Duc-Cuong Dang
email: duc-cuong.dang@hds.utc.fr

Racha El-Hajj
email: racha.el-hajj@hds.utc.fr

Aziz Moukrim
email: aziz.moukrim@hds.utc.fr

A Branch-and-Cut Algorithm for Solving the Team Orienteering Problem

Keywords: branch-and-cut, dominance property, incompatibility, clique cut

This paper describes a branch-and-cut algorithm to solve the Team Orienteering Problem (TOP). TOP is a variant of the Vehicle Routing Problem (VRP) in which the aim is to maximize the total amount of collected profits from visiting customers while not exceeding the predefined travel time limit of each vehicle. In contrast to the exact solving methods in the literature, our algorithm is based on a linear formulation with a polynomial number of binary variables. The algorithm features a new set of useful dominance properties and valid inequalities. The set includes symmetric breaking inequalities, boundaries on profits, generalized subtour eliminations and clique cuts from graphs of incompatibilities. Experiments conducted on the standard benchmark for TOP clearly show that our branch-and-cut is competitive with the other methods in the literature and allows us to close 29 open instances.

Introduction

The Team Orienteering Problem (TOP) [START_REF] Chao | The team orienteering problem[END_REF] is a widely studied Vehicle Routing Problem (VRP) which can be described as follows: a fleet of vehicles is available to visit customers from a potential set and each vehicle is associated with a predefined travel time limit and two particular depots, the so-called departure and arrival. Each customer is associated with an amount of profit that can be collected at most once by the fleet of vehicles. The aim of TOP is to select customers and organize an itinerary of visits so as to maximize the total amount of collected profits. The applications of TOP include athlete recruiting [START_REF] Chao | The team orienteering problem[END_REF], technician routing [START_REF] Bouly | Un algorithme de destruction/construction itératif pour la résolution d'un problème de tournées de véhicules spécifique[END_REF][START_REF] Tang | A tabu search heuristic for the team orienteering problem[END_REF] and tourist trip planning [START_REF] Vansteenwegen | Metaheuristics for tourist trip planning[END_REF].

To the best of our knowledge, three exact methods have been proposed to solve TOP. Butt and Ryan [START_REF] Butt | An optimal solution procedure for the multiple tour maximum collection problem using column generation[END_REF] described a set covering formulation and developed a column generation algorithm for solving TOP. In Boussier et al. [START_REF] Boussier | An exact algorithm for team orienteering problems[END_REF], the authors proposed a branch-and-price algorithm and a dynamic programming approach to deal with the pricing problem. More recently, a pseudo-polynomial linear model for TOP was introduced by Poggi de Aragão et al. [START_REF] Poggi De Aragão | The team orienteering problem: Formulations and branch-cut and price[END_REF] and a branch-cut and price algorithm was proposed. These methods are able to solve a large part of the standard benchmark [START_REF] Chao | The team orienteering problem[END_REF] for TOP, however many other instances remain open. Furthermore, a recent effort [START_REF] Dang | A PSO-inspired algorithm for the team orienteering problem[END_REF] showed that it is hardly possible to improve the already-known solutions for TOP by heuristics.

In this paper, we propose a branch-and-cut algorithm for the exact solution of TOP based on a set of dominance properties and valid inequalities. This set includes symmetric breaking, generalized subtour eliminations, boundaries on profits/numbers of customers based on dynamic programming, as well as clique cuts based on the graphs of incompatibilities. Experiments conducted on the standard benchmark [START_REF] Chao | The team orienteering problem[END_REF] for TOP clearly show the competitiveness of the approach, especially on the number of instances being solved to optimality. The algorithm also allows us to close 29 open instances.

Compact formulation

TOP is modeled with a complete graph G = (V, E). V = {1, . . . , n} ∪ {d, a} is the set of vertices representing customers and depots. E = {(i, j)|i, j ∈ V } is the set of arcs. Vertices d and a are respectively the departure and the arrival depot for the vehicles. We use V -, V d and V a to denote the sets of customers only, customers with departure depot and customers with arrival depot respectively. Each vertex i is associated with a profit P i (P d = P a = 0) and a travel cost C ij is associated with each arc (i, j) ∈ E (C id = C ai = ∞, ∀i ∈ V -). The travel costs are assumed to satisfy the triangle inequality. A fleet F is composed of m identical vehicles and available to visit customers without exceeding a travel cost limit L for each vehicle. The problem can be then formulated in Mixed Integer Programming (MIP) using a polynomial number of decision variables x ijr and y ir : x ijr = 1 if arc (i, j) is used by vehicle r to serve customer i then customer j and 0 otherwise; y ir = 1 if client i is served by vehicle r and 0 otherwise. max i∈V -r∈F

y ir P i (1) r∈F y ir ≤ 1 ∀i ∈ V - (2)
j∈V a

x djr =

j∈V d x jar = 1 ∀r ∈ F (3) i∈V a \{k} x kir = j∈V d \{k} x jkr = y kr ∀k ∈ V -, ∀r ∈ F (4) i∈V d j∈V a \{i} C ij x ijr ≤ L ∀r ∈ F (5
) (i,j)∈U ×U x ijr ≤ |U | -1 ∀U ⊆ V -, |U | ≥ 2, ∀r ∈ F (6) x ijr ∈ {0, 1} ∀i ∈ V, ∀j ∈ V, ∀r ∈ F (7)
y ir ∈ {0, 1} ∀i ∈ V -, ∀r ∈ F
The objective function (1) is to maximize the sum of collected profits. Constraints (2) guarantee that each customer is visited at most once. The connectivity of each tour is ensured by constraints (3) and (4). Constraints (5) describe the travel length restriction. Constraints [START_REF] Dang | A PSO-inspired algorithm for the team orienteering problem[END_REF] ensure that subtours are forbidden. Finally, the integral requirement on variables is guaranteed by constraints [START_REF] Fischetti | Solving the orienteering problem through branch-and-cut[END_REF].

Generalized subtour eliminations

The number of constraints (6) in the formulation is exponential. In practice, these constraints are removed from the formulation and only added when needed. Moreover, we replace these constraints with stronger ones known as the Generalized Subtour Elimination Constraints (GSEC) [START_REF] Fischetti | Solving the orienteering problem through branch-and-cut[END_REF] as follows.

For a given subset S of vertices, we define δ(S) as the set of arcs connecting vertices of S with vertices of V\S. We also define γ(S) as the set of arcs interconnecting vertices of S. The following constraints ensure that each customer served by vehicle r is connected to the depots. Property 2.1 GSEC:

(u,v)∈δ(S) x uvr ≥ 2y ir , ∀S ⊂ V, {d, a} ⊆ S, ∀i ∈ V \ S, ∀r ∈ F (8)
Property 2.2 Equivalent to the GSEC:

(u,v)∈γ(S)
x uvr ≤ i∈S y ir -y jr , ∀S ⊂ V, {d, a} ⊆ S, ∀j ∈ V \ S, ∀r ∈ F (9)

(u,v)∈γ(U)
x uvr ≤ i∈U y ir -y jr , ∀U ⊆ V -, ∀j ∈ U, ∀r ∈ F (10)

Dominance properties

Given an instance X of TOP with m vehicles, we use X I to denote the same instance for which profit of each customer is changed to 1. We also define X g as the instance X where the number of vehicles is reduced to g (g ≤ m). On the other hand, we use LB(X) (resp. U B(X)) to denote a lower (resp. an upper) bound of instance X. The following properties hold for the formulation of TOP.

Property 3.1 Symmetric breaking on profits, (without loss of generality) we focus on solutions in which profits of routes are sorted in a particular order:

i∈V - y i(r+1) P i - i∈V - y ir P i ≤ 0, ∀r ∈ F \ {m} (11)
Property 3.2 Boundaries on profits:

r∈H i∈V - y ir P i ≤ U B(X |H|), ∀H ⊂ F (12
)
r∈H i∈V -

y ir P i + U B(X m-|H|) ≥ LB(X), ∀H ⊆ F (13)
Property 3.3 Boundaries on numbers of customers:

r∈H i∈V - y ir ≤ U B(X |H| I), ∀H ⊂ F (14) i∈V - y ir ≥ LB(X1 I), ∀r ∈ F (15)
Values of LB in (13) are calculated using an efficient heuristic for TOP, such as the one used in [START_REF] Dang | A PSO-inspired algorithm for the team orienteering problem[END_REF]. Similarly to dynamic programming, values of U B in (12), (13) and (14) are computed as follows. We start our resolution by computing these values for the smallest instance (|H| = 1) using a stopping condition, i.e. computational time or number of branch-and-bound nodes, then we use the obtained values to solve larger instances (|H| ≤ m). In (15), we use LB(X1 I) to denote a lower bound obtained from solving the derived MIP model of X 1 I for which the objective function is reversed to minimization and the constraints (12) and (13) with |H| = 1 are added.

Incompatibilities and clique cuts

Let S be a small subset of vertices of V -(or arcs of E), we use M inLength(S) to denote the length of the shortest path from d to a containing all vertices (or all arcs) of S. The graph of incompatibilities between customers is defined as:

G Inc V -= (V -, E Inc V -) with E Inc V -= {[i, j]|i ∈ V -, j ∈ V -, M inLength({i, j}) > L}.
The graph of incompatibilities between arcs is defined as:

G Inc E = (E, E Inc E) with E Inc E = {[i, j]|i = (u, v) ∈ E, j = (w, s) ∈ E, M inLength({(u, v), (w, s)}) > L}.
The following inequalities hold for the formulation of TOP.

Property 4.1 (Clique) Let K (resp. Q) be a clique of G Inc V -(resp. G Inc E): i∈K y ir ≤ 1, ∀r ∈ F (16) (u,v)∈Q x uvr ≤ 1, ∀r ∈ F (17)
The two graphs G Inc V -and G Inc E can be computed beforehand and archived for each instance. Maximal cliques are preferred in inequalities (16) and (17) since they provide tighter formulation. In practice a greedy decomposition of the two graphs into maximal cliques is used and the details are given in the next section.

Branch-and-cut algorithm

Branching rule: Since the objective function is to maximize the collected profits, the selection of correct customers appears to be crucial for TOP. Therefore, our branching rule is prioritized on y ir first then x ijr [START_REF] Boussier | An exact algorithm for team orienteering problems[END_REF][START_REF] Poggi De Aragão | The team orienteering problem: Formulations and branch-cut and price[END_REF].

Presolving steps: By definition, a customer is said to be inaccessible if the travel cost of the tour containing only that customer excesses the cost limit. An inaccessible arc can be similarly defined. So in order to make a proper linear formulation, we first eliminate all inaccessible customers and arcs. Additionally, during a limited computational time at the beginning (e.g. limited to 5% of the total solving time), the values required for inequalities (12)-(15) are computed using the method mentioned in Section 3. Then a greedy decomposition of G Inc V - into maximal cliques is generated using [START_REF] Dang | Subgraph extraction and metaheuristics for the maximum clique problem[END_REF] and the associated inequalities (16) are added to the formulation.

Complete algorithm:

The MIP solver is initialized with a feasible solution generated from an heuristic of [START_REF] Dang | A PSO-inspired algorithm for the team orienteering problem[END_REF]. This initialization accelerates the resolution by eliminating portions of the search space composed of solutions with lower profits. In the first iteration, the linear model containing constraints (2)-(5), (7), (11)-(15) and (16) is solved and a solution is obtained. The solution is then checked for subtours. If the solution does not contain any subtour, then it is optimal and the resolution is terminated. Otherwise, the associated constraints (8), (9) and (10) are added into the linear model. Additionally, based on the sets of vertices and arcs from the solution, we extract the associated subgraphs from G Inc V -and G Inc E , then generate their greedy clique decompositions in order to add the corresponding constraints (16) and (17) to the linear model. In the next iteration, the same solving process is repeated with the new model.

Numerical results

Our approach was tested on the benchmark of TOP instances proposed by Chao et al. [START_REF] Chao | The team orienteering problem[END_REF]. It comprises 387 instances divided into 7 sets. The numbers of customers and vehicles are up to 100 and 4 respectively. Our algorithm is coded in C++. Experiments were conducted on an AMD Opteron 2.60 GHz and CPLEX 12.4 was used as MIP solver. We used the same 2h limit of solving time as in [START_REF] Boussier | An exact algorithm for team orienteering problems[END_REF][START_REF] Poggi De Aragão | The team orienteering problem: Formulations and branch-cut and price[END_REF].

In order to evaluate the usefulness of the proposed components, we activated them one by one so that the complete algorithm is obtained in the last activation. Table 1 shows the number of instances being solved to optimality for each activation. The average computational times on the subset of instances being solved by all configurations are also given. We notice that each component contributes to the improvement of the number of instances being solved, as well as to the reduction of the computational times. Table 2 shows a small comparison between our results and those of Boussier et al. [START_REF] Boussier | An exact algorithm for team orienteering problems[END_REF]. Each instance is chosen so that only one of the two methods is able to prove the optimality. Columns instance, n, m, and L indicate respectively name of the instance, number of customers, number of vehicles and the cost limit. The main columns report the results of the branch-and-price method of Boussier et al. [START_REF] Boussier | An exact algorithm for team orienteering problems[END_REF] in B-P and our results in B-C. Columns LB, U B and CP U report respectively the lower bound, upper bound and solving time in seconds for each instance and method. To summarize, our algorithm is able to prove the optimality of all the instances in the sets 1, 2, 3, and 6 and most of the instances in the other three sets. In total, we are able to solve 278 instances. Compared to [START_REF] Boussier | An exact algorithm for team orienteering problems[END_REF] which solved 270 instances, our approach is clearly competitive. Moreover, it allows us to close 29 open instances.

Table 1 :

 1 Performance of our branch-and-cut.

	Accumulated components	Solved instances CPU (in seconds)
	Standard model	177/387	198.9
	+ Generalized subtour eliminations	233/387	61.75
	+ Symmetric breaking	243/387	14.32
	+ Boundaries on profit/customers	265/387	13.16
	+ Clique cuts	278/387	3.24

Table 2 :

 2 Comparison between the branch-and-price[START_REF] Boussier | An exact algorithm for team orienteering problems[END_REF] and ours.

	Instance n m L		B-P [2]	B-C
		U B LB CP U U B LB CP U
	p1.2.p 30 2 37.5 250	-2926 250 250 8.85
	p1.2.q 30 2 40	-	-	-265 265 10.96
	p1.2.r 30 2 42.5 -	-	-280 280 10.15
	p3.2.l 31 2 35 605	-4737 590 590 31.33
	p3.2.m 31 2 37.5 -	-	-620 620 58.41
	p3.2.n 31 2 40	-	-	-660 660 26.72
	p3.2.o 31 2 42.5 -	-	-690 690 34.64
	p3.2.p 31 2 45	-	-	-720 720 39.39
	p3.2.q 31 2 47.5 -	-	-760 760 16.55
	p3.2.r 31 2 50	-	-	-790 790 14.25
	p3.2.s 31 2 52.5 -	-	-800 800 0.11
	p3.3.s 31 3 35 738.91 -416 720 720 188.04
	p3.3.t 31 3 36.7 763.69 -4181 760 760 93.71
	p4.2.h 98 2 60	-	-	-835 835 2783.76
	p4.2.i 98 2 65	-	-	-918 918 1511.7
	p4.2.t 98 2 120 -	-	-1306 1306 1.29
	p4.3.g 81 3 36.7 656.38 653 52 665 653	-
	p4.3.h 90 3 40 735.38 729 801 761 729	-
	p4.3.i 94 3 43.3 813.63 809 4920 830 809	-
	p4.4.i 68 4 32.5 665.4 657 23 660 657	-
	p4.4.j 76 4 35 741.47 732 141 784 732	-
	p4.4.k 83 4 37.5 831.95 821 558 860 821	-
	continued on next page

This work is partially supported by the Regional Council of Picardie and the European Regional Development Fund (ERDF), under PRIMA project.

Conclusion and future work

In this article, we presented a branch-and-cut algorithm to solve TOP. Several cuts that strengthen the classical linear formulation were proposed. They include symmetric breaking, generalized subtour eliminations, boundaries on profits/numbers of customers and clique cuts. Experiments conducted on the standard benchmark show that our algorithm has the ability to solve a large number and a variety of instances. The algorithm permits to close several new instances. The obtained results clearly show the competitiveness and the robustness of our method on the classical linear TOP formulation. For future work, we plan to extend the approach to solve other combinatorial optimization problems.