max(x)] and t(x) = FS.min(x); then we get a time value set t ={t(x), x   

X()}which is compatible with  and FS. End-Proof.  

 

We denote by FP() the time window set which result from a call Propagate(  ,F). FP() 

may be considered as the largest (in the inclusion sense) time window set which is included 

into F and which is stable under the rules Ri, i = 1..5, and is called the window reduction of F 

through .   

3.2 Evaluating a tour 



Let us consider now the tour , provided with the window reduction set FP(). We want to get 

some fast estimation of the best possible value CostA, B(, t) = A.Glob(, t)  + B.Ride(, t), t 

Valid(). We already noticed that it could be done through linear programming or through 

general shortest path and circuit cancelling techniques. Still, since we want to perform this 

evaluation process in a fast way, we design two ad hoc procedures EVAL1 and EVAL2. The 

EVAL1 procedure works in a greedy way, by first assigning to the node First() its largest 

possible time value, and by next performing a Bellman process in order to assign to every 

node x in  its smallest possible time value. The EVAL2 procedure starts from a solution 

produced by EVAL1, and improves it by performing a sequence of local moves, each move 

involving a single value t(x), x  . This procedures and the Proposition 2 are given below. 

 

Procedure EVAL1. Input:(: Tour); Output: (Val: Number, : value set) 

For any x in , let us set set: [a(x), b(x)] = FP(); 

(First()) <-  b(First());  x <- First();  

While x  Last() do  

y < Succ(, x); (y) <- Sup(a(y), (x) + DIST(x, y)) ; 

x <- y ;  <- {(x), x  }; Val <- CostA, B, C(, ); 

EVAL1 <- (Val, );  

 

Procedure EVAL2. Input:(: Tour); Output: (Val: Number, : value set) 

For any x in , let us set set: [a(x), b(x)] = FP(); 

For any x in  do (x) <- EVAL1(, FS).; Continue <- true; 

While Continue do 

Search for x in  such that one of the two statements (E2) or (E3) below is true:  

o (E2):  (x < 0)  (Status(x)  {Origin, DepotD})  ((x)   Inf(b(x), (Succ(, x) – 

DIST(x, Succ(, x))); 

o (E3):  (x > 0)  (Status(x)  {Destination, DepotA})  ((x)   Sup(a(x), (Pred(, 

x) + DIST(Succ(, x)), x)); 

If Fail(Search) then Continue <- false;  

Else  

If (E2) then (x) <- Inf(b(x), (Succ(, x) – DIST(x, Succ(, x))); 

If (E3) then ((x) <- Sup(a(x), (Pred(, x) + DIST(Succ(, x)), x)); 

EVAL2 <- (Val = CostA, B(, )), );  

 

Proposition 2. 

Both EVAL1 and EVAL2 yield a time value set  which is compatible with  and F (with  and 

FP()). Besides, if B = 0, then EVAL1 yields an optimal value Val, that means yields the 

smallest possible value CostA, B(, ),   Valid(, F).  

 

Proof. As in the description of both procedures EVAL1 and EVAL2, we suppose that for any x 

in , the time window FP() may also be written FP() = [a(x), b(x)]. The first part of the 

above statement is trivial. In case B = 0, minimizing CostA, B(, ) means minimizing 

(Last()) – (First()).  We must deal with two cases: 

- First Case: there exists x  First() such that: (x) = a(x) and for any y such that x  

<<
=
 y  <<

 
Last(), we have: (Succ(, y)) – (y) =  DIST(y, Succ(, y));  

Then the stability of FP()(x) under the inference rule R3 allows us to deduce 

(Last()) = a(Last()), and the result since (First()) =  b(First()).  

- Second Case: for any x in X(), x  Last(), we have (Succ(, x)) – (x) =  DIST(x, 

Succ(, x)). 

Then the result comes in an immediate way. End-Proof. 

 



 being some valid tour, we denote by VAL1() and VAL2() the values respectively 

produced by the application of EVAL1 and EVAL2 to .  

4 An insertion algorithm for tightly constrained instances of the standard DARP 

4.1 The insertion mechanism 

It works in a very natural way. Let  be some valid tour, let Di = (oi, di, i, F(oi), F(di), Qi) be 

some demand whose origin and destination nodes are not in , and let x, y be two nodes in , 

such that x <<
=
 y. Then we denote by INSERT(, x, y, i) the tour which is obtained by 

locating oi between x and Succ(, x) and locating di between y and Succ(, y). We say that the 

tour INSERT(, x, y, i) results from the insertion of demand Di into the tour  according to 

the insertion nodes x and y. The tour INSERT(, x, y, i) may not be valid. So, before anything 

else, we must detail the way the validity of this tour is likely to be tested.  

 

Testing the Load-Admissibility of INSERT(, x, y, i).  

We only need to check with a procedure Test-Load, that for any z in Segment(, x, y) = { z 

such that x  <<
=
 z  <<

=
 y} we have, C(, z) +  Qi  ≤ CAP.  

 

Testing the Time-Admissibility of INSERT(, x, y, i).  

It should be sufficient perform a call Propagate(, {oi, di}, FP()), while using the list {oi, di} 

as a starting list. Still, such a call is likely to be time consuming. So, in order to make the 

testing process go faster, we introduce several intermediary tests, which aim at interrupting the 

testing process in case non-feasibility. The first test Test-Node aims at checking the feasibility 

of the insertion of a node u, related to some load Q, between two consecutive node z and z’ of 

a given tour . It only provides us with a necessary condition for the feasibility of this 

insertion: 

 

Procedure Test-Node 

Input: (, z, z’: nodes in , u: node out , Q: load); Output:  Boolean 

Let us set, for any x in , [a(x), b(x)] = FP()(x); Let us set: [, ] = F(u); 

Test node <- (a(z) + DIST(z, u) ≤ )  ( + DIST(u, z’) ≤ b(z’))  (a(z) + DIST(z, u) + 

DIST(u, z’) ≤ b(z’))  (C(, z) + Q  ≤ CAP); 

 

The second test Test-Node1 (based on Test-Node) aims at checking the feasibility of the 

insertion of an origin/destination node u, v, related to some load Q, between two consecutive 

node z and z’ of a given tour . So, testing the admissibility of a tour INSERT(, x, y, i) may 

be performed through the following procedure:  

 

Procedure Test-Insert 

Input: (, x, y, i); Output:  (Test: Boolean, Val: Number); 

If x  y then Test <- Test-Node(, x, Succ(, x), oi, Qi)  Test-Node(, y, Succ(, y), di, Qi) 

Else Test <- Test-Node1(, x, Succ(, x), oi, di, Qi); 

If Test = 1 then Test <- Test-Charge(, x, y, i); 

If Test = 1 then (Test, F1) <- Propagate(, {oi, di}, FP(); 

If Test = 1 then Val <- EVAL1(INSERT(, x, y, i), F1).Val else Val <- Undefined; 

Test-Insert <- (Test, Val – Val1());  

4.2 The insertion process 



So, this process takes as input the demand set D = (Di = (oi, di, i, F(oi), F(di), Qi), i  I), the 4-

uple (X, DIST, K, CAP) which we defined in section 2, and 2 multi-criteria coefficients A and 

B ≥ 0, and it works in a greedy way through successive insertions of the various demands Di = 

(oi, di, i, F(oi), F(di), Qi) of the demand set D. The basic point is that, since we are concerned 

with tightly constrained time windows and transit bounds, we use, while designing the 

INSERTION algorithm, several constraint propagations tricks. Namely, we make in such a 

way that, at any time we enter the main loop of this algorithm, we are provided with:  

- the set I1  I of the demands which have already been inserted into some tour T(k), k 

= 1..K; 

- current tours T(k), k = 1..K: for any such a tour T(k), we know the related time 

windows FP(T(k))(x), x  T(k), as well as the load values C(T(k), x), x  T(k), and 

the values VAL1(T(k)) and VAL2(T(k));  

- the knowledge, for any i in J = (I - I1) of the set FREE(i) of all the 4-uple (k, x, y, v), k 

= 1..K, x, y  T(k), v  Q, such that a call Test-Insert(T(k), x, y, i) yields a result (1, 

v). We denote by N-FREE(i) the cardinality of the set V-FREE(i) = {k = 1..K, such 

that there exists a 4-uple (k, x, y, v) in FREE(i)}: N-FREE(i) provides us with the 

number of vehicles which are still able to deal with demand Di.   

Then, the INSERTION algorithm works according to the following scheme (1-4): 

1 – The process selects a demand i0 in J, among those demands which are the most 

constrained, that means which are such that N-FREE(i0) and Card(Free(i0)) are small.        (E4)                                                                                                                                   

2 – Then, in a second step, it picks up (k0, x0, y0, v0) in FREE(i0) which simultaneously 

corresponds to one of the smallest values v, and to one of the smallest values 

EVAL2(INSERT(T(k), x, y, i0)).Val – VAL2(T(k)): more specifically it first builds the list L-

Candidate of the N1 (up to five) 4-uples (k, x, y, v) in FREE(i0) with best (smallest value v). For 

any such a 4-uple, it computes the value w = EVAL2(INSERT(T(k), x, y, i0)).Val – 

VAL2(T(k)), and it orders L-Candidate according to increasing values w.  Then it randomly 

chooses (k0, x0, y0, v0) among those N2 ≤ N1 first 4-uples in L-Candidate. N1 and N2 become two 

parameters of the INSERTION procedure.                                                                           (E5)                                               

3 - It inserts the demand Di0 into  T(k0) according to the insertion nodes  x0, y0, which means 

that it replaces T(k0)  by INSERT(T(k0), x0, y0, i0). Then, it defines, for any i  J, the set (i) 

as being the set of all pairs (x, y) such that there  exists some 4-uple  (k0, x’, y’, v) in FREE(i), 

which satisfies:                                                                                                                        (E6) 

- (x’ = x) or ((x’ = x0) and x’ = Pred(T(k0), x)) or ((x’ = x0 = y0) and (x’ = 

Pred(Pred(T(k0), x)))); 

- (y’ = y) or ((y’ = y0) and y’ = Pred(T(k0), y)) or ((y’ = x0 = y0) and (y’ = 

Pred(Pred(T(k0), y))))                     

4 - Finally, it performs, for any pair (x, y) in (i), a call Test-Insert(T(k0), x, y, i), and it 

updates FREE(i) and N-FREE(i) consequently.  

 

Procedure INSERTION 

Input: (N1 and N2: Integer, the demand set D = (Di = (oi, di, i, F(oi), F(di), Qi), i  I), the 4-

uple (X, DIST, K, CAP) defined above, and 2 multi-criteria coefficients A and B ≥ 0); 

Output: (T: tour set, t: time value set, Perf: induced PerfA, B(T, t) value, Reject: rejected demand 

set);     

For any k = 1..K do  

T(k) <- {DepotD(k), DepotA(k)}; t(DepotD(k)) = t(DepotA(k)) <- 0;   

I1 <- Nil ; J <- I ; Reject <- Nil; 

For any i  J do  

FREE(i) <- all the possible 4-uple (k, x, y, v), k = 1..K, x, y {DepotD(k), DepotA(k)}, x 

<<T(k)
=
  y, v = EVAL2({DepotD(k), oi, di, DepotA(k)}).Val; N-FREE(i) <- K; 

While J  Nil do    

Pick up some demand i0 in J as in (E4); Remove i0 from J;     



If FREE(i0) = Nil then Reject <- Reject  {i0} 

Else 

Derive from FREE(i0) the L-Candidate list and Pick up (k0, x0, y0, v0) in L-Candidate as 

in (E5); 

T(k0) <- INSERT(T(k0), x0, y0, i0);  <- EVAL2(T(k0)).;  Insert i0 into I1 ; 

For any x in T(k0) do t(x) <- (x);   

For any i  J do 

(i) <- {all pairs (x, y) such that there exists some 4-uple  (k0, x’, y’, v) in 

FREE(i), which satisfies (E6) 

For any pair (x, y) in (i) do  

(Test, Val) <-  Test-Insert(T(k0), x, y, i); 

Remove (k0, x, y, v) from FREE(i) in case such a 4-uple exists and update N-

FREE(i) consequently; 

If Test = 1 then insert (k0, x, y, Val) into FREE(i) and update N-FREE(i) 

consequently;  

Perf <- PerfA, B(T, t); 

INSERTION <- (T, t, Perf, Reject); 

 

Since the above instruction may be written in a non-deterministic way, the whole INSERTION 

algorithm becomes non-deterministic inside some MONTE-CARLO framework. This 

process keeps the best result (the pair (T, t) such that |Reject| is the smallest possible, and which 

is such that, among those pairs which minimize |Reject|, it yields the best PerfA, B(T, t) value).  

5 Dial a ride problem with transfers 

We are going to deal now with the case when transfers is allowed, that means then the load Qi 

related to some demand Di = (oi, di, i, F(oi), F(di), Qi), may be handled in several successive 

steps, each step involving some vehicle k  K, which make the charge Qi go from some origin 

or relay node x to some relay or destination node y. Transfers means here that, at any time 

during the transportation, while the load Qi is always handled as a whole, the route it follows 

may be split into several sub-route, all those sub-routes being taken in charge by  distinct 

vehicles. As a matter of fact, we are going to restrict here ourselves to the case when no more 

than 2 vehicles are allowed to perform such a transportation task: though this restriction is not 

going to induce any true restriction on concepts and methods, it will help us in describing 

them; also, practical applications are such that they will hardly allow a same demand to 

be handled by more than 2 or 3 different vehicles. 

5.1 The insertion mechanism 

The basic point is here that, in case a given load Qi has to be successively handled by two 

vehicles k and k’, the set X, which arises from a construction process involving only 

origin/destination nodes, is likely not to be sufficient to describe the route of the vehicles: the 

two related routes T(k), T(k’) will have to intersect and exchange load Qi in a relay node z, 

which will be neither an origin node oj nor a destination node dj.  Those relay nodes, which 

may be nodes inside a large scale transit network, are not known in advance: so, we feel that 

we should try to handle those exchange nodes in an implicit way and to deal with them in a 

dynamic way.  

 

Extending the node set X into an implicit node set Z.  

In order to put this in a formal way, we first need to extend X in order to make appear the relay 

nodes. Since we want to handle those relay node in a dynamic way, we suppose that X may be 

embedded into some (eventually infinite) implicit node set Z such that X  Z: Z may be a large 



scale, eventually infinite, set. For any pair of nodes z, z’ in Z, we suppose that we are able to 

compute some distance Dist(z, z’), in such a way that for any x, x’ in X, Dist(x, x’) = DIST(x, 

x’). Depending on the way Z is defined, this can be done in several ways: for instance, if nodes 

of X are related to some point in the 2-dimensional affine plane R
2
, and if DIST represents the 

Euclidian distance, then Z may be the whole 2-dimensional plane R
2
, and Dist may denote the 

Euclidian distance, which we are able to compute in an effective way once we know the 2D-

coordinates of both points z and z’.  

It comes that the input of the Dial a Ride problem with transfers (DARPT) is going to be 

defined, as in the standard version, by a transit network G = (V, E), a vehicle fleet VH = (K, 

CAP), a demand set  D = (Di = (oi, di, i, F(oi), F(di), Qi), i  I), by a 4-uple (X, DIST, K, CAP), 

and with 2 multi-criteria coefficients A and B ≥ 0, augmented with some node set Z, which 

will derive from the transit network G and which will be such that X  Z, and by a function 

Dist, with domain Z.Z, which will be such that: for any x, y in X, DIST(x, y) = Dist(x, y). Also, 

since we are going to handle the node set Z a dynamic way, we should be able to create new 

active nodes from existing ones. So, we suppose that we are provided with a function Midst, 

which, from any pair of nodes z, z’ in Z, compute a new node z” = Midst(z, z’) in Z, in such a 

way that Dist(z, z”) and Dist(z”, z) are no larger than some fraction .Dist(z, z’), with  < 1. 

 

Building Relay Nodes: the Implicit Set Z*. 

Additional nodes in Z – X are going to be used as relay nodes. Any such an active relay node 

will appear in 2 tours, once as an emitter node and once as a receiver node. Since we would 

like to keep on with the kind of model which we have been using for the standard version of 

the Dial a Ride problem, we also would like to make in such a way that all nodes which are 

going to appear in a tour family T be distinct. In order to do it, we define the implicit node set 

Z* as follows:  

- Z* = X   {(z, i, - 1), (z, i, 1), i  I, z   Z}: the meaning of node (z, i, -1) is that if 

such a node becomes active, then it will appear as emitter node for load Qi inside 

some tour T(k), which means that load Qi is first going transported from oi to z by 

vehicle k, and next from z to di by some other vehicle k’, k ≠ k’. It comes that node (z, 

i, 1) will appear in a symmetric way in tour T(k’). 

- for any node z in Z, we set: Node(z, i, -1) = Node(z, i, +1) = z; 

- for any node x in X we set: Node(x) = x. 

We extend the Status, Twin, Dem, CH, , and F functions by setting, for every z   Z, i   I: 

- Status(z, i, -1) = Out-Reload,  Status(z, i, +1) = In-Reload; 

- Twin(z, i, +1) = {(z, i, - 1),  Twin(z, i, -1) = {(z, i, + 1); 

- Dem(z, i, +1) = Dem(z, i, -1) = i; 

- CH(z, i, -1) =  - Qi,  Node(z, i, +1) = Qi; 

- (z, i, -1) =   (z, i, +1) = + ∞; 

- F(z, i, -1) =  F(z, i, +1) = [0, + ∞[. 

Clearly, the distance function Dist may be also extended in a canonical way to Z*.Z*. 

 

Tours, Valid Tours, Tour Family, Covering Tour Family, Active Nodes.  

A tour, in the sense of the DARPT, becomes a sequence  of nodes of Z*, which is such that:  

Status(Start()) = DepotD, Status(End()) = DepotA, VI(Start()) = VI(End()), for any node x 

in : x ≠ Start(), x ≠ End(, Status(x)   Depot, no node x   Z* appears twice in , and for 

any demand i   I, one of the configuration below occurs, which excludes the others: 

- oi and di appear in , oi << di, and no node (z, i, ),    {-1, 1} is in ;   

- none among oi, di , (z, i, ),    {-1, 1}, appears in ; 

- oi and (z, i, -1) are in ,  such that oi << (z, i, -1), and none among di, (z, i, + 1), is in 

; 

- di and (z, i, +1) are in ,  such that (z, i, +1)  << di, and none among oi, (z, i, - 1), is 

in ; 



As stated in the classic DARP section, we say that: such a tour  is load-valid iff : for any x in 

, x  Start(), we have  y\y << x CH(y)  ≤ CAP and such a tour  is time-valid iff it is possible 

to associate, with any node x in , some time value (x) ≥ 0, in such a way that:    

- for any x in , x  Last(), (Succ(, x)) ≥ (x) + Dist(x, Succ(, x));   

- for any x in \ Status(x)  {Out-Reload, In-Reload},(Twin(x)) – (x) ≤  (z); 

- for any x in , (x)   F(x). 

In case exists, it is called a valid time value set related to . In case the tour  is both time-

valid and charge-valid, we say that it is valid. Clearly, a feasible solution of our Dial a Ride 

with transfers problem cannot be defined as a family T = {T(k), k = 1..K} of pairwise disjoint 

valid tours. We must link tours which involve Out-Reload and In-reload nodes related to a 

same demand. In order to do it, we consider some subset J of the Demand Index set I, some 

tour collection T = {T(1)..T(K)}, and we say that T defines a covering collection for J if the 

tours T(1)..T(K) are pair-wise disjoint valid tours, their union contains the whole set {oi, di, i  

J} (they contain no node x such that Dem(x)   I – J), and every tour T(k), k = 1..K, starts with 

the node DepotD(k) and ends with the node DepotA(k). The nodes (z, i, ), z   Z, i   J,    

{-1, 1} which appear in  k = 1..K T(k) define the active relay node set of the tour collection T. 

We denote it by ACT(T). The tour collection T = {T(k), k = 1..K} is a valid covering 

collection for J iff : 

- for every k = 1..K, the tour T(k) is load-valid; 

- the collection T = {T(k), k = 1..K} is a covering collection for J 

- there exists some time value set t = {t(x), x   k = 1..K T(k)} such that: for any k = 

1..K, the restriction of t to the nodes of T(k) defines a valid time value set related to 

T(k); and, for every active Out-Reload node x in  ACT(T), we have t(Twin(x)) ≥ t(x);                                 

In case such a time value set t exists, we say that T is time-valid and t is called a valid time 

value set related to T. 

 

The Dial a Ride Problem with Transfers model. 

Input: A transit network G = (V, E), a vehicle fleet VH = (K, CAP), a demand set  D = (Di = 

(oi, di, i, F(oi), F(di), Qi), i  I), by a 4-uple (X, DIST, K, CAP), and by 2 multi-criteria 

coefficients A and B ≥ 0, augmented with the node set Z, such that X  Z, and with the function 

Dist, with domain Z.Z, such that: for any x, y in X, DIST(x, y) = Dist(x, y).  

Output: A valid covering collection T = {T(k), k = 1..K} for the Demand Index set I, a related 

valid time value set  =  {t(x), x   ACT(T)}, such that the quantity PerfA, B(T, t) is the smallest 

possible.  

 

 5.2 Handling the relay nodes: an insertion mechanism 

  

Once again, we want to deal with the above model by successively inserting the demands Di, i 

 I, into a tour collection T, until this tour collection defines a valid covering collection for I.  

In order to do it, we first need to explain which kind of insertion mechanisms we intend to use. 

We are going to use two insertion operators: INSERT and INSERT2. 

The INSERT operator works as in section 4.1: k being some vehicle index, x, y being two 

nodes in T(k) such that x <<
=

T(k) y, i being some demand index which is such that neither oi nor 

di is in T(k), INSERT(T(k), x, y, i) denotes the tour which is obtained through insertion of o i 

between x and Succ(T(k), x) in T(k) and by insertion of di between y and Succ(T(k), y) in T(k). 

The  INSERT2 operator works by inserting demand Di into two distinct tours: k, k’ being two 

distinct vehicle indices, x, y being two nodes in T(k) such that  x <<
=

T(k) y, x’, y’ being two 

nodes in T(k’) such that  x’ <<
=

T(k’) y’, z being some relay node in Z, INSERT2(i, k, k’, x, y, x’, 

y’ , z ) denotes a pair of tours (INSERT2(i, k, k’, x, y, x’, y’ , z ).First, INSERT2(i, k, k’, x, y, x’, 

y’ , z ).Second) in such a way that:  



- INSERT2(i, k, k’, x, y, x’, y’, z).First is the tour which is obtained through insertion of 

oi between x and Succ(T(k), x) in T(k) and by insertion of (z, i, -1) between y and 

Succ(T(k), y) in T(k); 

- INSERT2(i, k, k’, x, y, x’, y’, z).Second is the tour which is obtained through insertion 

of (z, i, 1) between x’ and Succ(T(k’), x’) in T(k’) and by insertion of d i between y’ 

and Succ(T(k), y’) in T(k’). 

 

5.3 A general insertion scheme 

We notice that the two operators which we described above have quite different impacts on the 

way a global insertion schema is going to work. While testing the feasibility of an application 

of the INSERT operator is a local task, which only involve dealing with the T(k) tour, testing 

the feasibility of the INSERT2 operator is likely to involve more than the T(k), T(k’) tours. By 

the same way, handling the FREE(i) is going to become more complicated once we start 

introducing relay nodes and linking constraints. For this reason, we decompose the resolution 

process into two steps (1-2): 

1 - We only use the INSERT operator, while proceeding as in the INSERTION procedure of 

section 4.2. Since we would like to use transfers and the related  INSERT2 operator in order to 

make the whole tour system more efficient, we perform this first step while using stronger 

transit bounds i, i  I, that means while making in such a way the riding times of the 

demanders get improved; 

2 – The first step is likely to yield rejected demands, because of the stronger transit. So, the 

second step deals with those rejected demands while only using the INSERT2 operator.   

 

That means that the whole process may be summarized as follows:  

 

Dial-a-Ride with Transfers Insertion Algorithmic Scheme:  

Continue <- true; 

While Continue do 

Compute updated transit bounds *i, i  I, such that for any i  I, *i ≤ i;                (E7) 

1 - Apply the INSERTION(N1, N2) procedure of section 4.2, while replacing, for any i  

I, i by *i; 

Let Reject the resulting rejected demand index set,  T the resulting valid covering 

collection associated with I1 = I – Reject,  and t the related valid time value set; 

2 -: we keep on replacing, for any i  I, i by *i; 

J <- Reject; Reject <- Nil;  Initialize the sets FREE2(i), i  J;  

While J  Nil do    

Picks up some demand i0 in J; Remove i0 from J;     

If FREE2(i0) = Nil then Reject <- Reject   {i0}; 

Else 

Derive from FREE2(i0) a Weak-L-Candidate list of 7-uples;                               (E8) 

Derive from Weak-L-Candidate a L-Candidate list, made with those 7-uples which are 

such that the replacement of (T(k1), T(k2)) by INSERT2(i0, k1, k2, x1, y1, x2, y2 , z) is 

going to maintain the validity of T;                                              (E9) 

If L-Candidate = Nil then Reject <- Reject   {i0} 

Else  

Picks up (k1, k2, x1, y1, x2, y2, z) in L-Candidate;                                                               

Create two new active nodes related to (z, i0, -1) and (z, i0,1);      

(T(k1), T(k2)) <- INSERT2(i0, k1, k2, x1, y1, x2, y2 , z); 

Update t; Update the time windows F(x), x    k = 1..K T(k);                  (E10)   

Update the sets FREE2(i), i  J; Insert i0 into I1; 

Update Continue; 



Keep the best  result (T, t, Reject, PerfA, B, C(T, t)) which was obtained during this process. 

 

Update- imposes stronger transit bounds, creating this way a need for transfers in order to 

achieve better  PerfA, B(T, t) values, we specify (E7) with this procedure as follows:  

 

Function Update-Input: ( : Number in Q,  > 1); Output: (*i, i  I); 

For i in I do : If i > . DIST(oi, di) then *i <- . DIST(oi, di) else  *i <- *i;  

 

5.4 The sets FREE2 and the construction of the weak-L-Candidate list 

For any i   J, the set FREE2-o(i) will be made with the pair (k, z) such that:   

- the active node z is in T(k), different from Last(T(z)), [a(z), b(z)] denotes the time 

window FP(T)(z), z’ gives Succ(T(k), z), and [, ] denotes the time window F(oi); 

- (a(z) + DIST(z, oi) ≤ )  ( + DIST(oi, z’) ≤ b(z’))  (a(z) + DIST(z, oi) + DIST(oi, 

z’) ≤ b(z’))  (C(, z) + Qi  ≤ CAP). 

In a same way, for any i   J, the set FREE2-d(i) will be made with the pair (k, z) such that:   

- (a(z) + DIST(z, di) ≤ )  ( + DIST(di, z’) ≤ b(z’))  (a(z) + DIST(z, di) + DIST(di, 

z’) ≤ b(z’))  (C(, z) + Qi  ≤ CAP). 

So, for any (x1, k1) in FREE1-o(i0), and for any (y2, k2) in FREE2-d(i0), k1 ≠ k2, we compute a 

relay node z through the following process summarized in 2 steps. 

1 – First, let us recall that we are provided with a function Midst, which, from any pair of nodes 

z, z’ in the node set Z, compute a new node z” = Midst(z, z’) in Z, in such a way that Dist(z, z”) 

and Dist(z”, z) are no larger than some fraction .Dist(z, z’), with  < 1; 

2 - For any node y in T(k1), we denote by Close(y, k2) the first (in the sense of the relation 

<<T(k2) ) element x in T(k1) such that t(x) ≥ t(y). Then, we apply the following Exchange 

function below.  

 

Exchange function. Input: (x1, k1, y2, k2); Output: (y in T(k1), x in T(k2), z : relay node); 

Compute y in T(k1), such that : 

 x1  <<T(k) z, Close(y, k2) <<
=

T(k2) y2, and DIST(y, Close(y, k2) is the smallest possible ; 

If y is undefined then Exchange <- Undefined  

Else Exchange <- (y, Pred(Close(y, k2)), Midst(z, U(z, l))); 

 

The result which is produced by Exchange(x1, k1, y2, k2) provides us with the parameters y1, 

x2, z, which would eventually allow us to perform the (T(k1), T(k2)) <- INSERT2(i0, k1, k2, x1, 

y1, x2, y2 , z) instruction. So, the Weak-L-Candidate list (E8) will be defined by those 7-uple (k1, 

k2, x1, y1, x2, y2, z) which we obtain this way, and the L-Candidate list will defined by those 

among those 7-uple which are such the validity of the tour collection T will be preserved 

through application of the INSERT2 operator, ordered according to some auxiliary 

performance criteria.   

 

5.5 Evaluate and testing the validity of an application of the INSERT2 operator 

What remains to be done is explaining the way we check the validity of the tour collection T, 

in case we apply it some INSERT2 process. So, let us consider that we are provided with I1  

I, with a  valid covering collection associated with I1, with i0   I - I1, with a 7-uple (k1, k2, x1, 

y1, x2, y2, z) as above, and that we intend trying to perform INSERT2(k1, k2, x1, y1, x2, y2, z). 

Clearly, checking the load validity of the two resulting tours T(k1) and T(k2) can be easily done 

through application of the following procedure:  

 

Procedure Test-Load2; Input: (i0, k1, k2, x1, y1, x2, y2, z); Output: Boolean; 



Test-Load2 <- {For any z in Segment(T(k1), x1, y1), C(, z) +  Qi0  ≤ CAP}  {For any z in 

Segment(T(k2), x2, y2), C(, z) +  Qi0  ≤ CAP} 

 

As for the time validity, things become more difficult, since we need to take into account all 

the existing linking constraints, which means that the whole collection T is involved in the test. 

So, let us suppose that we just computed a copy  of the tour collection which would result 

from the application of INSERT2(k1, k2, x1, y1, x2, y2, z), and that we just extend the DIST 

matrix in order to take into account the new active nodes (z, i0, -1) and (z, i0, 1).  We may use 

the notation Succ and Pred for the whole collection  as well as for a specific tour, since a 

given node in Z* is not going to appear more than once in . We denote by FS(x), x  

ACT() =    k = 1..K (k) the current time windows related to the nodes x which appear in .  

What we do is to propagate the same 5 rules as in section 3.2 augmented with the following 

rule R6 and R7:   

- Rule R6: y = Twin(x); Status(x) = Out-Reload; FS.min(x)  >  FS.min(y) |=  FS.min(y) 

<- FS.min(x); NFact <- y; 

- Rule R7: y = Twin(x); Status(x) = Out-Reload; FS.max(x)  >  FS.max(y) |=  FS.max(x) 

<- FS.max(y); NFact <- x; 

So, checking the time validity of  according to a current time window set FS = {FS(x) = 

[FS.min(x), FS.max(x)], x  ACT() =   k = 1..K (k)} is performed by application of a 

procedure Propagate2 based on Propagate. We may consider, in case Res = 1, that the 

resulting time window set FR = {FR(x), x  ACT()}, is completely determined by  and by 

the original time window set F. So, we denote it by FP(), and we consider it as attached to 

any time-valid tour collection . Like in section 3, the tour collection  is time valid iff the 

Propogate2 function yields a positive Res signal. 

As in Section 3, we need to evaluate the collection  in case it is time-valid and compute some 

well-fitted related time value set . In order to do it, we only focus on the Glob component of 

the Perf criteria, and we apply a Bellman process: we start by providing every DepotD node x 

with a maximal FP()(x).max time value, and next, we do in such a way we assign any other 

node x with a time value (x) which is the smallest possible, taking into account the initial 

assignments (DepotD(k), k = 1..K, the current time windows FP()(x), x   ACT(), the 

linking constraint and the distance constraints. Clearly, procedures Propagate2 and Evaluate2, 

which will be at the core of the construction of the L-Candidate list in (E8), are also being 

involved in (E10), when it will come to updating the time value set t and the current time 

windows  F: Once the “(T(k1), T(k2)) <- INSERT2(i0, k1, k2, x1, y1, x2, y2 , z);” instruction have 

been performed, time windows FP(T) will be computed, as well as t = Evaluate2(T)..   

  

5.6 Attempting an insertion with transfer and building the L-Candidate list. 

So, let us suppose that we are provided with a non-inserted demand index i0 and with some 7-

uple (k1, k2, x1, y1, x2, y2, z). We want to try and, in case of success, to evaluate, an application 

of the process INSERT2 to (i0, k1, k2, x1, y1, x2, y2, z). So, we perform the process Try-

Insert2(i0, k1, k2, x1, y1, x2, y2, z), while proceeding step by step: 

First step: we perform a call Test-Load2(i0, k1, k2, x1, y1, x2, y2, z); 

Second step: we check that DIST(oi0, Succ(T(k1), x1) + Length(T(k1), Succ(T(k), y1)  + 

Dist(y1, z) + Dist(z, Succ(T(k2), x2) + Length(T(k2), Succ(T(k2), x2), y2) + DIST(y2, di0) ≤  i0; 

Third step: we create temporarily two new active nodes z-out = (z, i0, -1) and z-in = (z, i0, -1) 

in Z*, and  we augment the DIST matrix in such a way it will provide with the respective 

distances between z-out and z-in and their resepctive neighbours in T(k1) and T(k2).   

Fourth step: we perform a call INSERT2(i0, k1, k2, x1, y1, x2, y2, z) on ; Time windows 

FS(x), in ACT() are the current time windows FR(T)(x), if x is in ACT(T), and they are: 

F(oi0) if x = oi0, F(di0) if x = di0 and [0, + ∞[ if x = z-in or z-out; 



Fifth step:  we run the Propagate2 procedure. In case of success, we run the Evaluate2 

procedure and get a resulting value Val; 

Sixth step: we restore the DIST matrix, the  collection, and the ACT() set. 

At the end of this process, Try-Insert2(i0, k1, k2, x1, y1, x2, y2, z) provides us with a 6-uple 

(Res: Boolean, Val: Number). The Boolean Res expresses the feasibility of an application of an 

INSERT2(i0, k1, k2, x1, y1, x2, y2, z) call and the number Val provides us, in case Res = True, 

with an evaluation of such a call. We are now able to summarize the whole resolution process 

of the DARPT.  

 

5.7 The whole process  
 

The global process consists in a “for” loop, during which the parameter  progressively 

decreases from an initial value  until 1: the length P of this loop is a parameter of the main 

procedure. Any iteration inside this loop works as described in section 5.3.  values are 

updated as in (E7). A first step involves a call INSERTION(N1, N2) and yields some Reject1 

rejected demand index set, together with some pair (T, t), where T is a valid covering  

collection for I – Reject1,  and t is a related time value set. In case Reject1 is not empty, a second 

step is performed, which involves a call to a procedure INSERTION2, which works while 

trying to insert the rejected demands through applications of the INSERT2 operator. The 

INSERTION2 procedure takes as input the 3-uple (T, t, Reject1) which was computed through 

the first step, and proceeds, according to a “while” loop, in order to insert demands of Reject1 

through the INSERT2 operator. Any time it enters this main “while” loop, it is provided with a 

subset J of the Reject1 set, which contains the demands which remain to be inserted and a 

current Reject set, a pair (T, t), related time windows FP(T)(x), x  ACT(T),  and a related 

current active set ACT(T), and finally the sets FREE2-o(i) and FREE2-d(i), i  J, defined as in 

VIII.4; We denote by N-FREE-o(i) (N-FREE-d(i)) the number of vehicle which appear in 

FREE2-o(i) (FREE2-d(i)). The process is composed of four main steps:  

 

1. it picks up some demand i0 in J: if there exists i such that N-FREE-o(i) = 1 or N-FREE-d(i) 

= 1, then i0 is chosen in a random way among those demands in J which  such that N-FREE-

o(i) = 1 or N-FREE-d(i) = 1; else it is chosen in a random way among the demands in J which 

minimize the quantity N-FREE-o(i) = 1 + N-FREE-d(i);                  (E11) 

2. It builds the Weak-L-Candidate list as in section 8.4, with those 7-uple (k1, k2, x1, y1, x2, y2, z) 

which are such that (k1, x1)   FREE2-o(i0), (k2, x2)   FREE2-d(i0), and  (y1, x2, z) =  

Exchange(x1, k1, y2, k2);                     (E12) 

3. For any 7-uple (k1, k2, x1, y1, x2, y2, z) in Weak-L-Candidate, it tries the Try-Insert2(i0, k1, k2, 

x1, y1, x2, y2, z) process, and, in case, the Res component of the result is true, it inserts (k1, k2, 

x1, y1, x2, y2, z)  into a L-Candidate list, ordered according to increasing to the related Val 

component values;                    (E13) 

4. In case L-Candidate is empty, then i0 is inserted into Reject, else: 

- the process picks up (k1, k2, x1, y1, x2, y2, z) in L-Candidate: it proceeds through a 

random choice among the up to N3 elements of L-Candidate. N3 becomes a parameter 

of INSERTION2;                    (E14) 

- It creates two new active nodes related to (z, i0, -1) and (z, i0,1) and it effectively 

performs the insertion: (T(k1), T(k2)) <- INSERT2(i0, k1, k2, x1, y1, x2, y2, z); 

- It updates t, together with the time windows FP(x), x  ACT(T), through application 

of the Propagate2 and Evaluate2 procedures and the process updates the sets 

FREE2(i), i  J; 

Finally, the process keeps the best result (T, t, Reject, PerfA, B(T, t)) which was ever obtained 

during this process. So the INSERTION2 and the DARPT-INSERTION procedure come may 

be described as follows:   

 



Procedure INSERTION2(T1: partial tour collection, t1: related time value set,  Rej: Rejected 

Demand set): (T: tour set, t: time value set, Perf: induced Perf(T, t) value, Reject: rejected 

demand set, N3: integers);     

 J <- Rej ; Reject <- Nil; T <- T1; t <- t1;  

While J  Nil do    

Pick up some demand i0 in J as in (E11); Remove i0 from J; 

If FREE2-o(i0) = Nil or FREE2-d(i0) = Nil then Reject <- Reject   {i0} 

Else 

Compute the Weak-L-Candidate list according to (E12);  

Build the L-Candidate list according to (E13);  

If L-Candidate = Nil then Reject <- Reject  {i0} 

Else 

Picks up (k1, k2, x1, y1, x2, y2, z) in L-Candidate according to (E14);     

Create two new active nodes related to (z, i0, -1) and (z, i0,1);       

(T(k1), T(k2)) <- INSERT2(i0, k1, k2, x1, y1, x2, y2 , z); 

Update t and PF(T) through application of the Propagate2 and Evaluate2 

procedures;   

For any i  J, update FREE2-o(i) and FREE2-d(i);  

Perf <- Perf(T, t);  

INSERTION2 <- (T, t, Perf, Reject); 

 

DARPT-INSERTION 

Input: (N1, N2 , N3, P: Integers, A transit network G = (V, E), a vehicle fleet VH = (K, CAP), a 

demand set  D = (Di = (oi, di, i, F(oi), F(di), Qi), i  I), by a 4-uple (X, DIST, K, CAP), and by 

2 multi-criteria coefficients A and B ≥ 0, augmented with the node set Z, such that X  Z, and 

with the function Dist, with domain Z.Z, such that: for any x, y in X, DIST(x, y) = Dist(x, y). 

Output: (T: Tour collection, t: time valued set, Perf: Performance Value, Reject: Rejected 

Demand Index set); 

-Aux <- ; Initialize  with a large value ; 

For p = 1..P do 

 <- Update- (); (T1, t1, Perf1, Reject1) <- INSERTION1(N1, N2);   

If Reject1 = Nil then DARPT-INSERTION <- (T, t, Perf, Reject) 

Else (T, t, Perf, Reject) <- INSERTION2(T1, t1, Reject1, N3); 

 <- -Aux ; Update :  <-  – 1/P.( – 1);   

 Keep the best result (T, t, Reject, PerfA, B(T, t)) which was obtained during this process. 

6 Computational experiments 

All the insertion techniques based on the constraint propagation were implemented in C++ and 

each replication was run on the same thread of an Intel Q8300 (2.5 GHz).   

6.1 Experiments on the DARP  

 
Our first experiments deal with the randomly generated instances of [2]. To analyse the 

behaviour of our solution, we used the same objective function used in [19] and adapted in 

[20]. The instances have between 24 and 144 requests which have to be supported by a fleet of 

3 to 13 vehicles. The maximum route duration is 480 for each vehicle and for each instance. 

The capacity is equal to 6 and the maximum ride time is 90. [19] used the objective function 

given in equation (4), the terms penalizing the violations have been removed. Thus, we 

minimize travel distance (c(s)), excess ride time (r(s), cf. (1)), passenger waiting (l(s), cf. (2)), 



the total duration Glob (g(s)) and early arrival (e(s), cf. (3)). We set the weight like in [19] and 

[20] to w1=8, w2=3, w3=1, w4=1, w5= |D|.  

)),()(()(
1 ii

K

k ki
doDISTiRidesr   

                 (1) 

 )))(,(C()(
1

)((

))((

)( xk

K

k

lastpred

Firstsuccx

xsucc qxsuccWaitsl
k

k

 






                                                       (2)                                                       

 




 




K

k

lastpredpred

Firstx

k

k

xsuccMinF
se

1

))(((

)( succ(s)))DIST(x,(x)(

 ))((.
)(


                                                        (3) 

)()()()()( 54321 sewsgwslwsrwscwCost                                                     (4) 

The table 1 gives the values of the COST obtained with the proposed insertion techniques using 

constraint propagation. Gap is computed with the results of our insertion technique and the 

VNS such as Gap<-100.(VNS-TI)/TI. We take best results over 25.10
4
 replications with a 

variation in the values of N1 and N2 (each lower than 4). We noted only the objective function 

of the two works. So we compare our Insertion Techniques (IT) with the Variable 

Neighbourhood Search (VNS) and the Genetic Algorithm (GA). Refer to [19] and [20] for the 

other values. As with the VNS technique, we obtained results always better than the GA. 

Moreover, we often obtained better results than the variable neighbourhood search. So we 

found a large difference between [19] and the others works, but solutions obtained by us and 

[20] are close even though in R10a we obtain a large gap. In fact, time constraints of this 

instance are very tight and we use a simple learning algorithm without computing a precise 

order for introducing the demands already rejected. 

Early arrivals have the largest weight in the objective function and our solution gives us 

numbers close to 0 (except for R10a) for the majority of the results. In this case, no vehicle 

arrives at a node before the beginning of a node’s time window. Each large gap obtained 

(negative or positive) is related to the early arrivals. This is also why the solution based on a 

genetic algorithm [19] resulted in a very large cost. Our CPU times are close (or lower) to the 

VNS’ runs with the same number of iterations (e.g. for the 25.10
4
 replications we required less 

than one minute for the smallest instance (R1a) and 38 minutes for the biggest and hardest 

instance (R10a).  

Table 1 - Insertion techniques (IT) compared to GA ([19]) and VNS ([20]) 

Inst. |D| GA [19] VNS [20] IT Gap 

R1a 24 4696 3234.6 3371.4 -4.1 

R2a 48 19426 14640.2 9025.7 62.2 

R3a 72 65306 15969.1 10780.8 48.1 

R5a 120 213420 23852.0 14054.2 69.7 

R9a 108 333283 13806.4 14175.7 -2.6 

R10a 144 740890 25016.5 35359.5 -29.3 

R1b 24 4762 2825.5 2927.6 -3.5 

R2b 48 13580 5003.1 5066.5 -1.3 

R5b 120 98111 12360.5 12528.9 -1.3 

R6b 144 185169 16499.4 16339.4 1.0 

R7b 36 9169 4601.7 4523.1 1.7 

R9b 108 167709 13412.8 13564.9 -1.1 

R10b 144 474758 16420.0 17546.5 -6.4 

Average 179252.2 12895.5 12251.1 5.3 



6.1 Experiments on the DARPT 

Figure 1 - Indirect minimization of the Ride times 

 

For the first short experimentation on the DARP with transfers, the DARPT-INSERTION 

algorithm was applied to the first instance of [2], the R1a, in order to analyse the evolution of 

the Ride time caused by the variation of the maximum ride time We report in Figure 1 

eleven Ride times, each with 10 replications, where all the demands have been included in 

valid routes. These times are shorter and shorter (up to half of the first time) during all the 

executions, the Glob times had a small raise but not comparable to the Ride time. In a real 

context, so in a reactive context, depending on the time the system needs to accept or not the 

demand (virtual insertion and synchronization mechanisms included), this QoS criterion could 

be managed by the DARPT-INSERTION’s value p. 

For the second experimentation on the DARPT, we applied our solution to solve the DARPT 

on a set of randomly generated instances. Each instance is different by the size of the windows, 

the number of demand, and the number of cars. Like in [2], we randomly generated the 

coordinates of pick-up and drop-off nodes in the square of side 20. We split the square in 4 

parts and the fleet VH in 4 sub-fleets VH1, VH2, VH3, and VH4 related to the sub-squares EP1, 

EP2, EP3, and EP4. D is classified in two sets: the transverse demands which are its origin node 

in a different sub-square than the destination and the local demands. For each instance studied 

here, 50% of the demands are local and uniformly set to the 4 sub-squares. We generated a 

different maximum user ride time which equal to the product of 20 and the distance between 

the origin node and the destination node. The capacity CAP equals 6 for each vehicle. Each 

demand has a large time windows (all the day, from 0 to 1440 minutes) and another tight (15 

or 30 minutes), their Status is grant randomly. We performed 100 replications of 12 sets of 5 

instances generated by the parameters written above. Table 3 gives the results. We provided 

R1c which is the rate of the demand inserted in the routes when the transfers are forbidden R1 t 

is the same rate when transfers are allowed. We computed Gap such as Gap <- (R1t- R1c)/( 

R1c/100). All the results are average of the 100 replications. When comparing average rates 

obtained by each resolution, about 11.9% of demand can be inserted if the transfers are 

allowed in addition compared with no transfer. R1t and R1c are obviously better when the fleet 

has more cars (K=5), but if the gap is more important it means there are more possibility to do 

a transshipment. The first fourth instances have 3 times less demands inserted than the second 

set (with the same fleet). The R1t and R1c for the first set are a little less than 3 times less than 

the second set. That is explain by the fact the second set are a bigger choice to included his 

demands. 

Table 2.  DARP classic Vs DARP with transfers 

Inst. |D| K 
Win. 

RIc RIt 
Gap 

Inst. |D| K 
Win. 

RIc RIt 
Gap 

Size (%) Size (%) 

1 32 4 15 54.59 62.76 14.95 7 64 5 15 39.06 46.12 18.08 

2 32 4 30 61.84 68.32 10.47 8 64 5 30 45.17 48.20 6.72 

3 32 5 15 70.28 86.02 22.40 9 96 4 15 22.43 24.16 7.74 



4 32 5 30 77.00 89.07 15.67 10 96 4 30 25.92 27.02 4.24 

5 64 4 15 29.37 34.34 16.94 11 96 5 15 28.64 32.62 13.93 

6 64 4 30 35.29 37.05 4.97 12 96 5 30 33.26 35.35 6.30 
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