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Abstract

We show that Approval Voting need not trigger sincere behavior in equilib-

rium of Poisson voting games and hence might lead a strategic voter to skip

a candidate preferred to her worst preferred approved candidate. We identify

two main rationales for these violations of sincerity. First, if a candidate has no

votes, a voter might skip him. Notwithstanding, we provide sufficient condi-

tions on the voters’ preference intensities to remove this sort of insincerity. On

the contrary, if the candidate gets a positive share of the votes, a voter might

skip him solely on the basis of her ordinal preferences. This second type of

insincerity is a consequence of the correlation of the candidates’ scores. The

incentives for sincerity of rank scoring rules are also discussed.

KEYWORDS: Sincerity, Approval Voting, Poisson Games.

JEL Classification Numbers: D72.

1 Introduction

Among the different properties of Plurality Voting (P V ), the wasted-vote effect is

among the most undesirable ones. For instance, if a rational voter believes that a
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candidate gets no vote, then she does not vote for him as it is dominant to vote for

one of the likely-winners of the election. The main problem is that if this candidate

is the voter’s preferred one, these beliefs lead to a rational violation of sincerity. In

order to overcome such an effect, one may focus on the Approval Voting method

(AV ). As argued by Merril and Nagel [24], “much of the case for Approval [Vot-

ing] hinges on its encouragement of sincere voting”. Indeed, under AV , a voter is

allowed to approve of as many candidates as she wants, the winner(s) being the

candidate(s) with the most votes1. This method is hence immune to the previous

effect with just three candidates. Indeed, as the voter can approve of as many can-

didates as she wants, “dominance implies that everyone gives an approval point

to his favorite candidate, and no one gives an approval point to his worst candi-

date”(Myerson [28]). Hence, with just three candidates, the voter will either vote

for her preferred candidate or for her two preferred-ones. In other words, the voter

does not skip a candidate: she votes for all the candidates ranked above some candi-

date. This nice feature is often referred to as the no-skipping sincerity of AV and it

is the most used notion among the different sincerity definitions with this rule. In-

deed, there are different notions of sincerity with this method (discussed in Section

4) as it breaks the one-to-one correspondence between the sets of ordinal prefer-

ence orderings and the set of ballots inherent to the Arrovian tradition (and hence

present in rules as P V or the Borda rule). We focus on the sincerity under AV with

more than three candidates in a strategic framework in which the voters’ beliefs are

endogenous since they depend on the voter’s behavior.

We prove that, in general, AV need not trigger (any kind of) sincere behavior in

equilibrium in Poisson voting games. In these games there is a random number of

voters and were proposed by Myerson [27, 28]2 to study strategic voting. We discuss

two examples (Examples 1 and 2) that prove that it might be a strict best response to

violate the different notions of sincerity in these games. These examples are coun-

terintuitive specially when compared to the several statements in the literature that

suggest that the voters always have a sincere best response under AV in any pure

strategy equilibrium. Among them, Niemi [31], states that “under AV , voters are

never urged to vote insincerely”. In a voting game with a finite number of voters,

1Its detractors claim that this rule enhances strategic voting when compared for instance to P V ,
whereas its proponents consider that it has several advantages as far as strategic voting is concerned.
For an extensive discussion of this controversy, the reader can refer to Brams [8], Brams and Fishburn
[9], and Weber [39].

2Few papers deal with the properties of these games: see Ahn and Oliveros [1], Bouton and Cas-
tanheira [7], Goertz and Maniquet [18], De Sinopoli and Gonzalez-Pimienta [11], Krishna and Mor-
gan [19], Núñez[32, 33].
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de Sinopoli, Dutta and Laslier [10] actually prove that “for every pure strategy of

the other players, the set of best replies contains a sincere strategy” whereas this is

no longer true when one considers mixed strategies3.

The main difference between these examples is the source of insincerity. Whereas

in Example 1 voters do not approve of a candidate as they expect him to have no

votes, in Example 2 their insincerity is a consequence of the Poisson structure of the

game. This difference sheds some light on the properties of Poisson games.

If a candidate gets no votes, then the voter skips him depending on her intensity

of preference. In Example 1, the voter prefers the lottery between her first and third

candidate to the victory of her second preferred candidate. Hence, she skips her

second preferred candidate in equilibrium. This sort of insincerity can be removed

since it is based on the cardinal utilities of the voters. Indeed, assume that the voter

prefers the victory of some candidate i over the victory of any other set of candi-

dates, at least one of them being less preferred than i. This candidate is denoted as

strong. We prove that no voter’s best response skips a strong candidate provided that

this candidate has no votes. Note that a candidate ranked first by a voter is always

strong as the voter prefers the victory of this candidate to any other outcome in the

election. Hence, whenever the set of top candidates (assuming strict preferences, all

candidates but the two last ranked ones) equals the set of strong candidates, there

is no equilibrium in which no-skipping sincerity is violated on the mere reason of a

candidate having no votes.

If a candidate gets a positive share of the votes, then the incentives for (in)sincerity

become very different in a Poisson game. Indeed, with positive probability, this can-

didate might win the election. This fact combined with the correlation of the scores

of the candidates that arise in these games is enough to prove a surprising result.

Take a voter with preferences 1 � 2 � 3 � 4 and assume that 1 is the winner in equi-

librium. We prove that it might be a strict best response to approve of 1 and 3 in

equilibrium. Indeed, the most likely pivot outcome involving 2 is against 1 whereas

the most probable pivotal event in which 3 is present involves both 1 and 4. Hence,

approving of candidate 2 does not depend on the voter’ intensity of preferences

towards him whereas she approves of 3 as long as the utility of 3 is high enough.

We include a formal discussion on how this result hinges on the Poisson structure;

indeed if one assumes that the scores of the candidates are independent random

3We can hence conclude that the strategic behavior in Poisson games is related to the one in
normal-form games when voters use mixed-strategies. Moreover, in a related context, Laslier [21]
proves that, under some general conditions, no-skipping sincerity is ensured in a large election
model. The differences between such a setting and ours are discussed in Section 5.
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variables, this sort of phenomena should not arise.

Finally, we set up a comparison of our results with the strategic behavior under

rank scoring rules. It is possible to prove by a simple extension of Myerson [28] that

the rest of scoring rules fail to satisfy no-skipping sincerity. More interestingly, we

identify two intuitive weak versions of sincerity that prove that the sincere behavior

of AV arises as it is a combination of Negative voting and Plurality Voting. Indeed,

we prove that Plurality voting is the unique rank scoring rule under which a voter

might give zero points to her most preferred candidate. At the same time, it is also

the only one of these rules that prevents a rational voter to give a positive score

to her least preferred candidate. Similarly, Negative voting captures some strong

notion of sincerity as it is the only positional rule that ensures that in equilibrium a

voter assigns a score of 1 to her most preferred candidate.

This paper is structured as follows. Section 2 presents a review of the literature

and Section 3 introduces the basic model. Sections 4 and 5 focus on the strategic

sincerity ofAV and provide the sufficient conditions for sincerity; Section 6 presents

the results on rank scoring rules and Section 7 concludes.

2 Sincerity as a benchmark

Up to now, we have not addressed the question of why one should focus on the sin-

cerity of AV . First of all, note that, according to the previous literature in strategic

voting, it is clear that the rest of scoring rules do not trigger no-skipping sincerity

in equilibrium (see for instance the examples by Myerson [28]). In other words, as

AV is the unique scoring rule that ensures no-skipping sincerity with three candi-

dates. It hence seems important to understand sincerity in environments with more

candidates.

Moreover, the concept of sincerity is related, even though, not equivalent to the

strategy-proofness condition used in the well-known impossibility theorems from

the 70s. A paper closely related to ours is the extension of the Gibbard-Satterthwaite

theorem to a Poisson environment as proposed by McLennan [23]. McLennan [23]

proves that any decision scheme4 that satisfies some reasonable conditions (in the

spirit of strategy-proofness and unanimity) is a random dictatorship in Poisson

games with at least three candidates5. The key difference between such a result

4In a decision scheme, voters announce a preference profile and given such an announcement the
outcome of the scheme is a lottery over the different candidates.

5Our contribution is also related to the literature on the vulnerability of other types of mechanism
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and the sincerity of AV with three candidates is that under AV there are different
sincere messages. Indeed, if a voter prefers candidate 1 to candidate 2 to candidate

3 and votes for the two first ones, it may be the case that she votes as if she preferred

candidate 2 to candidate 1 to candidate 3. Hence, the same message is considered

as sincere for two different preference profiles. Note that under P V or the Borda

rule, the set of sincere messages is unique given the voter’s preferences6. This is

why the literature has proposed several definitions of sincerity under AV whereas

the meaning of sincerity in a classical social choice theory model is unambiguous:

a voter sincerely communicates her type to the social planner. In other words, as

argued by Sanver [37] and Endriss [14], AV does not fit in the canonical model of

voting studied in social choice theory.

One of the main reasons used to advocate sincerity in social choice theory, as

pointed by Dowding and Van Hees [13], is that insincere behavior is unfair since it

provides an advantage to smarter voters. These voters may indeed be able, through

sophisticated insincere behavior, to manipulate the outcome of the election in their

favor. Such a feature may be particularly undesirable in a democratic situation since

all voters are supposed to have the same voting rights. Yet another reason would

be that behaving sincerely is less costly for voters than behaving insincerely. Vot-

ing sincerely for your preferred candidate(s) seems indeed less effort intensive than

choosing an optimal strategic behavior in order to manipulate the outcome in one’s

favor. Such low “thinking” costs would therefore be an argument in favor of an elec-

toral system since it would be less costly to use than other systems in which voters

have to think much more carefully about their voting behavior. Note that such an

argument needs not apply to approval voting since there are many different sincere

ballots, which makes the decision harder for the voters.

Finally, if one accepts that sincerity is a good benchmark to evaluate electoral

systems7, it is not obvious which one among the specific definitions provided in

to manipulation. For instance, Pathak and Sonmez [36] study a notion of degree of manipulation
in the college admissions problem (see Barbera [3] for a recent survey on the concept of strategy-
proofness).

6See Wolitzky [40] for a discussion on the relation between strategy-proofness and sincerity in
voting.

7Note that when voters are sincere, AV does not ensure reasonable preference aggregation as
shown by Núñez [33] in Poisson games and De Sinopoli et al. [10] with traditional equilibrium
refinements such as stable sets. Such an intuition is also present in information-aggregation models.
In a different setup, the literature on the Condorcet Jury Theorem (Feddersen and Pesendorfer [15,
16, 17] and Myerson [25]) suggests that insincere voting may actually lead to a better social outcome
than sincere voting. Indeed, when voters are not sincere the best candidate is the only likely winner
even if information is biased. This may not the case when voters are sincere.
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the literature is the appropriate one. We hence consider all of them. As already

mentioned, no-skipping sincerity follows from Brams and Fishburn (1978) in their

definition of a sincere ballot. This definition is intuitive and broadly accepted.

Nonetheless, the other definitions of sincerity present in Merrill and Nagel [24] are

of independent interest. Recently, Dowding and Van Hees [13] provide a defini-

tion of sincere manipulation, building on the idea that one should not consider all

manipulations alike. They prove that a wide class of voting rules to which P V be-

longs is immune to an undesirable type of manipulation. We do not evaluate their

definition of sincerity in the current framework as their main definition of sincere

manipulation is defined in terms of groups of voters and hence a natural adaptation

in a context with a random number of voters is far from obvious.

3 Poisson Voting Games

Each voter has a type t in set of types T that defines her strict cardinal preferences

over the set of candidates K = {1,2, . . . , k}. A voter’s payoff only depends on the

candidate who is elected. The preferences of a voter with a type t are denoted by ut =

(ut(k))k∈K . Preferences are assumed to be strict. Each voter’s type is independently

drawn from T according to the distribution of types denoted by r = (r(t))t∈T 8. In

other words, r(t) represents the probability that a voter randomly drawn from the

population has type t.

A Poisson voting Game of expected size n is a game such that the actual number

of voters taking part in the election is a random variable drawn from a Poisson

distribution with mean n9. The probability distribution and its parameter n are

common knowledge. A finite Poisson game of expected size n is then represented by

(K,T ,n, r,u). The expression “Large Poisson game” or LPG refers to the asymptotic

behavior of a sequence of Poisson games of expected size n when n is large enough.

In order to completely determine an election in a Poisson voting game, the voting

rule remains to be specified. The set of available ballots is denoted by C. Formally,

each ballot is a vector c of length k. Under AV , each coordinate ci being equal to 0

or to 1. If ci = 1, candidate i is approved by ballot c. We let Z(C) denote the set of

possible action profiles for the players in a Poisson game. That is, Z(C) is the set of

8The distribution of types satisfies r(t) ≥ 0 ∀ t ∈ T and
∑
t∈T r(t) = 1.

9A Poisson random variable P (n) is a discrete probability distribution that depends on a unique
parameter (its mean). The probability that a Poisson random variable of parameter n takes the value
l, being l a nonnegative integer equals e−n n

l

l! .
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vectors x = (x(c))c∈C such that each component x(c) is a nonnegative integer.

As shown by Myerson [25], voters’ actions uniquely depend on their private in-

formation t on this type of games in equilibrium (common public information).

Moreover, in these games the number of voters who choose a given ballot is inde-

pendent from the number of voters who choose another ballot (independence of

actions).

We represent voters’ actions by the strategy function σ (c| t) 10 which is a function

from T into ∆(C) the set of probability distributions over C. A voter with type t

chooses ballot c with probability σ (c | t). Then, given the distribution of types r and

the strategy function σ (. | t), the vote distribution τ = (τ(c))c∈C can be determined as

follows. For each c ∈ C, we define τ(c) =
∑
t∈T r(t)σ (c | t).

The vote distribution τ represents the share of votes each ballot gets. Given the

vote distribution τ , the (common knowledge) probability that the outcome is equal

to a vector x ∈ Z(C) is such that

P [x |nτ] =
∏
c ∈C

(
e−nx(c)(nτ(c))x(c)

x(c)!

)
.

Under AV , we let Cj denote the set of ballots in which candidate j is approved.

Given the vote distribution τ , the expected score distribution ρ = (ρ(j))j∈K describes

the expected number of points each candidate gets. For each j ∈ K ,

ρ(j) =
∑
c∈Cj

τ(c)cj .

The candidates with the highest score ρ(·) are the front-runners of the election. The

random variable that describes the number of votes each candidate j gets is denoted

s(j) and it is a Poisson variable of parameter nρ(j).

For each event x ∈ Z(C), the actual scores of the candidates are described by

the vector sx = (sx(j))j∈K with sx(j) with sx(j) =
∑
c∈Cj x(c). When the vote profile is

x ∈ Z(C), let M(x) = argmaxj∈K sx(j) denote the set of candidates with the highest

number of points. Assuming a fair toss of a coin, the probability of candidate k

winning the election given the vector x ∈ Z(C) is

10The strategy function satisfies σ (c |t) ≥ 0∀c ∈ C and
∑
d∈C σ (d |t) = 1. It plays the role of a strategy

combination in a game with a constant number of players.
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W [k | x] =

 1/#(M(x)) if k ∈M(x)

0 if k <M(x).

For any vector x ∈ Z(C) and any ballot c ∈ C, we let x+ {c} denote the vector such

that one ballot c is added. Thus, given the vote profile x, a voter with type t casts

the ballot c that maximizes her expected utility

Ut[c] =
∑
x∈Z(C)

P [x |nτ]
∑
k∈K

W [k | x+ {c}]ut(k).

Definition 1. We refer to σ as an equilibrium of a finite Poisson voting game if for each
c ∈ C and each t ∈ T ,

σ (c | t) > 0 =⇒ c ∈ argmax
d∈C

Ut[d].

Nevertheless, as the focus of this work is on elections with a large number of voters,

one shall look at the limits of equilibria as the expected number of voters n tends

to infinity. Thus, we refer to a large equilibrium sequence to denote any equilibrium

sequence {σn}n→∞ of the finite voting games of expected size n such that the vectors

σn are convergent to some limit σ as n→∞ in the sequence. We refer to this limit σ

as a large equilibrium. Furthermore, we refer to a sequence of outcomes in Z(C) by

{xn}n→∞. The limit x of a sequence of vectors {xn}n→∞ in Z(C) is a vector of Z(C).

We assume that each voter determines which ballot he casts by maximizing her

expected utility: a voter cares only about the winner’s identity. As we analyze elec-

tions with a large number of voters, a voter’s action has no impact in almost any

possible outcome of the election. Indeed, it has some impact if and only if there

is some set of candidates involved in a close race for first place where one ballot

pivotally changes the result of the election: a pivot11.

For some ballot c and a pair of candidates i and j, pivot(c, i, j) denotes the event

that adding one more ballot c can change the winner from candidate i to candidate

j,

pivot(c, i, j) = {x ∈ Z(C) |W [i | x] >W [i | x+ {c}] andW [j | x] <W [j | x+ {c}]}.

Let pivot(i, j) denote the event in which there is a close race such that one addi-

tional vote can pivotally change the winner of the election from one to the other of

11A brief discussion of the methods to compute such probabilities is included in the appendix.
The interested reader might find the insights presented by Myerson [27], Myerson [28], Núñez [32]
and Núñez [33].
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these two candidates,

pivot(i, j) =
⋃
c∈C

(pivot(c, i, j)∪ pivot(c, j, i)).

The event pivot(i, j) is the union of the different outcomes in which one single ballot

can change the outcome of the election from one to the other.

Voters take into account only the probabilities of these events in order to de-

termine their best responses. We will often refer to the magnitude of an outcome

rather than to its probability, as it simplifies the computations. An outcome A is a

subset of Z(C) with P [A | nτ] =
∑
x∈A P [x | nτ]. Given a large equilibrium sequence

{σn}n→∞, the magnitude µ[A] of an outcome A is such that

µ[A] = lim
n→∞

1
n

logP [A |nτ].

A description of the computational techniques is included in the appendix.

For any vote profile x, any expected vote profile nτ , and any ballot c, we denote

the limit of the c-offset ratios by

α(c) = lim
n→∞

x(c)
nτ(c)

.

The offset theorem (Myerson [27]) states that, given nτ , for any outcome A ∈ Z(C)

and any vector w ∈ Z(C),

lim
n→∞

P [A−w |nτ]
P [A |nτ]

=
∏
c∈C

α(c)w(c).

4 Skipping a candidate with no votes: Intensity of Pref-

erences

Whereas the meaning of sincerity is clear in a rule like P V (a sincere voter simply

votes for her preferred candidate), it is not that simple in a rule like AV where the

voter can vote for different candidates. Indeed, there has been a controversy over

this point12.

Merril and Nagel [24] present the different notions of sincerity under Approval

voting considered in the literature, included here for completeness.

12For a summary of the properties of AV , see the recent book by Laslier and Sanver [22].
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• No-Skipping: A voter approves of all the candidates preferred to the least pre-

ferred approved candidate.

• Pure Sincerity: A voter approves of all the candidates whose utility is above

the average utility without skipping.

• Expansive Sincerity: A voter votes for more than the candidates prescribed by

pure sincerity without skipping.

• Restrictive Sincerity: A voter votes for less than the candidates prescribed by

pure sincerity without skipping.

• Weak Insincerity: A voter may skip some candidates but votes for her preferred

choice.

• Strong Insincerity: A voter may skip some candidates and does not vote for her

preferred choice.

The no-skipping notion was proposed by Brams and Fishburn (1983) whereas

the pure sincerity was suggested by Merril and Nagel [24], in which a discussion

of the motivations of the different versions of sincerity is provided. More recently,

Ballester and Rey-Biel [2] analyze sincerity under voting rules in a mechanism de-

sign fashion, in the absence of information over the other voters’ preferences. None

of the previous works are performed in a game-theoretical framework, in contrast

with ours. Our approach assumes complete information over the other voters’ pref-

erences even though the Poisson distribution creates an uncertainty over the size of

the population.

For precision, we include a formal definition of both no-skipping sincerity and

pure sincerity as they will be the main focus of the current work.

Definition 1: An AV ballot satisfies no-skipping sincerity for a t-voter if ut(i) >

ut(j) =⇒ ci ≥ cj .

Definition 2: An AV ballot satisfies pure sincerity for a t-voter if satisfies no-

skipping sincerity and ut(i) >
∑
j∈K ut(j)
k ⇐⇒ ci > 0.

Pure Sincerity: Note that the notion of pure sincerity seems poorly adapted to a

strategic environment. Furthermore, it suffices to check the equilibrium depicted by

Núñez [33] in order to see that pure sincerity does not hold under AV , as in order to

construct the equilibrium, one only needs to specify the ordinal preferences13. Both

13I would like to thank one referee for pointing this out.
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expanded and restricted sincerity closely follow the idea of pure sincerity and are

based on no-skipping sincerity.

As will be shown, we prove that in general voters might skip a candidate in equi-

librium. More specifically, we prove that there exist equilibria in which a voter’s

unique best response is to skip a candidate. Notwithstanding, we differentiate be-

tween two main reasons for skipping a candidate.

The first one arises when every voter assumes that some candidate l receives

no votes at all. In this situation, it seems intuitive to think that the voter is indif-

ferent between approving or not candidate l. As will be proved, it might lead a

strictly higher expected payoff not to approve it. Nonetheless, we prove that under

a suitable restriction of the voter’s intensities, this sort of skipping does not arise in

equilibrium.

The second reason seems more deeply rooted in the Poisson structure on the

game. Indeed, we provide an example in which a candidate has a positive share of

votes (an expected 1/8 of the total number of votes) and some voters rationally skip

him. This is due to the correlations between the scores of the candidates that arise

in the equilibrium described. A discussion on how a different model would account

for such sort of insincerity is presented.

4.1 An example

The next example proves that the voters need not approve of a candidate when they

anticipate that this candidate receives no vote.

Take a LPG with K = {1,2,3,4} and in which voters’ utilities are as follows:

ut1 = (10, s, r,0); ut2 = (1,3,10,0) andut3 = (0,1,3,10),

with 10 > s > r > 0. Besides the distribution of types satisfies

0 < r(t1) < r(t2) < r(t3) <
1
2
.

Remark: Voters’ preferences in this situation are consistent with single-peakedness.

It is not difficult to see that t1-voters’ best responses are not sincere with the strategy

function σ1 depicted as follows:

σ1 = ({1,3}, {3}, {4}),

11



in which t1-voters vote {1,3}, t2-voters vote {3} and t3-voters approve of just can-

didate 4.

We show now that σ1 describes a strict large equilibrium as long as s < 10+r
3 . The

intuition for this condition over the voters’ intensities is as follows. Indeed, given

σ1, candidate 2 gets no votes. Hence, there are only two events in which a t1-voter

is not indifferent between casting ballot {1,3} (as in σ1) or to add candidate 2 to her

ballot (to vote {1,2,3}): either every voter abstains (with probability e−n) or only one

t3-voter takes part in the election (with probability nr(t3)e−n).

As we deal with large elections, we focus on the limit of these probabilities when

n tends towards infinity. We let A = (0,0,0,1) andw = (0,0,0,1) so that A is the event

in which only one t3-voter takes part in the election whereasA−w is the one in which

every voter abstains. Hence, the offset theorem (introduced in Section 3) entails that

lim
n→∞

P [A−w |nτ]
P [A |nτ]

= α(4),

with α(4) = limn→∞
1

nr(t3) = 0. Therefore, when n is large enough, a t1-voter only

takes into account the event A. In such an event, if he votes {1,2,3}, the outcome is

a lottery between all the candidates hence her utility equals 10+r+s
4 . On the contrary,

if he votes {1,3}, the lottery takes place between candidates 1, 3 and 4 and hence

her utility equals 10+r
3 . Therefore, he prefers to vote {1,3} as long as 10+r+s

4 < 10+r
3 ,

which is equivalent to s < 10+r
3 . Similarly, t2 and t3 voters do not vote for 2 as with

the participation of at most one voter, it is never in their interest to approve of this

candidate.

The approvals of candidates 1,3 and 4 by the different voters remain to be clari-

fied; as they depend on the ordering of the pivot outcomes, we divide the discussion

by the different pivot outcomes in which each of the candidates is included.

Pivots in which 1 is involved.

The t1 voters have 1 as their most preferred candidate, so that they approve of 1.

Similarly, the t3 voters have 1 as their least preferred candidate so that they do not

vote for 1. Finally, given σ1, the voters who vote for 1 vote also for 3. It follows that

in any pivot outcome in which 1 is involved, so is 3. Hence, as the t2 voters prefer 3

to 1 they do not approve of 1.

Pivots in which 3 is involved.

The probability of pivot(3,4) equals the one of the event {x(1,3) + x(3) = x(4)}
whereas the probability of pivot(1,3) is equivalent to the probability of {x(3) = 0} ∩
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{x(1,3) ≥ x(4)}. The magnitude of pivot(3,4) equals −(
√
r(t1) + r(t2)−

√
r(t3))2 which

is higher than the one of pivot(1,3) (−r(t2) − (
√
r(t1) −

√
r(t3))2). Hence, the voters

who prefer 3 to 4 approve of 3 (t1 and t2 voters) and the ones who prefer 4 to 3 do

not (t3 voters).

Pivots in which 4 is involved.

Given the voters’ best responses, the probability of pivot(3,4) equals the one of

the event {x(1,3) + x(3) = x(4)} whereas the probability of pivot(1,4) is equivalent

to the probability of {x(3) = 0} ∩ {x(1,3) = x(4)}. It hence follows that pivot(3,4) has

the highest magnitude implying that the voters who prefer 4 to 3 approve of 4 (t3
voters) and the ones who prefer 3 to 4 do not (t1 and t2 voters).

We have therefore proved the following proposition.

Proposition 1. Whenever the utility of candidate 4 is lower than the average utility
for t1-voters (s < 10+r

3 ), the strategy function σ1 is a strict large equilibrium. In this
equilibrium, skipping is a strict best response for t1-voters.

As a consequence of Proposition 1 we can establish an important consequence

concerning strategic behavior under AV in Poisson Games.

Corollary 1. There exists equilibria in which skipping a candidate is a strict best re-
sponse.

Corollary 2. There exists equilibria in which violating expanded/restricted/pure sincer-
ity is a strict best response.

4.2 A condition for approving of a Candidate with No Votes

Let us recall that the voters are assumed to have strict preferences over the candi-

dates. For the remaining of this section, we assume that the t-voter’s preferences are

ut(1) > ut(2) > . . . > ut(k) for ease of exposition.

For any candidate i in K , we define the upper-contour set of i for t-voters by the

set of candidates strictly preferred by t-voters to i. Formally, we denote it by:

UCSt(i) = {j ∈ K |ut(j) > ut(i)}.

Given the uniform tie-breaking rule, one can derive preferences over the differ-

ent winning sets (that is over subsets of the set of candidates) from the preferences

over the candidates. Indeed, for any pair of subsets of candidates X,Y ⊆ K , we write
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X �t Y to denote that the t-voter (weakly) prefers the lottery over the candidates in

X rather than the lottery over the candidates in Y . Due to the uniform tie-breaking

rule, it is equivalent to write that

X �t Y ⇐⇒
1
|X |

∑
x∈X

ut(x) ≥ 1
|Y |

∑
y∈Y

ut(y),

where |.| stands for the cardinal. The relation �t defines a weak order over the

different sets of candidates.

Candidate i is a strong candidate for type-t voters if they always prefer to add

candidate i to any lottery not included in the upper-contour set of i. In other words,

candidate i is strong for type-t voters if and only if for any Y *UCSt(i),

Y ∪ {i} �t Y ⇐⇒ {i} �t Y ,

with Y ∪ {i} , Y . We denote the set of such candidates by St(K).

The next theorem states there cannot exist an equilibrium in which a voter skips

a strong candidate. This result characterizes an important and distinctive feature of

Approval Voting. Indeed, as proved by Myerson [28], the Plurality rule (voting for

one candidate) is too much vulnerable to voters’ anticipations. As is well-known,

the wasted-vote effect is recurrently associated to Plurality rule. Whenever the vot-

ers anticipate that a candidate receives no votes, no voter votes for him since it is

becomes rationally dominated. Hence, the voters have a tendency to vote for their

most preferred candidate among the ones with a positive probability of winning.

One of the main arguments for Approval Voting is that this wasted-vote effect is

less severe. A good example of this feature is to take a society with a unanimously

preferred candidate. Under AV , this candidate is the unique winner since every one

votes for her most preferred candidate whereas it need not be the case under P V .

Theorem 2 reinforces this feature since it proves that under AV voters need not skip

candidates on the sole reason of the candidate having no votes as it is the case under

P V .

Theorem 1. Let k ≥ 4. There is no equilibrium in which a voter skips a strong candidate
with no votes.

Proof. Assume that the t-voter’s preferences are ut(1) > ut(2) > . . . > ut(k). The argu-

ment is first done for the case in which k = 4 for simplicity of exposition.

4 candidates
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We assume that 2 is a strong candidate. Let σ be an equilibrium in which the

t-voters vote {1,3} and so skip 2. Assume moreover that no other voter approves

of candidate 2. It follows that the only outcomes x ∈ Z(C) in which voting for 2 is

pivotal are the ones in which each candidate but 2 gets at most one point: the events

in the set X2 = {x ∈ Z(C) | sx = (sx(j))j∈K with sx(2) = 0 and sx(j) ∈ {0,1}}.
Consider the decision of the voters between ballot {1,3} and ballot {1,2,3} at the

different events x ∈ X2. Let us recall that M(x) stands for the set of candidates with

highest score at each profile x. As no voter votes for 2, there is only one event x ∈ X2

with 2 ∈M(x) in which every voter abstains and hence M(x) = {1,2,3,4}.

- If M(x) = {4}, then M(x+ {1,2,3}) = {1,2,3,4} �t {1,3,4} =M(x+ {1,3}) .

- If M(x) = {1,2,3,4}, then M(x+ {1,2,3}) = {1,2,3} �t {1,3} =M(x+ {1,3}).
- If either 1 or 3 are in M(x) with M(x) , K , then M(x + {1,2,3}) ∼t M(x + {1,3}). In-

deed, adding a point to a candidate already in the winning set ensures that he still

belongs to it and both ballots assign one point to both 1 and 3.

Therefore, the t-voter strictly prefers to vote {1,2,3} since the probability of every

voter abstaining is strictly positive which implies that σ is not an equilibrium.

k candidates

Let σ be an equilibrium in which some t-voter votes for some subset of candi-

dates A ⊆ K . We denote by K \A the set of non-approved candidates. Assume that

the voter skips some candidate m so that he approves of some candidate n with

ut(m) > ut(n) with n ∈ A and m ∈ K \A.

Take any skipped candidatem and assume it is strong: it follows thatA∪{m} �t A
since A 1UCSt(m) since n ∈ A and ut(m) > ut(n).

Assume that no voter approves of candidatem according to σ . It follows that the

only outcomes x ∈ Z(C) in which voting for m is pivotal are the ones in which each

candidate but m gets at most one point: the events in the set

Xm = {x ∈ Z(C) | sx = (sx(j))j∈K with sx(m) = 0 and sx(j) ∈ {0,1}}.

M(x) andM(x+B) respectively stand for the candidates with the most votes given

x and x+B for any ballot B ⊆ K . Moreover, since under AV , a ballot B can be simply

expressed as a subset of the candidates note that M(B) = B. As for each x ∈ Xm, each

candidate has a score of at most one, the following simple rule determines the set of

winners for any x+B:
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- if M(x)∩M(B) , ∅, then M(x+B) =M(x)∩M(B),

- if M(x)∩M(B) = ∅, then M(x+B) =M(x)∪M(B).

Consider the decision of the voters between ballot A and ballot A ∪ {m} at the

different events x ∈ X2.

- If M(x) = K , then M(A),M(A∪ {m}) ⊂M(x) so that M(x)∩M(A),M(x)∩M(A∪
{m}) , ∅. Therefore, M(x+A∪ {m}) = A∪ {m} �t A =M(x+A) .

- If M(x) ⊆ A, then M(x) ⊆M(A) since M(A) = A by definition. Hence, we have

that M(x)∩M(A) , ∅, so that M(x +A) = M(x)∩M(A) = M(x). Similarly, as M(x) ⊆
A ⊂ A∪{m}, it follows thatM(x+A∪{m}) =M(x). Hence, M(x+A∪{m}) ∼t M(x+A).

- If M(x) ⊆ K \ {A− {m}}, then M(x)∩M(A) = ∅. Then, M(x +A) =M(x)∪M(A) =

M(x)∪A. Similarly, M(x)∩M(A∪ {m}) = ∅ so that M(x +A∪ {m}) = M(x)∪A∪ {m}.
Since M(x) ∪ A 1 UCSt(m), it follows that M(x) ∪ A ∪ {m} �t M(x) ∪ A and hence

M(x+A∪ {m}) �t M(x+A).

- If M(x) * A and M(x) * K \ {A− {m}}, then M(x) 1 UCSt(m). Moreover, M(x)∩
M(A) , ∅ (otherwiseM(x) ⊆ K \{A−{m}}) so thatM(x+A) =M(x)∩M(A) =M(x)∩A.

Similarly, M(x)∩M(A∪{m}) , ∅ so that M(x+A∪{m}) =M(x)∩ (A∪{m}) =M(x)∩A
since m <M(x). Therefore M(x+A∪ {m}) ∼t M(x+A).

Therefore, the t-voter strictly prefers to vote A ∪ {m} proving that σ is not an

equilibrium.

Building on the previous results, we can set up a very simple condition to ensure

that a voter with a given type applies no-skipping sincerity.

We denote the set of top candidates for a t-voter denotes all candidates but the

two last ranked ones:

Tt(K) = {1, . . . , k − 2}.

The reason why we need to state the condition in terms of top candidates (all can-

didates but the two last ranked ones) is intuitive. Note that the result does not state

which set of candidates is approved. Hence, in order to be sure that, independently

of the set of approved candidates, the voter’s best response satisfies no-skipping sin-

cerity, we must ensure that any candidate above the lowest possible candidate that

can be approved is strong. As a strategic voter never approves her lowest preferred
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candidate, the lowest ranked candidate he might approve is the candidate ranked

last but one. Hence, all candidates ranked above the last but one must be strong in

order to ensure no-skipping sincerity.

Corollary 3. Let k ≥ 4. If for some t ∈ T , Tt(K) = St(K), there is no equilibrium in which
the t-voters do not approve of a strong candidate with no votes.

Proof. Let Tt(K) = St(K). The fact that no-skipping sincerity is ensured is a simple

consequence of Theorem 1 whenever k ≥ 4, as any strong candidate is approved,

provided that a lower ranked candidate is approved of by the strategic voter.

The previous condition on the voter’s preferences (namely the set of top can-

didates equals the set of strong candidates) is highly implicit14. Indeed, it is not

easy to check whether the condition holds as one needs to determine the individ-

ual’s utility over each of the different sets of candidates not included in the upper

contour set of each top candidate. We now provide a characterization of this condi-

tion that greatly simplifies this task as one simply needs to check one inequality per

candidate to determine whether the condition for sincerity holds. It turns out that

with four candidates, assuming that the utility over the second ranked candidate is

above the utility of the lottery between the first and the third ranked candidate of

some type of voters is equivalent to assume that the set of top candidates equals the

set of strong candidates. With any number of candidates, one needs to require for

every top candidate i ∈ Tt(K) that the voter prefers the victory of i to the tie between

all the candidates ranked above i and the candidate i+1, ranked immediately below

i.

Proposition 2. Let k ≥ 4. For some t ∈ T ,

Tt(K) = St(K)⇐⇒ {i} �t {1, . . . , i − 1} ∪ {i + 1},

for every i ∈ Tt(K).

Proof. ⇒) Assume first that for some t ∈ T , Tt(K) = St(K) with ut(1) > ut(2) > . . . >

ut(k). Take any candidate i ∈ Tt(K). It follows that i ∈ St(K) so that Y ∪ {i} �t Y , for

any Y *UCSt(i). Then, letting Y = {1, . . . , i−1}∪{i+1}, it follows that {1, . . . , i−1, i, i+

1} �t {1, . . . , i − i, i + 1}, which is equivalent to {i} �t {1, . . . , i − 1, i + 1} as required.

⇐) Assume now that {i} �t {1, . . . , i − 1} ∪ {i + 1}, for every i ∈ Tt(K). Let us now

prove that each i ∈ Tt(K) is strong so that Y ∪{i} �t Y , for any Y *UCSt(i) and i < Y .

14I would like to thank a referee for pointing this out
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The proof proceeds by induction on the candidates.

a. Candidate 1. The claim is immediate as candidate 1 is strong independently

of the voters’ preferences.

b. Candidate 2. Take first any set Y of candidates with #(Y ) = 1. By definition,

{2} �t {i} for any i ∈ {3, . . . , k} which implies that Y ∪ {i} �t Y as long as #(Y ) = 1.

Consider now any set Y with #(Y ) = 2. By assumption, {2} �t {1,3}. Moreover,

note that {1,3} �t Y with #(Y ) = 2 and 2 < Y . Hence, {2} �t {1,3} �t Y so that the

claim holds for any Y with #(Y ) = 2. Let us finally address the case for which Y

satisfies #(Y ) ≥ 3. It turns out that {1,3} �t Y for any such Y as long as 2 < Y since

any candidate in Y different from 1 and 3 is strictly less preferred than 1 and 3.

Therefore, {2} �t {1,3} �t Y which is equivalent to Y ∪ {2} �t Y as wanted.

d. Candidate i. The claim immediately holds for any Y with #(Y ) = 1. Assume

from now on that #(Y ) ≥ 2. By assumption, {i} �t {1, . . . , i−1, i+1}. Note that {1, . . . , i−
1, i + 1} �t Y for any Y with #(Y ) ≥ i and such that i < Y . Hence, {i} �t Y which is

equivalent to Y ∪ {i} �t Y as wanted. In order to conclude the proof for candidate i,

one needs to ensure that {i} ∪Y �t Y for any Y with 2 ≤ #(Y ) ≤ i − 1. However, note

that {i} �t {1, . . . , i −1, i + 1} (by assumption) and {1, . . . , i −1, i + 1} �t {1, . . . , i −2, i + 1}.
Indeed, by assumption {i − 1} �t {1, . . . , i − 2, i} and by definition {1, . . . , i − 2, i} �t
{1, . . . , i−2, i+1} so that {i−1} �t {1, . . . , i−2, i+1} ⇐⇒ {1, . . . , i−2, i−1, i+1} �t {1, . . . , i−
2, i + 1}. Moreover, {1, . . . , i − 2, i + 1} �t Y with #(Y ) = i − 1 as long as Y * UCSt(i).

Hence, it follows that

{i} �t {1, . . . , i − 1, i + 1} �t {1, . . . , i − 2, i + 1} �t Y ,

with #(Y ) = i − 1 as wanted. As similar argument extends the proof for any set of

candidates Y with 2 ≤ #(Y ) ≤ i − 2 concluding the proof.

Building on Proposition 2, we can now easily check whether a utility vector sat-

isfies the sufficient condition for sincerity.

Examples:

Example 1: Let k = 4 with ut = (3,x,1,0). Hence, candidate 2 is strong if and only

if x > 1+3
2 = 2. As the set of top candidates equals candidates 1 and 2 (all candi-

dates but the two last preferred ones), the previous inequality is enough to ensure

sincerity of the voters.

18



Example 2: Let k = 5 with ut = (4, y,x,1,0) with 4 > y > x > 1. In order to ensure that

the set of strong candidates equals the set of top candidates, the utility levels (x,y)

must belong to the set U = {(x,y) ∈R2 | 3x − 5 > y > 4+x
2 , y > x > 1}

Example 3: Let the t-voter’s preferences be such that ut(i) = (k − i)α. When k = 4,

the sufficient condition for sincerity is satisfied when α ∈ (0,1) whereas there is

no strong candidate when α < (0,1). When k ≥ 5, the sufficient condition is never

satisfied since the conditions for candidates 2 and 3 being strong are incompati-

ble. Indeed, assume that St(K) = Tt(K) so that candidates 2 and 3 are strong. By

Proposition 2, it must be respectively the case that (k − 2)α > (k−1)α+(k−3)α

2 and that

(k − 3)α > (k−1)α+(k−2)α+(k−4)α

3 . The first inequality just holds when α ∈ (0,1) whereas

the second one does not in this interval proving the claim.

5 Skipping a Candidate with a Positive Share of Votes:

Ordinal Preferences

Take a LPG with K = {1,2,3,4}. Voters’ preference orderings are depicted in the next

table:

t1 t2 t3 t4 t5
1 1 2 3 4

2 4 1 4 1

3 2 4 1 2

4 3 3 2 3

Besides the distribution of types satisfies

r(t1) = 0.125, r(t2) = 0.25, r(t3) = 0.325, r(t4) = 0.125, and r(t5) = 0.175.

In the strategy function σ2 depicted as follows,

σ2 = ({1,3}, {1}, {1,2}, {3,4}, {4}).

one can see t1-voters violate no-skipping sincerity as they approve of 1 and 3 but

not 2, their second preferred candidate. Given these strategies, candidate 1 is the

unique front-runner of the election.

The main objective of this section is to prove that for some suitable restriction

over the intensities of preferences of t1-voters , σ2 constitutes a strict large equi-
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librium in which the t1-voters play their unique best response. Importantly, the

sufficient condition for approving of a candidate with no votes (introduced in the

previous section) holds in the sense that the top candidates are strong.

The Poisson structure makes that 2 is involved only in pivots in which 1 is in-

cluded and whereas the most likely pivotal events involving 3 include both can-

didates 1 and 4. Hence, the best response for t1 voters is to approve of her first

preferred and third preferred candidate.

We assume that ut1 satisfies ut1(3) > 0.279ut1(1) + 0.721ut1(4). Note that this

restriction does not imply a restriction on ut2(2).

Proposition 3. σ2 is a strict large equilibrium which skipping is a strict best response.

Corollary 4. Approving/skipping a candidate with a positive share of votes need not
depend on the voters’ intensities towards this candidate.

Proof. Within the proof, we write u(k) for ut1(k) in order to simplify the notation, as

the rest of the voters’ best responses hinging uniquely on their ordinal preferences.

In order to determine whether the voters approve each of the candidates, we de-

scribe the pivot probabilities in which each of these candidates is included. Within

the proof, we use the Magnitude Equivalence Theorem included in appendix B to

compute the pivot magnitudes.

Pivots in which 1 is involved.

Due to the correlations of the scores, the pivot with the highest magnitude in

which 1 is included is the one between 1 and 4. Indeed, the magnitude of pivot(1,4)

equals −(
√
r(t1) + r(t2) + r(t3)−

√
r(t4) + r(t5))2 = −0.083 and the rest of the pivot out-

comes have a magnitude lower than the one associated to pivot(1,3) which equals

−(
√
r(t2) + r(t3)−

√
r(t4))2 = −0.168. Hence the voters who prefer 1 to 4 (t1,t2 and t3)

approve of 1 whereas the ones who prefer 4 to 1 give no point to 1 (t4 and t5).

Pivots in which 4 is involved.

The same claim applies to the pivots in which 4 is included. Indeed, the magni-

tude of pivot(1,4) equals -0.083 whereas the rest of the pivot magnitudes in which 4

is present have a magnitude lower than −0.168, the magnitude of pivot(3,4). Hence,

t4 and t5 approve of 4 whereas the rest of the voters give him one point.

Pivots in which 2 is involved.

In the strategy function σ2, the set of voters who vote for 2 is a subset of the set

of voters who vote for 1. Therefore candidate 2 being involved in a pivot requires
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that no voter of type t1 and t2 is present in the election (as they vote {1,3} and {1}) as

otherwise 1 would have a strictly larger score than 2. Hence, in these pivot events,

the score of candidate 3 is lower than the score of candidate 4 as the only votes

he gets are the ones from the ballot {3,4}. Thus, approving of candidate 2 has an

impact in the outcome of the election in two cases (the rest of pivot outcomes being

infinitely less likely): if either breaks a tie between candidates 1 and 2 or a three-

way tie between candidates 1, 2 and 4. However, the magnitude of pivot(1,2) equals

−r(t1)− r(t2) = −0.375 whereas the magnitude of pivot(1,2,4) equals −r(t1)− r(t2)−
(
√
r(t3)−

√
r(t4)− r(t5))2 = −0.3755.

Hence, all voters anticipate that approving of candidate 2 is pivotal against 1.

Therefore, the t3-voters are the only voters approving of 2 as the rest of the voters

strictly prefer 1 to 2.

Pivots in which 3 is involved.

Given the voters’ preferences, the t4 voters always approve of 3 (their preferred

candidate) whereas the voters of type t2, t3 and t5 do not approve of this candidate

since its their worst preferred choice. As far the decision of t1 voters, the Magnitude

Equivalence Theorem proves that among the pivot outcomes including 3, the ones

with the highest magnitude are the one between 3 and 1 and the one between 3 and

4 and the one between 1,3 and 4 share the same magnitude. Hence, the decision

problem of t1 voters just focuses on the previously mentioned pivot events.

Letting p31,p34 and p314 the pivot probabilities, the t1 voters’ decision problem

when deciding between {1} and {1,3} equals:

U [{1}]−U [{1,3}] = (
u(1)−u(3)

2
)p13 +(

u(4)−u(3)
2

)p34 +(
u(1) +u(4)− 2u(3)

6
)p124. (1)

The pivot events can be described by

X3,1 = {x ∈ Z(C) | skx = (a,b,a,a− k) or skx = (a,b,a+ 1, a− k)

for each a,b,k ∈N+, k ∈ {0, . . . , a}, with b+ 1 < a},

X3,4 = {x ∈ Z(C) | skx = (a− k,b,a,a+ 1) or skx = (a− k,b,a+ 1, a+ 1)

for each a,b,k ∈N+, k ∈ {1, . . . , a}, with b+ 1 < a},
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and

X1,3,4 = {x ∈ Z(C) | sx = (a,b,a,a+ 1) or sx = (a− 1,b,a,a)

for each a,b ∈N+, with b+ 1 < a}.

We let W0 = {x ∈ Z(C) | sx = (a,b,a,a)for each a,b ∈ N+, with b + 1 < a}. Since all

the events within each of these sets differ by a single translation from W0, the offset

theorem implies that

lim
n→∞

p31

P [W0 |nτ]
=

1 +α(4)
1−α(4)

,

lim
n→∞

p34

P [W0 |nτ]
=

1 +α(1)
1−α(1)

,

and

lim
n→∞

p314

P [W0 |nτ]
= α(1)−1 + 2α(1).

Since α(1) =
√

τ(3,4)
τ(1)+τ(1,2) = 0.466 and α(4) =

√
τ(1,3)
τ(4) = 0.845, it follows that (1) is

equivalent to

0.279u(1) + 0.721u(4)−u(3).

Hence, the t1 voters approve of candidate 3 when the previous expression is strictly

negative which is equivalent to 0.279u(1) + 0.721u(4) < u(3) as wanted.

Discussion

As discussed in the introduction, Laslier [21] proves that no-skipping sincerity un-

derAV is ensured in a large election model. More precisely, in such a model, if there

is no tie in the expected scores of the candidates, the voter’s best response is sincere

(Corollary 1 page 16). We now discuss the difference between such a model and the

current Poisson structure, in order to underline the driving force behind the lack of

sincerity the previous examples.

In contrast with our model, Laslier [21] assumes that there is a finite number

of voters. However, voters know that with some positive probability, each point

assigned to each candidate might be erased with positive probability. This implies

that, given the voters’ best responses, the scores of the different candidates are in-

dependent random variables. The author can hence prove that, when n is large
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enough, for every three distinct candidates i, j and l, the pivot probabilities satisfy

the next condition:

if ρ(i) > ρ(j) then lim
n→∞

pjl
pil

= 0. (2)

It follows that, in an equilibrium with a unique leading candidate i, a voter ap-

proves of candidate j , i if and only if the candidate is preferred to the front-runner

(as, conditional on the event of being in a pivot, j is involved almost surely in a

pivot against i). Similarly, a voter approves of the front-runner if and only if he

prefers the front-runner to the candidate with the second highest score. These best

responses follow the leader rule as every voter takes only into account to determine

her best response the leading candidate of the election. This naturally triggers the

no-skipping sincerity of voters: they all vote for one of the two leading candidates

and for the rest of candidates they prefer to.

In Poisson Games, the condition 2 is violated and this violation leads to situ-

ations such as the one depicted in Examples 1 and 2. Note that, in Laslier [21]’s

model, the strategies depicted by Example 2 (and a similar claim applies to Exam-

ple 1) do not constitute an equilibrium. Indeed, given σ2 and r, the expected score

distribution ρ = (ρ(j))j∈K satisfies:

ρ(1) = 0.7 > ρ(2) = 0.325 > ρ(4) = 0.3 > ρ(2) = 0.25.

The front-runner is candidate 1 so that in Laslier [21]’s model, the t1-voters

would anticipate that, if approving of any candidate j distinct from 1, the most

likely pivot outcome in which j is involved is against 1. Hence, t1-voters would not

approve of candidate 2 and candidate 3 as they prefer candidate 1 to both 2 and 3.

Therefore, the non-sincerity of the voters is driven by the Poisson structure of the

game in the set of equilibria without ties and strictly positive scores15.

This does not seem to be a particularly desirable feature of Poisson games as it

tends to generate a multiplicity of equilibria under AV 16. Moreover, it seems to be

deeply linked to the correlation between the scores of the candidates that naturally

arise in Poisson games under AV . Few empirical and experimental works deal with

approval voting. These few works seem to confirm the intuition that the voters vote

sincerely. Laslier and Van der Straeten [20] report on an experiment on AV and

Baujard et al. [4] report on experiments comparing the use of EV under various

15I would like to thank a referee for pointing this out.
16See the discussion on the political significance of a multiplicity of equilibria included in Myerson

and Weber [30] and the idea of focal manipulation originally coined by Schelling [38].
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scales, including AV . Finally, Blais et al. [5, 6] report on internet-based experiments

and underline that the voters tend to provide more votes than with plurality voting

to small parties and “to favour, big or small, parties that are deemed to be acceptable

by many voters”.

6 Sincerity of Scoring Rules

We now focus on the strategic sincerity of ranked scoring rules (note that AV is a

non-ranked scoring rule). Following Myerson [26], a ranked scoring rule in a k-

candidates election is characterized by some list of numbers c1, c2, . . . , ck such that

1 = c1 ≥ c2 ≥ . . . ≥ ck = 0. For instance, Plurality voting is such that cj = 0 for any

j , 1. Similarly, the Borda rule satisfies cj = k−j
k−1 . Negative voting belongs to such a

family as cj = 1 for any j , k.

As previously discussed, the sincerity of AV in equilibrium of Poisson games has

three key aspects:

1. A voter always assigns 1 point to her preferred candidate (Best Candidate Sin-
cerity)

2. A voter always assigns 0 points to her least preferred candidate (Worst Candi-
date Sincerity)

3. Under some conditions, whenever a voter approves of some candidate, he ap-

proves of every candidate he prefers to (No-skipping Sincerity).

We evaluate the sincerity of scoring rules by judging whether they satisfy each

of the previous aspects. The fact that no-skipping sincerity need not be satisfied is

a simple extension of Myerson (2002)’s examples17. However, it is not completely

clear whether the other two notions hold: in other words, whether there is some

implicit notion of sincerity in rank scoring rules. We now prove that Plurality Voting

is the only rule that prevents voters from assigning a strictly positive score to their

worst ranked candidate. Similarly, Negative Voting is the unique one that ensures

that the voters always assign a score of 1 to their most preferred candidate. These

two results give a natural grounding to a well-known result: Approval voting, which

ballots are the union of the ones corresponding to these two rules, is the more prone

among (ranked and non-ranked) scoring rules to sincerity.

17An example of this violation is included in Núñez [34] (the working paper version of this work).
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The analysis first focuses on worst candidate sincerity and then examines best

candidate sincerity.

Worst Candidate Sincerity

We now prove that there exists an equilibrium under any rank scoring rule in which

voters assign a score of c2 to their least preferred candidate18. Therefore, the unique

rank scoring rule that shares the feature of AV according to which a voter never

gives a positive score to this candidate is Plurality voting as c2 = 0.

LetK = {1,2,3} and T = {t1, t2}with r(t1) = p so that r(t2) = 1−p for some 0 < p < 1.

The t1-voters prefer to 1 to 2 and 2 to 3 whereas the t2-voters prefer to 1 to 3

and 3 to 2. They both attach an utility of 1 to their best candidate, ρ to their second

candidate and 0 to their least preferred one.

Take the strategy combination σ according to which t1 → {1,0, c2} and t2 →
{1, c2,0}. Given σ , it follows that the possible outcomes of the election are described

by the following set:

X = {x ∈ Z(C) | sx = (a+ b,bc2, ac2) for each a,b ∈N+}.

As long as a,b ≥ 1, it follows that a+b > ac2,bc2 as a ≥ ac2 and b ≥ bc2. In all these

events, candidate 1 is the only winner. It follows that both types of voters prefer to

assign the maximal score to candidate 1 as each of these ballots ensures the victory

of their preferred candidate.

If a = 0 and b = 0, every voter abstains. Hence, both types of voters are indifferent

between all the ballots that assign 1 point to their preferred candidate as they both

ensure the victory of 1.

If a = 0 and b = 1, then sx = (1, c2,0). If a voter votes (1,0, c2), the total score

equals (2, c2, c2) so that 1 is the sole winner of the election. On the contrary, if he

votes (1, c2,0) the total score equals (2,2c2,0). Given that c2 < 1, all voters are indif-

ferent between both ballots and prefer them to the rest of the ballots.

If a = 1 and b = 0, then sx = (1,0, c2). If a voter votes (1, c2,0), the total score

equals (2, c2, c2) so that 1 is the sole winner of the election. On the contrary, if he

votes (1,0, c2) the total score equals (2,0,2c2). As c2 < 1, all voters are indifferent

between both ballots and prefer them to the rest of available ballots.

18Note that Myerson [29] proves that there exists a large equilibrium under negative voting in
which voters assign one point with positive probability to their least preferred candidate (p.238-
239).
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Hence, the strategy combination σ is a large equilibrium of this game.

Lemma 1. If c2 > 0, a voter might assign a strictly positive score to her worst preferred
candidate in equilibrium.

Corollary 5. Plurality Voting is the unique rank scoring rule that ensures that the voters
assign a score of zero to their worst preferred candidate in equilibrium.

Best Candidate Sincerity

The definition of strong insincerity for AV entails that “a voter may skip some can-

didates and does not vote for her preferred choice”. The idea of strong insincerity

is strongly related to the idea of voting for your most-preferred candidate, that we

have denoted best candidate sincerity for rank scoring rules.

There are two possible adaptations of this principle when voters under a scoring

rule: a weak version and a strong one.

The weak version states that a rule is insincere if there exists an equilibrium in

which some voter gives 0 points to her preferred candidate.

The strong version of this statement is that a rule is insincere on the best candi-

date, if there exists an equilibrium in which some voter does not give 1 point to her

preferred candidate.

We now prove how the different scoring rules satisfy both principles: the weak

requirement is satisfied by all rules but Plurality voting whereas Negative voting is

the unique one verifying the strong version of this principle.

Weak Best Candidate Sincerity

In order to understand which rank scoring rules satisfy the weak version, we use the

characterization of weakly undominated strategies in scoring rules voting games

provided by Dellis [12]. It is not too difficult to prove using her condition that a

voter always assign a (weakly) higher score to her most preferred candidate than to

her worst preferred one (Lemma 2). Hence, in three candidate elections, Plurality

voting is the unique scoring rule under which strong insincerity might arise. More

formally,

Lemma 2. If ck−1 > 0, it is weakly dominated for a voter to assign a score of zero to her
most preferred candidate.
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Proof. Take a voter with type t with ut(1) > ut(2) > . . . > ut(k). Take a scoring rule

with ck−1 > 0. According to Dellis [12], if there are at least four voters19, a ballot v

is weakly undominated for a t-voter if and only if there is no ballot w ∈ C such that

for every pair of candidates i and j, ut(i) ≥ ut(j) implies that wi − vi ≥ wj − vj .
Let v be any ballot that assigns a score of 0 to candidate 1 (the voter’s preferred

candidate) so that v1 = 0. By definition of rank scoring rules, it must be the case

that vk = cl for some cl . As by assumption, ck−1 > 0 it follows that any cl > 0 as

ci ≥ ci+1 ∀i by definition. Similarly, let w be the ballot that permutes the scores of

candidates 1 and k (i.e. w1 = vk = cl and wk = v1 = 0), the rest of the scores being as

in v (i.e. wi = vi for any i , 1, k). It follows that w1 − v1 = cl > 0 and wk − vk = −cl < 0.

Moreover, wi − vi = 0 for any i , 1, k. Therefore, as ut(1) > ut(2) > . . . > ut(k), we have

that whenever ut(i) ≥ ut(j), wi − vi ≥ wj − vj so that w weakly dominates v, proving

the claim.

However, Lemma 2 does not directly imply that in equilibrium of a Poisson

game, no voter assigns a score of zero to her most preferred candidates when ck−1 >

0. Indeed, De Sinopoli and Pimienta [11] prove that (perfect) equilibria in Poisson

games may involve the use of weakly dominated strategies. Nonetheless, as we fo-

cus on a voting situation, the probability of every voter abstaining is positive. When

every voter abstains, the voter is not anymore indifferent and strictly prefers to as-

sign her preferred candidate a positive score - in equilibrium of a rank scoring rule,

no voter assigns a score of zero to her most preferred candidate when ck−1 > 0. We

can hence state the following two corollaries.

Corollary 6. If ck−1 > 0, no voter skips her preferred candidate in equilibrium.

Corollary 7. Let k = 3. Plurality Voting is the unique rule in which a voter might skip
her preferred candidate in equilibrium.

Strong Best Candidate Sincerity

A more stringent requirement seems to be whether a voter assigns a score of 1 to

her most preferred candidate. The next example proves that Negative voting is the

19The characterization of weak undominance with at most three voters differs. Nonetheless, our
claim remains valid as assigning a higher score to one’s own favorite candidate than to one’s own
least favorite candidate still weakly dominates assigning a higher score to one’s own least favorite
candidate than to one’s own favorite candidate.
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unique rank scoring rule that ensures that this happens in equilibrium (with three

candidates).

Let K = {1,2,3} and T = {t1, t2} with ut1 = (10,8,0), ut2 = (1,0,10) and ut3 =

(0,10,1).

We consider any scoring rule with score vector (1, c2,0). Within this section, we

let s = c2 to simplify the notations. The current example can be extended to a many

candidates setting even though the presentation is done for three candidates for

simplicity.

If s ≤ 1/2, we assume that

r(t1) =
3− s

6
, r(t2) =

2 + s
6

and r(t3) =
1
6
,

whereas if s > 1/2 we assume that

r(t1) =
1 + s2

6s
, r(t2) =

(3− s)s
6s

and r(t3) =
3s − 1

6s
.

Let β denote the strategy combination in which the t1-voters play the mixed

strategy

β((1, s,0) | t1) = qs, β((s,1,0) | t1) = 1− qs,

whereas the rest of the voters play in pure strategies

β((s,0,1) | t2) = 1 and β((0,1, s) | t3) = 1.

Note that in β, the t1 voters cast with some positive probability the ballot (s,1,0)

so that they violate the strong best candidate sincerity. We set qs = 2−3s
3−4s+s2 if s ≤ 1/2

and qs = s
1+s2 when s > 1/2 so that, given the voters’ strategies, the expected scores

of the three candidates are all equal to 1+s
3 .

We now prove that β is an equilibrium for any rank scoring rule, proving that

the unique rank scoring rule that ensures strong best candidate sincerity is negative

voting.

Lemma 3. If c2 < 1, a voter needs not assign a score of one to her most preferred candidate
in equilibrium.

Proof. If all the pivot probabilities were equally likely, all voters will cast a ballot

that mimics their true preference profile20 contradicting the fact that β is an equi-

20See Núñez and Laslier [35] for a general proof of this claim in the closely related Myerson-Weber
setting.
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librium. As all events occur here in the region where all the offset ratios are close to

1 (in the sense that the most likely event is the tie among the three candidates) we

can use the Normal approximation (see Theorem 3 of by Myerson [27] and Myerson

[29] for an application). In this Normal approximation for the game of expected

size n, the components of the realized vote profile (xn(c))c∈C are approximated as

the integer roundings of independent Normal random variables, where each xn(c)

has a mean and a variance both equal to nτn(c).

Again, as all offset ratios are close to 1, the probability of any pivot event is

roughly equivalent to the probability of candidates i and j being tied for first place

(their ratio tends to 1 as n→∞ due to the offset theorem). For any large n, we set

pij the probability of i and j being for first place.

The indifference of t1-voters between ballots (1, s,0) and (s,1,0) is equal to

(10− 8)(1− s)p12 + 10p13 + xsp23 = (10− 8)(s − 1)p12 + 10sp13 + 8p23,

which can be rewritten as

4(1− s)p12 + 10(1− s)p13 = 8(1− s)p23.

which is in turn equivalent to write

4p12 + 10p13 = 8p23. (3)

Note that the sincerity of t2 and t3 voters is triggered by the fact that the pivot

probabilities are not too different. Take first the case of Plurality voting (s = 0). It

follows that r(t1) = 3/6, r(t2) = 2/6 and r(t3) = 1/6 and q0 = 2/3. In order to justify

the previous equality, one may focus on equilibria of the type βn with

βn((1,0,0) | t1) = 2/3 + εn, βn((0,1,0) | t1) = 1/3− εn,

whereas the rest of the voters play in pure strategies

βn((0,0,1) | t2) = 1 and βn((0,1,0) | t3) = 1.

These strategies lead to the expected vote distribution:

τn(1,0,0) = 1/3 + εn/2, τn(0,1,0) = 1/3− εn/2, and τn(0,0,1) = 1/3.
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Using the Normal approximation, the number of ballots cast x(c) for each bal-

lot c can be approximated by integer roundings of independent Normal random

variables with mean and variance equal to nτn(c). Hence, we define the random

variables ∆ni,j that represent the normalized difference of scores between candidates

i and j so that ∆n1,2 = xn(1,0,0)−xn(0,1,0)√
n

, ∆n1,3 = xn(1,0,0)−xn(0,0,1)√
n

and ∆n2,3 = xn(0,1,0)−xn(0,0,1)√
n

.

This leads to E(∆n1,2) = εn
√
n, E(∆n1,3) = 1/2εn

√
n and E(∆n2,3) = −1/2εn

√
n. Moreover

their variances are all close respectively to 2/3. The correlation between ∆n1,2 and

∆n1,3 equals 1/2 whereas the one between ∆n1,2 and ∆n2,3 equals −1/2.

Remark first that pij = P [∆ni,j = 0 ∩ ∆ni,k > 0 |nτ] for any i, j,k ∈ K.

In order to ensure that (3) holds, we compute the probabilities of the different

pivot outcomes. The pivot between 1 and 2 occurs when ∆n1,2 ≈ 0 and ∆n1,3 is posi-

tive. However, when ∆n1,2 is close to zero, their joint distribution is approximatively

normal with mean 0 and variance 1/2. Letting the F(x,µ,σ ) and f (x,µ,σ ) respec-

tively denote the cumulative and density at x for a Normal distribution with mean

µ and variance σ , we have that

p12 ≈ (1/
√
n)f (0, εn

√
n,2/3)(1−F(0,0,1/2)).

Similarly, the pivot outcome between 1 and 3 occurs when ∆n1,3 ≈ 0 and ∆n1,2 is

positive. But when ∆n1,3 is close to zero, their joint distribution follows a Normal

distribution of mean 3/4εn
√
n and variance 1/2, so that:

p13 ≈ (1/
√
n)f (0,1/2εn

√
n,2/3)(1−F(0,3/4εn

√
n,1/2)).

Similarly, the pivot outcome between 2 and 3 occurs when ∆n2,3 ≈ 0 and ∆n1,2 is

negative. But when ∆n2,3 is close to zero, their joint distribution follows a Normal

distribution of mean 3/4εn
√
n and variance 1/2, so that:

p23 ≈ (1/
√
n)f (0,−1/2εn

√
n,2/3)F(0,3/4εn

√
n,1/2).

The indifference condition (3) is equivalent to εn = −0.2746/
√
n which leads to

the following pivot probabilities

p12 p13 p23

0.2748/
√
n 0.1993/

√
n 0.3865/

√
n

Note that these probabilities ensure that the t2-voters and the t3 voters vote as

in β.
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Similar estimation techniques (fully described in the appendix) prove that there

exists some εn for each value of s for which the indifference condition holds. Letting

εsn = ρs/
√
n for each rule with vector (1, s,0) we have the following tables for some

the scoring rules that describe the sequence of equilibria that justify the voters’

decisions in βn concluding the proof.

s 0 0.1 0.2 0.3 0.4 0.5

ρs -0.2746 -0.3135 -0.3629 -0.4266 -0.513 -0.6384

s 0.6 0.7 0.8 0.9 0.95 0.99

ρs -0.959 -1.432 -2.2478 -4.414 -8.598 -41.577

Corollary 8. Negative Voting is the unique rank scoring rule that ensures that the voters
assign a score of one to their most preferred candidate in equilibrium.

7 Conclusion

This work discusses the incentives for sincerity under AV in Poisson voting games.

It proves that none of the existing definitions in the literature are satisfied in this

game-theoretical framework. Broadly speaking, these definitions are based on the

idea of no-skipping: a voter approves of any candidate preferred to her worst-

preferred approved candidate.

We identify the two main situations in which a rational voter skips a candidate

under AV . First, if no voter votes for a given candidate, it is rational not to vote

for him as the pivot events for some set of cardinal utilities. Second, if a candi-

date has a positive (expected) vote share, it might be the case that voting for him

might be pivotal against one’s top preferred alternative while approving of a least

preferred candidate might be pivotal against some other candidate. While we are

able to find a sufficient condition to prevent the first type of insincerity, the sec-

ond type of insincerity seems deeply related to the correlations between the scores

of the candidates present in Poisson games. Indeed, we prove that a voter never

skips a strong candidate21 if this candidate has no votes. Hence, requiring that all

candidates but the two last ranked ones are strong is enough to prevent this sort of

insincerity. In a sense, this condition generalizes the well-known result under AV

21A candidate i is strong for a voter if the voter prefers the victory of this candidate over the victory
of any other set of candidates (expect the sets that uniquely include candidates strictly preferred to
i).
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that a voter always approves of her most preferred candidate as a candidate ranked

first is always strong. Moreover, it proves that the voters do not skip/approve of a

candidate on the sole basis of their probability of winning (as it is the case under the

most common used rule, Plurality rule) but also take into account their intensity of

preferences towards it.

Furthermore, we set up a comparison with the strategic sincerity under any of

the ranked scoring rules. We prove that with three alternatives the unique rule that

ensures that the voters do not assign a positive score point to her last preferred can-

didate is Plurality Voting; similarly, only the rule of Negative (or Anti-Plurality) can

prevent voters from not assigning the maximal number of points to their most pre-

ferred alternative. As Approval Voting can be thought as the union of both Plurality

and Negative voting (in the sense of the ballots under AV ), we give a clear rationale

for the incentives for sincerity given by the approval rule.
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A Proof of Lemma 2

We now describe the estimation techniques for the pivotal probabilities in Lemma

2. Indeed, as all events occur in the equilibrium β in the region where all the offset

ratios are close to 1 (in the sense that the most likely event is the tie among the three

candidates) we can use the Normal approximation (see Theorem 3 of by Myerson

[27] and Myerson [29] for an application). In this Normal approximation for the

game of expected size n, the components of the realized vote profile (xn(c))c∈C are

approximated as the integer roundings of independent Normal random variables,

where each xn(c) has a mean and a variance both equal to nτn(c).

For each rank scoring rule with vector (1, s,0), we consider sequences of equilib-

ria βn converging towards β in the following sense:

βn((1, s,0) | t1) = qs + εn, βn((s,1,0) | t1) = 1− qs − εn,

whereas the rest of the voters play in pure strategies

βn((s,0,1) | t2) = 1 and βn((0,1, s) | t3) = 1.

We define the random variables ∆ni,j that represent the normalized difference of
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scores between candidates i and j:

∆nij =
s(i)− s(j)
√
n

.

It follows that the probability of a pivot outcome pij is roughly equivalent to:

pij ≈ (1/
√
n)P [∆nij = 0]P [∆nik > 0 |∆nij = 0].

We hence need to determine the distribution of each ∆nij and the conditional

distribution of ∆nik given that ∆nij = 0 for any triple i, j,k.

The rest of this section presents these distributions and is hence divided in two

sections (s ≤ 1/2 and s > 1/2) since the elections in consideration are different for

these two cases.

Rank scoring rules with s ≤ 1/2

Each of the random variables ∆nij follows a Normal random variable N (µ,σ2) as

follows:

∆n12 ∼N
(
(3−s

3 )(1− s)εn
√
n, 1

6(4− 7s+ 7s2)
)
,

∆n13 ∼N
(
(3−s

6 )(1− s)εn
√
n, 1

6(s − 2)2
)
,

∆n23 ∼N
(
−(3−s

6 )(1− s)εn
√
n, 1

6(4− s+ 4s2)
)
.

The correlation between ∆n12 and ∆n13 equals 2−5s+2s2

(s−2)
√

4−7s+7s2
and the one between

∆n12 and ∆n23 is equal to −2+2s−5s2√
4−s+4s2

√
4−7s+7s2

.

Given the distributions of the variables ∆nij and its correlations, the different

conditional distributions follow Normal random variables of the following form

∆n12|∆
n
13 = 0 ∼N

(
(3−4s+s2

4−2s )εn
√
n, 1

2(1− s+ s2)
)
,

∆n13|∆
n
12 = 0 ∼N

(
( (3−s−3s2+s3)s

2(4−7s+7s2) )εn
√
n, (s−2)2(1−s+s2)

2(4−7s+7s2)

)
,

∆n12|∆
n
23 = 0 ∼N

(
(6−8s+5s2−4s3+s4

8−2s+8s2 )εn
√
n, (s−2)2(1−s+s2)

8−2s+8s2)

)
.

Rank scoring rules with s ≥ 1/2

Each of the random variables ∆nij follows a Normal random variable N (µ,σ2) as

follows:

∆n12 ∼N
(
(1+s2

3s )(1− s)εn
√
n, 1

6(1 + s2)
)
,

∆n13 ∼N
(
(1+s2

6s )(1− s)εn
√
n, 1

6(4− 7s+ 7s2)
)
,
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∆n23 ∼N
(
−(1+s2

6s )(1− s)εn
√
n, 1

6(7− 7s+ 4s2)
)
.

The correlation between ∆n12 and ∆n13 equals −1+s+2s2

(1+s)
√

4−7s+7s2
and the one between

∆n12 and ∆n23 is equal to −2+s√
7−7s+4s2

.

Given the distributions of the variables ∆nij and its correlations, the different

conditional distributions follow Normal random variables of the following form

∆n12|∆
n
13 = 0 ∼N

(
( (s−1)(1+s2)(3−5s+4s2)

2s(4−7s+7s2) )εn
√
n, 1+s+s3+s4

8−14s+14s2

)
,

∆n13|∆
n
12 = 0 ∼N

(
(s−1)2(1+s2)

2s(1+s) εn
√
n, 1−s+s2

2

)
,

∆n12|∆
n
23 = 0 ∼N

(
(

(s−1)(1+s2)(2+ (s−2)(s+1)
7−7s+4s2

)
6s 8− 2s+ 8s2)εn

√
n, 1+s+s3+s4

14−14s+8s2)

)
.

B Computing Magnitudes of Pivot Outcomes in Large

Poisson Games

This note summarizes the main results in the computation of magnitudes in this

type of games. Notice that the magnitude of an outcome must be inferior or equal

to zero, since the logarithm of a probability is never positive.

If one can show that a pivot between one pair of candidates has a magnitude that

is strictly greater than the magnitude of a pivot between another pair of candidates,

then the latter becomes infinitely less likely as the expected number of voters goes

to infinity. That is to say, given two subsets Y and Y
′

of the set of candidates K , for

any pair of outcomes pivot(Y ) and pivot(Y
′
) ∈ Z(C), if

µ[pivot(Y )] > µ[pivot(Y
′
)],

then we know that the pivot outcome between candidates in Y is infinitely more

likely than the pivot outcome between candidates in Y
′
, i.e.

lim
n→∞

P [pivot(Y )
′
]

P [pivot(Y )]
= 0.

The magnitude theorem (Myerson [27]) sets up a method to compute such a limit

as the solution of a maximization problem with a concave and smooth objective

function. The dual magnitude theorem or DMT (Myerson [28]) gives a method to

compute magnitudes of outcomes that can be defined by linear inequalities involv-

ing the vote profile x = (x(c))c∈C . Finally, the magnitude equivalence theorem orMET
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(Núñez [33]) states a simple manner of computing the magnitude of pivot outcomes.

Both the MET and the DMT are now presented as they are used to compute the

magnitudes in the examples presented within the paper. We first give the definition

of offset ratio of an outcome that will be necessary throughout.

For any outcome B ⊂ Z(C) and any ballot c ∈ C, the ratio B(c)/nτn(c) is called

the c-offset ratio of B when nτn is the vote distribution. That is, the c-offset is a

ratio which describes the number of players who vote for ballot c as a fraction of the

expected number of voters who were supposed to cast ballot c.

For any ballot c ∈ C, we say that α(c) is the limit of c-offsets22 in the sequence of

outcomes {Bn}n→∞ iff {Bn}n→∞ has a finite magnitude and, for every major sequence

of points {bn} in {Bn}n→∞, we have

α(c) = lim
n→∞

Bn(c)
nτn(c)

=
B(c)
nτ(c)

with τ(c) = lim
n→∞

τn(c) and B(c) = lim
n→∞

τn(c).

Theorem 2. [Dual Magnitude Theorem, Myerson [28]]Given the vote profile x, let B ⊂
Z(C) be an outcome defined by

B = {
∑
c∈C

ak(c)x(c) ≥ 0∀ k ∈ J},

in which J is a finite set and parameters ak(c) are given for every k ∈ J and c ∈ C. Suppose
that λ ∈RC is an optimal solution to the problem

min
λ

∑
c∈C

τ(c)(exp(
∑
k

λkak(c))− 1) s.t.λk ≥ 0, ∀ k ∈ J. (F)

Then the optimal value of the objective function (F) coincides with the magnitude µ[B] of
the outcome B ∈ Z(C) and the limits of the c-offset ratios associated are such that

α(c) = exp(
∑
k

λkak(c)), for all c ∈ C.

22Technically speaking, α(c) is the limit of the major c-offsets. A sequence {bn}n→∞ is a major
sequence of points in the sequence of outcomes {Bn}n→∞ iff each bn is a point in Bn and the se-
quence of points {bn}n→∞ has a magnitude that is equal to the greatest magnitude of any sequence
that can be selected from the outcomes Bn. Formally, bn ∈ Bn ∀ n and limn→∞ log(P [bn | nτn])/n =
limn→∞maxy∈Bn log(P [y | nτn])/n. See Section 3 in Myerson [27] for a more detailed account of se-
quences of outcomes in LPG.
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This theorem states a simple technique to compute magnitudes of outcomes are

defined by a finite series of inequalities.

A simple application is to compute the magnitude of the outcome {s(i) ≥ s(j)} for

any pair of candidates i and j.

Corollary 9. For any pair of candidates i and j,:

µ[{s(i) ≥ s(j)}] =

 0 if ρ(i) > ρ(j),

µ[s(i) = s(j)] if ρ(i) ≤ ρ(j).

Proof. As previously defined, Ck stands for the set of ballots in which candidate k is

approved. For any pair i, j, we let ρi,j the expected number of voters who approve

of i and not j so that ρi,j =
∑
c∈Ci\Cj τ(c). It follows that ρi > ρ(j) is equivalent to

ρi,j > ρj,i . Moreover, the outcome {s(i) ≥ s(j)} is equivalent to B = {
∑
c∈Ci\Cj x(c) −∑

c∈Cj\Ci x(c) ≥ 0}. Theorem 2 implies that the magnitude equals the optimal value

of minX ρi,jX + ρj,iX−1 − ρi,j − ρj,i provided that X ≥ 1. Its minimum is reached

when X =
√
ρj,i
ρi,j

. Hence, whenever ρi,j > ρj,i ⇐⇒ ρ(i) > ρ(j), the magnitude equals

0. Otherwise, the magnitude equals −(√ρi,j −
√
ρj,i)2, the magnitude of {s(i) = s(j)},

proving the claim.

The Magnitude Equivalence Theorem or MET (Núñez [33]) substantially reduces

the computations of the magnitude of a pivot outcome: it allows us to use directly

the DMT to compute magnitudes of pivot outcomes.

The DMT is conceived to compute the magnitude of outcomes defined by a se-

ries of inequalities involving the vote profile x = (x(c))c∈C . Formally, using theDMT

we compute the magnitude of an outcome B ⊂ Z(C) defined by

B = {
∑
c∈C

ak(c)x(c) ≥ 0∀ k ∈ J}.

However, a pivot outcome does not have this geometrical structure, i.e. for some

Y ⊂ K , an outcome pivot(Y ) under AV is defined by

∀ y ∈ Y , s(y) ≥max
k∈K

s(k)− 1

∀ k < Y , s(k) ≤max
k∈K

s(k)− 2.

Given that the components s(k) of the score profile s are sums of the components

x(c) of the vote profile x, i.e. s(k) =
∑
c∈Ck x(c), we cannot express a pivot outcome
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only using linear inequalities involving x.

The MET shows that the magnitude of a pivot outcome coincides with the mag-

nitude of an outcome than can be defined uniquely using this type of inequalities.

The proof of the theorem is provided in the appendix.

Theorem 3 (Magnitude Equivalence Theorem, Núñez [33]). Let Y be a subset ofK and
pivot(Y ) be its associated pivot outcome. Given a large equilibrium sequence (σn)n→∞,

µ[pivot(Y )] = µ[D],

for some outcome D ∈ Z(C) defined by

D = {s(k) = s(l)∀ k, l ∈ Y } ∩ {s(k) ≥ s(l)∀ k ∈ Y and l ∈ K \Y }.

This result shows that there exists an outcome, defined by a series of inequalities

depending on the vote profile x, which magnitude coincides with the magnitude of

the pivot outcome. Indeed, the outcome D defined by Theorem 3 can be written

down as:

D = {
∑
c∈C

ak(c)x(c) ≥ 0∀ k ∈ J},

for some parameters ak as, by definition,

s(k) =
∑
c∈Ck

x(c).

Thus, one can directly use the DMT to compute the magnitude of pivot outcomes,

solving a simple constrained maximization problem.
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