
HAL Id: hal-00917107
https://hal.science/hal-00917107

Submitted on 12 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Analysis Framework for Examination Timetabling.
Taha Arbaoui, Jean-Paul Boufflet, Aziz Moukrim

To cite this version:
Taha Arbaoui, Jean-Paul Boufflet, Aziz Moukrim. An Analysis Framework for Examination
Timetabling.. Symposium on Combinatorial Search, Jul 2013, Leavenworth, United States. pp.11-19.
�hal-00917107�

https://hal.science/hal-00917107
https://hal.archives-ouvertes.fr


An Analysis Framework for Examination Timetabling

Taha Arbaoui and Jean-Paul Boufflet and Aziz Moukrim
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Abstract

An examination timetabling problem taken from real world
universities was proposed at the International Timetabling
Competition (ITC2007). The aim was to establish a com-
mon base for comparing different solution approaches. This
paper presents new preprocessing methods that disclose hid-
den constraints and significantly increase the number of new
edges that can be added to the conflict graph. Results show
that the size of the maximum clique of the obtained conflict
graph has been more than doubled for two instances as a re-
sult of our preprocessing. These larger cliques mean that in-
stances can be analyzed in advance of a solution and end users
gain useful information for making decisions. In addition, we
have looked at the different criteria that compose the objec-
tive function, in order to provide more useful insights into
the difficulty of problems in practice. We propose new in-
teger programming formulations using clique inequalities to
compute optimal solutions for 4 criteria and to obtain lower
bounds for the 3 others. Results are presented and discussed
for all the benchmark instances.

1 Introduction

University examination timetabling has been a widely stud-
ied problem for a number of decades. The basic problem
generally encountered is a graph coloring problem with ex-
tra institutional hard and soft constraints. Although the prob-
lem appears to be similar across different universities, each
individual case is in general unique because of the different
rules and terms used by institutions to evaluate the quality of
solutions. A wide variety of approaches have been applied
to widely differing problem descriptions, and so clear and
meaningful scientific comparisons are difficult. The reader
should refer to (Qu et al. 2009) for a detailed overview of
examination timetabling.

In the second International Timetabling Competition (Mc-
Collum et al. 2007), the examination track introduces a real-
world formulation encountered within educational institu-
tions. Public instances are at the disposal of the commu-
nity. The competition constitutes a challenging area, play-
ing an important role in bridging the current gap between
research and practice. The definitions of the hard and soft
constraints make it possible for a solution to be assessed
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by measuring the outcomes of heuristic solvers based on
different approaches (Gogos, Alefragis, and Housos 2012;
McCollum et al. 2009; Müller 2009).

A general integer programming model was proposed (Mc-
Collum et al. 2012). This formulation introduces a clear
mathematical model, and is useful in evaluating solutions
obtained using heuristics. Unfortunately, it cannot be used
to find optimal solutions.

A constraint programming approach coupled with an im-
provement stage was used by the winner of the ITC2007
competition (Müller 2009). The automatic domain reduc-
tion mechanism makes use of infeasibility between subprob-
lems when searching for a solution. A partial constructive
stage followed by an Extended Great Deluge heuristic was
used by (McCollum et al. 2009). In (Gogos, Alefragis, and
Housos 2012), the authors used a preprocessing stage to dis-
cover hidden dependencies between exams, prior to search-
ing for a solution. They reported that dealing with hard
constraints deduced at an early stage has been proved to
smooth the solution process. The proposed method then uses
a GRASP-based process combined with other meta-heuristic
techniques. In a recent work (Demeester et al. 2012), the
authors successfully investigated a hyperheuristic approach
applied to the instances from their University and to the in-
stances described in (Qu et al. 2009). A hyper-heuristic is
a heuristic search method that seeks to automate, the pro-
cess of selecting, combining, generating or adapting several
simpler heuristics to efficiently solve computational search
problems. They applied their approach to the second Interna-
tional Timetabling Competition examination track instances,
without improving the best solutions that can be found in
(McCollum et al. 2009), (Müller 2009) and (Gogos, Ale-
fragis, and Housos 2012).

Since students can sit only one exam at a time, two exams
that have some student in common cannot be allocated to
the same period. This constitutes the main rule for building
the conflict graph between exams. The nodes of the con-
flict graph are exams, edges are pairs of exam that cannot be
assigned to the same period. However, the other hard con-
straints can be used to discover new general conflict con-
straints, so that two exams cannot necessarily be scheduled
together simply because they have no students in common.

We propose three preprocessing stages to exhibit new
conflict constraints. As a result, new edges can be added to



the conflict graph in which we are seeking a feasible color-
ing while respecting the remaining hard constraints that can-
not be embedded in the conflict graph. As a consequence, the
size of the cliques (i.e. set of pairwise adjacent nodes) may
increase, and this improves the efficiency of clique inequal-
ities in an integer programming formulation.

We propose a new formulation for some constraints in the
original mathematical model (McCollum et al. 2012). The
criteria of the objective function have been considered sep-
arately. We optimally solve all the public instances, consid-
ering four of these criteria. We then propose an evaluation
scheme in order to obtain lower bounds on the three remain-
ing criteria. This means that instances can be analyzed prior
to a solution stage, which can help end users to make appro-
priate decisions.

The remainder of this paper is organized as follows. In
Section 2 the problem definitions, the properties of the pub-
lic instances and the original mathematical formulation (Mc-
Collum et al. 2012) are presented. Section 3 describes the
proposed preprocessing. New formulations for some con-
straints of the original model are explained in Section 4.
The evaluation scheme for the three remaining criteria is
presented in Section 5, and comments about the results are
made in Section 6. Our conclusion is to be found in Section
7, where some insights into ongoing work are also given.

2 Problem description

This section provides a brief description of the examination
timetabling track of the second International Timetabling
Competition (ITC2007). The reader should refer to (McCol-
lum et al. 2007) (McCollum et al. 2010) for a comprehensive
presentation. We use the same notation as in (McCollum et
al. 2012).

The problem addressed by this track involves allocating
a set of exams to a set of rooms within an examination ses-
sion comprising a fixed number of periods, while satisfying
a number of hard constraints. A feasible solution is one in
which all hard constraints are respected. The quality of the
solution is evaluated using a sum of weighted terms, each
term measuring the degree to which some soft constraint is
violated.

The benchmark for this competition track consists of 8
public instances and 4 hidden instances used to counter over-
tuned behavior in competitors’ solvers. Each instance is de-
fined as sets of data, hard constraints, and weighted soft con-
straints. The day, the start time and the duration of each pe-
riod are given. A set of rooms with individual capacities and
weights is also given. Each exam has an individual duration
and a set of enrolled students. Each student has to sit a num-
ber of exams. In this track, the hard constraints are:

• A student can sit only one exam at a time.

• An exam cannot be split between rooms.

• An exam cannot be split between periods.

• The duration of an exam allocated to a period must be less
than or equal to the duration of the period.

• The capacity of individual rooms is not exceeded at any
period.

• Exams can share a room, as long as the capacity of the
room is respected.

• Precedences, denoted j ≺ i: exam j has to be scheduled
prior to exam i.

• Exclusions, denoted i ⊕ j: exam i must not take place at
the same time as exam j.

• Coincidences, denoted i ⊙ j: the two exams must be as-
signed to the same period.

• Room exclusives, denoted “room exclusive exam i”:
exam i must take place in a room on its own.

Seven soft constraints are used as terms of the evaluation
function. For each instance, a set of weights is accordingly
provided. The terms are defined as follows:

• Two In a Row: when two examinations are allocated back
to back on the same day, this term corresponds to the num-
ber of students that take these exams multiplied by the
weight w2R.

• Two In a Day: when two examinations are scheduled not
back to back but on the same day where there are three
periods or more, this term corresponds to the number of
students sitting the two exams multiplied by the weight
w2D.

• Period Spread: this term corresponds to the sum of oc-
currences of students who have to sit exams within a fixed
period spread. The period spread in question is given, and
there is no weight.

• Front Load: this term corresponds to the number of large
exams scheduled in the latter part of the session multiplied
by the weight wFL. The number of periods that constitute
the “latter part” and the number of candidates that consti-
tute a “large exam” are given.

• Mixed Duration: for each period and room, we look at
the number of different exam durations allocated. If all the
exams have the same duration we count 0, otherwise we
count the number of different durations minus one multi-
plied by the weight wNMD.

• Period Penalty: this term corresponds to the number of
exams allocated to a penalized period multiplied by its
weight wP

p .

• Room Penalty: this term corresponds to the number of
exams allocated to a penalized room multiplied by its
weight wR

r .

The first three constraints are an attempt to be as fair
as possible to all students taking exams. Since exams with
more students enrolled take longer to mark, it is desirable to
schedule these exams near the beginning of the examination
session (Front Load). The aim of the Mixed-Duration soft
constraint is to assign exams which are of equal duration to
the same room. Institutions often wish to restrict the use of
certain rooms and certain periods to a minimum, and these
considerations correspond to the final two soft constraints
(Period Penalty and Room Penalty).

In (McCollum et al. 2012) a mathematical formula-
tion is proposed. The authors introduced the conflict graph



G(E,AC), where E is the set of exams and an edge [i, j] ∈
AC if there is at least one student enrolled in exams i and
j. An edge [i, j] is weighted by wC

ij , the number of students
taking the two exams. P , R and S denote the sets of periods,
rooms and students respectively. For the sake of compact-
ness, the original model has been rewritten as:

Minimize:

C2R + C2D + CPS + CFL + CP + CR + CNMD (1)

Subject to

∀i ∈ E
∑

p∈P

XP
ip = 1 (2)

∀i ∈ E
∑

r∈R

XR
ir = 1 (3)

∀i ∈ E ∀p ∈ P XP
ip =

∑

r∈R

XPR
ipr (4)

∀i ∈ E ∀r ∈ R XR
ir =

∑

p∈P

XPR
ipr (5)

∀p ∈ P ∀r ∈ R
∑

i∈E

sEi X
PR
ipr ≤ sRr (6)

∀i ∈ E ∀p ∈ P dEi X
P
ip ≤ dPp (7)

∀p ∈ P ∀s ∈ S
∑

i∈E

tisX
P
ip ≤ 1 (8)

∀(i, j) ∈ Haft such that j ≺ i

∀p, q ∈ P with p ≤ q XP
ip +XP

jq ≤ 1

}

(9)

∀[i, j] ∈ Hcoin ∀p ∈ P XP
ip = XP

jp (10)

∀[i, j] ∈ Hexcl ∀p ∈ P XP
ip +XP

jp ≤ 1 (11)

∀i ∈ Hsole ∀j ∈ E i 6= j ∀p ∈ P

∀r ∈ R XP
ip +XR

ir +XP
jp +XR

jr ≤ 3

}

(12)

C2R = w2R
∑

[i,j]∈AC

wC
ijC

2R
ij (13)

∀[i, j] ∈ AC ∀p ∈ P with yp(p+1) = 1

XP
ip +XP

j(p+1) ≤ 1 + C2R
ij

}

(14)

C2D = w2D
∑

[i,j]∈AC

wC
ijC

2D
ij (15)

∀[i, j] ∈ AC ∀p, q ∈ P |q − p| ≥ 2 p < q

with ypq = 1 XP
ip +XP

jq ≤ 1 + C2D
ij

}

(16)

CPS =
∑

[i,j]∈AC

wC
ijC

PS
ij (17)

∀[i, j] ∈ AC ∀p, q ∈ P 1 ≤ |q − p| ≤ gPS

p < q XP
ip +XP

jq ≤ 1 + CPS
ij

}

(18)

CFL = wFL
∑

i∈EFL

∑

p≥gFL

XP
ip (19)

CP =
∑

i∈E

∑

p∈P

wpXP
ip (20)

CR =
∑

i∈E

∑

r∈R

wrXR
ir (21)

∀d ∈ D ∀i ∈ E with uD
id = 1 ∀p ∈ P

∀r ∈ R UD
dpr ≥ XP

ip +XR
ir − 1

}

(22)

∀p ∈ P ∀r ∈ R 1 + CNMD
pr ≥

∑

d∈DE

UD
dpr (23)

CNMD
pr ≥ 0 (24)

CNMD = wNMD
∑

p∈P

∑

r∈R

CNMD
pr (25)

XP
ip, X

R
ir, X

PR
ipr , C

2R
ij , C2D

ij , CPS
ij , UD

dpr ∈ {0, 1} (26)

C2R, C2D, CPS , CFL,

CP , CR, CNMD
pr , CNMD ∈ N

}

(27)

The primary boolean decision variables are XP
ip and XR

ir ,

XP
ip = 1 if exam i is scheduled in period p and XR

ir = 1
if exam i is allocated to room r. The secondary boolean
variables are: XPR

ipr , C2R
ij , C2D

ij , CPS
ij and UD

dpr. The first

of these variables is set to 1 if exam i is in period p and
room r, 0 otherwise. The following three are used to count
the number of soft constraint violations for Two In a Row,
Two In a Day and Period Spread. The final variable is used
to count of the number of Mixed Duration violations. The
integer variables C2R, C2D, CPS , CFL, CP , CR, CNMD

pr

and CNMD, are used to compute the terms of the objective
function (see Equation (1)).

Equations (2) and (3) ensure that all the exams are allo-
cated to a period and a room. Equations (4) and (5) link the
decision variables.

The room capacities are always respected using Equations
(6) in which sEi and sRr denote respectively the number of
students sitting exam i and the seating capacity of room r.
The duration hard constraints are respected using Equations
(7), in which dEi and dPp denote the duration of exam i and
the duration of period p. The quantities tis = 1 if student s
is sitting exam i, 0 otherwise. Equations (8) thus enforce the
conflict constraints: at any period, any student will be sitting
at most one exam.



Sets Haft, Hcoin, Hexcl and Hsole contain the prece-
dence, coincidence, exclusion and room exclusive con-
straints. Equations (9), (10), (11), and (12) are used to en-
sure that the precedence, coincidence, exclusion and room
exclusive constraints are respected.

The contributions for the terms C2R, C2D, CPS are set
by Equations (13) to (18). ypq = 1 in Equations (16) means
that periods p and q are on the same day. We therefore count
the wC

ij students taking two exams if the two exams i and
j are allocated either back to back or on the same day. In
the same spirit, Equations (17) and (18) count the CPS term
according to the period spread parameter gPS .

The Front Load term is computed using (19), where EFL

is the set of exams subject to a front load constraint, and gFL

is the first period for which a front load penalty has to be
counted.

The Period Penalty and Room Penalty terms are taken
into account using Equations (20) and (21).

A UD
dpr decision variable has to be one whenever some

exam with duration d uses period p and room r (see (22)).
uD
id = 1 if exam i has a duration d, 0 otherwise. Equations

(23) and (24) count the total number of different durations
minus one. Hence, the term CNMD is obtained by applying
Equation (25).

3 Preprocessing

Our aim is to deduce as many new edges as possible using
the other hard constraints, and then to add these new edges
to the conflict graph G(E,AC) so as to obtain a final general
conflict constraints graph G(E,AGC).

Let nP be the number of periods. A feasible solution is
an nP -coloring of the G(E,AC) graph while respecting the
other hard constraints.

A general conflict constraint between two exams i and j
is defined as a constraint such that these exams cannot be
scheduled together in any period. We denote this general
conflict constraint as i ‖ j.

The initial conflict constraint (students), the precedence
constraint (j ≺ i) and the exclusion (i ⊕ j) constraint all
represent general conflict constraints (i ‖ j), since exams i
and j cannot be scheduled together in the same period and an
edge [i, j] weighted by wC

ij = 0 can be added in G(E,AC).
In (Gogos, Alefragis, and Housos 2012), the authors used

a preprocessing stage. They propagated the precedence con-
straints using the coincidence constraints, as (j ≺ i) ∧ (i ⊙
k) ⇒ (j ≺ k).

We extend this propagation to any general conflict con-
straint. Let (i ‖ j) be a general conflict constraint and [i, j]
the corresponding edge. Consider two exams i and k sub-
ject to a coincidence constraint (i⊙ k) and [j, k] /∈ AC . The
general conflict constraint (j ‖ k) can be deduced, and a
new edge [j, k] can therefore be added with wC

jk = 0. So,

we have: (j ‖ i) ∧ (i ⊙ k) ⇒ (j ‖ k). This propagation is
repeatedly applied until no new edges can be deduced: we
denote this procedure as P .

Since the coincidence constraints are useful for the prop-
agation, we apply: (i ⊙ j) ∧ (i ⊙ k) ⇒ (j ⊙ k) on all the
coincidence constraints to exhibit new ones.

To deduce new general conflict constraints we propose
using the sizes of exams relative to the room capacities,
while respecting the coincidence constraints and the room
exclusive constraints. Let i and j be two exams such that
[i, j] /∈ AC and set Si contains exam i and all exams k such
that (i ⊙ k). Exams in Si have to be scheduled in the same
period. Set Sj is similarly built. The objective is to check
whether the two sets Si and Sj can be assigned together to
the rooms at any period. For this purpose we propose the
following model:

maximize:

θij =
∑

r∈R

∑

l∈(Si∪Sj)

XR
lr (28)

subject to:

∀l ∈ (Si ∪ Sj)
∑

r∈R

XR
lr ≤ 1 (29)

∀r ∈ R
∑

l∈(Si∪Sj)

sEl X
R
lr ≤ sRr (30)

∀l ∈
(

Hsole ∩ (Si ∪ Sj)
)

∀r ∈ R
∑

m∈(Si∪Sj) l 6=m

XR
mr + (| Si ∪ Sj | −1)XR

lr

≤| Si ∪ Sj | −1



















(31)

XR
lr ∈ {0, 1} (32)

Recall that R is the set of rooms and sRr denotes the capac-
ity of a room r. sEl is the number of students sitting exam l,
and XR

lr is a boolean decision variable set to one if the exam

l is allocated to room r, zero otherwise. Hsole is the set of
exams subject to a room exclusive constraint.

Equations (29) ensure that an exam l ∈ Si∪Sj is allocated
at most once to a room. Equations (30) allow the model to
enforce the room capacities. The room exclusive constraints
for the exams in Si ∪ Sj are checked by Equations (31).

If θij < |Si ∪ Sj |, then exams in (Si ∪ Sj) cannot be
allocated together in any period p. In this case, a new set of
general conflict constraints is discovered: no exam l ∈ Si

can be assigned in the same period as an exam k ∈ Sj and
conversely. We can therefore add an edge for each l ∈ Si

and k ∈ Sj .
Thanks to the proposed preprocessing, we obtain a gen-

eral conflict graph G(E,AGC) where AC ⊆ AGC . A fea-
sible solution is an nP -coloring of the graph G(E,AGC)
while respecting the other hard constraints.

4 Revisiting the integer programming

formulation

The mathematical model was given in order to formally de-
fine the problem. As claimed by the authors (McCollum et
al. 2012) this model cannot be used to solve the large com-
petition instances. In a first attempt, we have replaced Equa-
tions (8) by ∀p ∈ P ∀[i, j] ∈ Ac XP

ip + XP
jp ≤ 1 in

order to reduce the number of conflict constraints. Unfortu-
nately, it does not work for any instance of the competition



even if a single soft constraint is considered at a time. There
are too many constraints: this led to problems with memory
capacity.

Our objective is to propose modifications that will make
it possible to perform computations on the competition in-
stances.

Considering the G(E,AGC) graph, N (i1, ..., ik) denotes
the neighbours of node i1 that are also neighbours of node i2,
..., and also neighbours of node ik. For instance, N (i) cor-
responds to the usual neighbours of node i, and N (i, j) =
N (i)∩N (j) is the set of exams that are neighbours of exams
i and j.

Revisiting the general conflict constraint: in (McCol-
lum et al. 2012), the authors used nPnS equations that in-
clude nS student parameters to ensure that conflict con-
straints are respected (see Equation (8) in Section 2). We
propose the nPnE equations:

∀i ∈ E ∀p ∈ P
∑

j∈N (i)

XP
jp+ | N (i) | XP

ip ≤| N (i) |











(33)

that use the G(E,AGC) graph. The general conflict con-
straints are respected: either an exam i or at most N (i) of
its neighbours, i.e. j ∈ N (i) in the G(E,AGC) graph, can
be allocated to a period p.

Revisiting the precedence constraint: the precedence
constraints can be grouped as

∀i ∈ EHaft ∀p ∈ P
∑

j∈Naft(i)

∑

q≥p

XP
jq

+ | Naft(i) | X
P
ip ≤| Naft(i) |



















(34)

where EHaft denotes the exams involved in a precedence
constraint and Naft(i) the predecessors j ∈ EHaft of node

i (i.e. j ≺ i). There are | Haft | nP ×nP equations (9), and
now we have | Haft | nP equations.

Revisiting the room exclusive constraints: let i ∈ Hsole

be an exam that is subject to a room exclusive constraint, and
let p be a period and r a room to which exam i can be allo-
cated. The neighbours of exam i, N (i), cannot be allocated
to the same period p. Hence, either the exam i or at most
| E\N (i) | exams can be allocated to period p and room r.
We propose:

∀i ∈ Hsole ∀p ∈ P ∀r ∈ R
∑

k∈(E\N (i))

XPR
kpr

+ | E\N (i) | XPR
ipr ≤| E\N (i) |



















(35)

There are | Hsole | nPnR Equations (35) while we have
| Hsole | nEnPnR Equations (12) in the original model.

Revisiting the mixed duration soft constraint: in (Mc-
Collum et al. 2012), the authors used nDnEnPnR Equa-
tions. We denote as Ed the set of exams having duration d.

We propose the (nDnPnR) Equations (36) and (37):

∀d ∈ D ∀p ∈ P ∀r ∈ R

|Ed|UD
dpr ≥

∑

i∈Ed

XPR
ipr







(36)

∀p ∈ P ∀r ∈ R 1 + CNMD
pr ≥

∑

d∈DE

UD
dpr (37)

CNMD
pr ≥ 0 (38)

CNMD = wNMD
∑

p∈P

∑

r∈R

CNMD
pr (39)

Clique inequality: clique cuts have been successfully ap-
plied to a hard timetabling problem by (Avella and Vasil’Ev
2005), who used real-world instances of a university course
timetabling problem from an Italian University, and by
(Burke et al. 2012) using the instances from Track 3 (i.e the
curriculum-based course timetabling problem) of the 2007
International Timetabling Competition. So we introduce:

∀p ∈ P ∀c ∈ C
∑

i∈c

XP
ip ≤ 1 (40)

where c is a clique, i an exam in the clique, and C the set
of cliques. The valid clique inequalities are useful in reduc-
ing the computation time. We use (Niskanen and Östergård
2003) to compute the maximal cliques for each instance.

We denote M the modified model that consists of Equa-
tions (1) ... (7), (10), (13) ... (21), (26), (27), (33) ... (40).

We use the new formulation to compute successively the
optimal values for the CFL

a , CP
a , CR

a and CNMD
a terms

(subscript a means “alone”). Consequently a new objective
function contains only one term, giving us a single criterion.
The other soft constraints are not considered. The modifi-
cations proposed make it possible to compute the optimal
values for each of these terms considered as a single crite-
rion.

5 Lower Bounds for C
2R, C2D and C

PS

The aim behind the terms Two In a Row, Two In a Day and
Period Spread is to place exams for the same student as far
apart as possible. For most solutions the major part of the
penalty imposed is due to these criteria.

We propose using a set of cliques C selected according
to their sizes. We denote as k the size of a clique c. A day
is said to be of type Di if it has i periods, and nDi is the
number of days of type Di. Not all the possible Di exist for
a particular instance (e.g. instance 2 has D2, D3 and D4
types of day but no D1). We denote δ the set of number of
periods that corresponds to the types of day of an instance
(e.g. for instance 2 we have δ = {2, 3, 4}).

We establish the following limits:

Proposition 1. if k > L2R =
∑

i∈δ⌈
i
2⌉n

Di, then we have
at least one Two-In-a-Row penalty.

Proposition 2. If k > L2D = nD1+2
∑4

i∈(δ\{1}) n
Di, then

we have at least one Two-In-a-Day penalty.



nP gPS L2R L2D L2RD LPS

1 54 5 29 ns 29 9

2 40 1 24 26 13 20

3 36 4 24 24 12 8

4 21 2 14 14 7 7

5 42 5 28 28 14 7

6 16 20 8 ns 8 1

7 80 10 40 ns 40 8

8 80 15 41 79 41 5

Table 1: For each instance, nP : number of periods, gPS : pe-
riod spread, L2R: limit for two in a row, L2D: limit for two
in a day, L2RD: limit for two in a row and two in a day, LPS :
limit for period spread.

Proposition 3. If k > L2RD =
∑

i∈δ n
Di, then there is at

least one penalty due either to Two In a Row, or to Two In a
Day.

Proposition 4. if k > LPS =
⌈

nP

gPS+1

⌉

, then we have at

least one Period-Spread penalty.

All these limits can be stated by counting the number of
exams that can be scheduled without the considered soft
constraint. Table 1 reports the values for the limits on the
size of a clique beyond which a violation of the correspond-
ing soft constraint would necessarily occur. When we have
only D1 or D2 day types, there are no Two-In-a-Day penal-
ties (ns in Table 1).

A set of cliques for each instance is built using the code
(Niskanen and Östergård 2003). Each clique c is evaluated
as described in Sections 5.1 and 5.2.

Assume now that two cliques c and c′ have been assessed,
if | c ∩ c′ |> 1 there is at least a common edge: hence
their respective costs cannot be added, otherwise an edge
may contribute twice.

Proposition 5. Let F be a family of cliques embedded in
G(E,AGC) such that: ∀c, c′ ∈ F | c ∩ c′ |≤ 1, therefore
∑

c∈F C2R(c) + C2D(c) + CPS(c) is a lower bound.

Such a family F as presented in the above proposition is
built using a greedy algorithm. In Section 5.1 we determine
the Two-In-a-Row and Two-In-a-Day penalties for a clique,
while in Section 5.2 we obtain a lower bound for the Period-
Spread penalty.

5.1 C2R and C2D penalties

We now focus on the C2R and C2D lower bound computa-
tion. We have L2R ≥ L2RD, and also L2D ≥ L2RD (except
when there are no Two-In-a-Day penalties). We therefore
consider L2RD: the number of cliques involved in the com-
putation should be potentially larger, as shown by a compar-
ison of the columns L2R, L2D and L2RD in Table 1. The ob-
jective function for the modified model M (see Section 4) is
thus to minimize (C2R

b + C2D
b ) (subscript b means ”both”),

and the other soft constraints are not considered. As a result,
we determine the optimal cost for each clique.

Unfortunately, we observe in practice that the computa-
tion time for a clique is of the order of hours even when we

use the modified model M, and there are a large number of
cliques to evaluate.

We propose a new model that is more effective for
computing Two-In-a-Row and Two-In-a-Day penalties per
clique. Since we are considering a clique c ∈ C of size k,
exams are pairwise adjacent: they have to be assigned to k
different periods. The examination session extending over
nP periods corresponds to different day types. There are nDi

days of type Di with i periods.

The idea is to start by building permutations of the exams
in a clique c for each day type comprising the instance (D1,
D2, D3, D4), and then to optimally select those that can
cover all the exams of c with the minimum Two-In-a-Row
and Two-In-a-Day cost. There is a large number of permuta-
tions. Fortunately, not all the permutations need to be used to
find the optimal solution for a clique c. To provide the reader
with some insights on how the permutations are selected, let
us consider a D3 day and a 4-exam clique and focus on two
exams i, j ∈ c. There are many feasible permutations of
these two exams that can be allocated to the three periods
of a D3. The periods inside a D3 day in which the two ex-
ams are scheduled do not matter: only the cost is important.
Hence, for a couple of exams i and j a unique permutation
with the minimum cost has to be considered. This rationale
can be applied on the other types of days.

We evaluate the contribution for a clique c using the fol-
lowing model:

minimize:
∑

σ∈Π

CσXσ (41)

subject to:

∀j ∈ [1, k]
∑

σ∈Π

ajσXσ = 1 (42)

∀i ∈ δ
∑

σ∈Πi

Xσ ≤ nDi (43)

Xσ ∈ {0, 1} (44)

Subscript σ denotes a permutation. Xσ is a boolean deci-
sion variable, equal to 1 if permutation σ is used, 0 other-
wise. The permutations are grouped by days, i.e. Πi is the
set of permutations for the days with i periods. Each permu-
tation σ has a cost denoted Cσ that corresponds to its Two-
In-a-Row and Two-In-a-Day penalty. Exams j of a k-clique
are here numbered from 1 to k. The parameter ajσ = 1 if
exam j belongs to permutation σ, 0 otherwise.

Equations (42) ensure that each exam is assigned exactly
once (42). The usage of the different days is enforced by
(43). We use at most the associated number of days for each
type. Note that the days are anonymous: the model allocates
the permutations to an abstract “day”, independently of the
actual day to which this might be made to correspond in
practice. We denote K the proposed model.

At this stage, the optimal contributions are computed for
each clique c in the set C for which | c |> L2RD.



5.2 CPS penalty

In practice we observe that the time spent finding an optimal
solution for a clique c for CPS is longer than the time spent
evaluating (C2R

b + C2D
b ) when we use the proposed model

(see Section 4). Moreover, the total number of cliques whose
cardinality exceeds LPS is huge.

We propose the following scheme for evaluating the con-
tributions of a clique c.

Assume a clique | c | = k > LPS : there is at least one
Period-Spread penalty. First we determine αk, that is to say
the smallest number of terms of the sum used to evaluate
CPS that are necessarily involved in the penalty (see Equa-
tion (17)). The minimum number of edges αk for this size of
clique k is consequently known, irrespective of clique c (see
Equation (18)). Next, to evaluate a clique such that | c |= k,
we take the αk edges that have the smallest penalties.

To compute αk, the idea is to use the proposed model to
find an optimal spacing between k exams over the nP peri-
ods that formally corresponds to an optimal pattern (exams
allocated to periods). It is important to remark that for given
nP and gPS , each value αk is the same for all the cliques
such that | c |= k.

We consider formally a clique of size k with a set of
anonymous exams {i1, i2, · · · , ik}. All the wij are set to 1.
Let us now assume the optimal spacing between the k ex-
ams with the minimum value αk. Since exams are anony-
mous and wij = 1, two exams can swap places. As a
consequence, there are k! feasible permutations. Without
lack of generality, we introduce the following total order:
(i1 ≺ i2 ≺ · · · ≺ ik). Any pattern respects this con-
straint. This total ordering is useful to speed up the com-
putation. Then we use the modified model M to minimize
CPS and the other soft constraints are not considered. Un-
fortunately it is still time consuming to prove optimality for
certain cliques. We stop the computation after ten minutes
for each clique.

Before computing the penalties we compute αk a priori
for each different clique size such that k > LPS .

For each clique, the proposed evaluation that counts the
αk smallest weights over the edges of a clique of size k does
not represent the optimal value, but it gives a lower bound
for the CPS criterion.

6 Results

All tests are performed using CPLEX 12.5 (IBM 2012),
gcc version 4.5.1, on a machine with an Intel Xeon
E5430QC@2.66 GHz CPU and 32 GB of RAM.

Table 2 shows the basic properties of the public instances
of the examination timetabling track. The density for a

G(E,A) graph is computed using d = 2|A|
n(n−1) × 100.

The PHC (Period Hard Constraint) column corresponds
to the sum of the precedence, coincidence and exclusion
constraints, while the RHC (Room Hard Constraint) col-
umn shows the number of room exclusive constraints.

In Table 3, the column room shows the number of new
edges that result from the preprocessing stage that addresses
room capacities in relation to exam sizes.

dC nE | AC | nS nP nR PHC RHC

1 5.05 607 9287 7891 54 7 12 0

2 1.17 870 4421 12743 40 49 12 2

3 2.62 934 11410 16439 36 48 170 15

4 15.0 273 5568 5045 21 1 40 0

5 0.87 1018 4500 9253 42 3 27 0

6 6.16 242 1795 7909 16 8 23 0

7 1.93 1096 11595 14676 80 15 28 0

8 4.55 598 8120 7718 80 8 20 1

Table 2: The basic properties of the 8 public instances. dC :
density of the conflict graph, nE : number of exams, | AC |:
number of edges in G(E,AC), n

S : number of students, nP :
number of periods, nR: number of rooms, PHC: number of
period hard constraints, RHC: number of room hard con-
straints

room P | AGC | dGC t ωAC
ωAGC

1 939 81 10308 5.60 17 20 49

2 0 41 4466 1.18 7 15 15

3 0 2477 13887 3.19 64 21 21

4 189 30 5792 15.6 0 17 18

5 0 379 4890 0.94 0 13 13

6 7 487 2293 7.86 1 13 13

7 1 491 12102 2.02 0 16 16

8 906 186 9213 5.16 15 17 48

Table 3: New general conflict constraints deduced when ap-
plying the preprocessing stage based on room capacities
and exam sizes (room). Propagation using coincidence con-
straints (P). Number of edges (| AGC |) and the density
(dGC). Computing times for the preprocessing t, and the
overall impact of the preprocessing stages on the maximum
clique size (ωAC

relative to ωAGC
)

The column P presents the number of new edges deduced
by applying the procedure P to propagate general conflict
constraints using coincidence constraints.

Column | AGC | shows the number of edges in the new
general conflict constraints graph G(E,AGC) after apply-
ing the preprocessing. Columns ωAC

and ωAGC
give the

size of the maximum cliques that were found in G(E,AC)
and G(E,AGC) respectively (computed with (Niskanen and

Östergård 2003)).
The preprocessing stages based on room capacities and

exam sizes are useful in deducing a significant number of
general conflict constraints for instances 1, 4 and 8 (see col-
umn room). A large number of new general conflict con-
straints are also deduced using the procedure P on the gen-
eral conflict constraints. As it can be seen, the computing
times are small (0 means less than one second).

Tables 4 and 5 show the optimal values for the frontload
(CFL

a ), the period penalty (CP
a ), the room penalty (CR

a ) and
the non-mixed-duration penalty (CNMD

a ). Columns Opt re-
port the optimal solutions found, columns UB report the best
value found so far in the literature, and columns t report the
computing times in seconds. We provide model M with ini-
tial solutions obtained using the solver presented in (Müller
2009). We set a limit of one day for the computing times.



CFL
a CP

a

Opta UB t Opta UB t

1 125 255 3042 0 270 1002

2 0 375 8255 0 0 249

3 30 740 2218 0 100 384

4 25 105 6341 50 1750 20648

5 50 1440 657 0 100 42

6 375 375 25 30/55 450 -

7 0 460 250 0 0 339

8 0 380 259 0 342 196

Table 4: Optimal value and best value from the literature for
CFL

a : Front Load, CP
a : Period Penalty.

CR
a CNMD

a

Opta UB t Opta UB t

1 0/350 1050 - 0 100 200

2 0 0 312 0 0 277

3 0 0 305 0 0 126

4 0 0 60 0 0 72

5 0 0 13 0 0 45

6 950 1200 331 0 75 1519

7 0 0 232 0 0 37

8 0 125 463 0 0 41

Table 5: Optimal value and best value from the literature for
CR

a : Room Penalty, CNMD
a : Non-Mixed Duration.

In most cases, the end users can gain useful information for
making decisions in the scope of the time spent to build a
timetable. Further work has to be done to deal with CR for
instance 1 and CP for instance 6. In these two cases the time
limit has been reached: we reported the CPLEX lower bound
and the best integer solution.

Not all the soft constraints are of equal importance to the
end users, but it can sometimes be useful for end users to
know whether a null or lowest-cost solution can be found in
relation to each of these criteria. It will be remarked that
all the CNMD

a = 0, and one can try to search for a so-
lution without Non-mixed-duration violations. The optimal
CP

a = 0 allows end users to remove the penalized periods
prior to the solution process. For Instance 4, there are two
large period penalties (200 and 500), and the correspond-
ing periods can also be removed, since a CP

a = 50 solution
is attainable. In the initial dataset, Room penalties are im-
posed for instances 1, 2, 3, 6, and 7. The optimal solutions
CR

a = 0 may be used by end users to avoid all the penalized
rooms. The optimal solution can be seen to be close to the
best value for Instance 6, and here a large room penalty can-
not be avoided. Considering the CFL

a criterion, the value is
tightened for Instance 6 (Opta = UB).

Table 6 displays the values of lower bounds we obtained
and the best values from the literature for (C2R

b +C2D
b ) and

CPS . We use (Niskanen and Östergård 2003) to compute all
the cliques larger than the considered limits. For Instances
2, 5, 7 and 8 the bounds are tightened for (C2R

b + C2D
b ).

Columns t report the global computing time: clique com-
puting, evaluation of each clique using the model K and
greedy algorithm. Note that for instances 5 and 7, we have

(C2R
b + C2D

b ) CPS

LB UB t LB UB t LB Best

1 0 42 5 126 2534 4130 215 4356

2 10 10 79 0 0 0 10 385

3 330 2885 82095 140 4926 4645 501 8996

4 291 9104 52632 47 3925 129 428 15368

5 0 0 nc 142 1259 742 136 2929

6 1740 3700 17223 19900 19900 84 22995 25740

7 0 0 nc 312 3602 3449 220 4037

8 0 0 0 836 6718 4837 552 7461

Table 6: Lower bound and upper bound for (C2R
b + C2D

b ):
Two-In-a-Row + Two-In-a-Day and computing time t in sec-
ond. CPS : Period Spread and computing time t in second.
Sum of the contributions and the best solution found so far
in the literature.

L2RD < ωAGC
: there is no clique that can be used to com-

pute, the value is zero and we report nc in column t. The
evaluation of a clique using the model K is very fast, but
one can have a large number of cliques (e.g. the largest num-
ber of cliques is 15598206 for Instance 3). For Instance 6
the best value for CPS is achieved using the lower bound
computation: this is the optimal value for this particular in-
stance where gPS > nP (see (Gogos, Alefragis, and Housos
2012)). The computing times depend on the considered in-
stance for the two lower bounds since they are tightly cou-
pled to the number of cliques larger than the limits.

Penultimate column LB (see Table 6) reports the sum
of the contributions of the optimal values and of the ob-
tained lower bounds, while column Best reports the values
of the best solutions found so far (see (Gogos, Alefragis,
and Housos 2012) (Müller 2009)). As it can be shown these
problems remain challenging.

7 Conclusion

We have presented a preprocessing stage that is able to
reveal hidden dependencies for the university examination
timetabling problem. A significant number of edges can thus
be added to the conflict graph. The number of large cliques
substantially rises with an increase in density, and new big-
ger cliques can be exhibited. We have proposed new for-
mulations of constraints that make it possible to compute
the optimal value for 4 criteria using a mixed integer pro-
gram. Lower bounds for the other criteria have been pre-
sented. The experimental results were obtained using the
public instances of the examination timetabling track of the
second International Timetabling Competition (ITC2007).
This work constitutes an analysis framework that can po-
tentially help end users make certain decisions prior to a so-
lution.
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