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Abstract—Surveillance applications with Wireless Sensor Net-
works can be strengthened by introducing imaging capability:
intrusion detection, situation awareness, search&rescue. . . As im-
ages are usually bigger than scalar data, and a single image needs
to be split in many small packets, image transmission is a real
challenge for these applications, especially when knowing that
the wireless medium in WSN has high throughput limitations
and high packet loss rates due to numerous wireless channel
errors and contention. Our contribution in this paper is on
identifying limitations and bottlenecks of sensor board hardware
and 802.15.4 radio to determine the performance level that can be
expected when transmitting still images on a multi-hop network.
In this paper, we will present experimentations with real sensor
boards and radio modules. We will highlight the main sources
of delays assuming no flow control nor congestion control to
determine the best case performance level. The objective here
is to present the potentials and the limitations of image-based
wireless sensor networks.

Index Terms—Sensor networks, robust image transmission,
video surveillance, mission-critical applications

I. INTRODUCTION

In the last few years, the research efforts in the field of

Wireless Sensor Networks (WSN) were focused more partic-

ularly on low cost scalar sensor nodes. This type of networks

composed of a large variety of nodes is able to gather on a

large scale environmental data such as temperature, accelera-

tion, moisture level, etc, and to carry out specific processing

(fusion, compression,. . . ) on these data to transmit obtained

information to a base station (Sink) for further treatment and

analysis. However, the purely scalar nature of these collected

data might be limiting for more complex applications such

as object detection, surveillance, recognition, localization, and

tracking. Therefore, in addition to traditional sensing network

infrastructures, a wide range of emerging wireless sensor

network applications can be strengthened by introducing a

visioning capability. The vision capability is a more effective

means to capture important quantity of richer information

and vision constitutes a dominating channel by which people

perceive the world. Nowadays, such applications are possible

since low-power sensors equipped with a visioning component

already exist. This article therefore considers Wireless Image

Sensor Networks (WISN) where sensor nodes are equipped

with miniaturized visual cameras to provide visual informa-

tion. These image sensors can be thrown in mass on an area

of interest for search&rescue situation awareness or intrusion

detection.

There have been studies on image/multimedia sensors [1],

[2], [3], [4], [5] but few of them really consider timing on re-

alistic hardware constraints for sending/receiving packets. [5]

is probably the closest work to ours with real experimentations

on iMote2 sensors. However, their focus was more on global

performances than on a detailed study of the hardware and API

limitations. In this paper, we will present experimentations

with real sensor boards and real radio modules to transmit

still image encoded with an optimized approach that offers

both small image size and robustness. We will highlight

the main sources of delays assuming no flow control nor

congestion control to determine the best case performance

level. One usage for this study could be to use these real

performance measures in simulation models to provide more

realistic performances for large-scale image sensor networks

deployment for instance. Although it is not possible to address

the large variety of existing sensor boards (see [6] for a quite

exhaustive list of existing sensor boards) we however provide

measures for UART-based and SPI-based sensors that could be

adapted to other type of sensors to determine the performance

level that can be expected. The motivation of this article is

to present the potentials and the limitations of image-based

wireless sensor networks for surveillance applications when

using 802.15.4 multi-hop connectivity.

The paper is then organized as follows: Section II presents

real measures on sensor hardware and radio modules of what

could typically be expected with 802.15.4 communication

stacks at the application level. Section III presents an image

encoding scheme that offers both small image size and robust-

ness suitable for image transmission over low bandwidth and

lossy channels. Experimental results of multi-hop still image

transmissions with 802.15.4 radio modules will be presented

in Section IV. Conclusions will be given in Section V.

II. COMMUNICATION PERFORMANCES ON REAL SENSORS

A. Sending performances

One of the main objectives of our work in this paper is to

take into account the real overheads and limitations of realistic

sensor hardware. Most of simulation models or analytical

studies only consider the frame transmission time as a source



of delay. However, before being able to transmit a frame, the

radio module needs to receive the frame in its transmission

buffer. In many low cost sensor platforms, the bottleneck is

often the interconnection between the microcontroller and the

radio module. Many sensor boards use UARTs (serial line) for

data transfer with communication rates between 38400bps and

230400bps for standard baud rates. Non-standard baud rates

are usually possible, depending on the microcontroller master

clock, and also, depending on UARTs, higher speed can be

achieved. Nevertheless, in addition to the radio transmission

time, one has to take into account the time needed to write

data into the radio module’s buffer. This time is far from being

negligible as most of serial communications also adds 2 bits

of overhead (1 start bit and 1 stop bit) to each 8-bit data.

Therefore, with a serial data transfer rate 230400bps, which

is already fast for a sensor board UART, writing 100 bytes of

application payload needs at least 100×10/230400 = 4.34ms
if the 100 bytes can be passed to the radio without any

additional framing bytes. In many cases, one has to add extra

framing bytes, making the 4.34ms a sort of minimum overhead

to add to each packet transmission in most of UART-based

sensor boards. If we consider an image transmission that

requires sending the image in many packets, we clearly see that

the minimum time before 2 packet generation is the sum of the

time to write frame data to the radio and the time for the radio

to transmit the frame. According to the 802.15.4 standard,

if we consider a unicast transmission with the initial back-

off exponent BE set to 0 (default is 3), we typically need a

minimum of 5.44ms+4.34ms = 9.78ms to send a single 100-

byte packet if there is no error. Now, in high-end sensor boards

such as the iMote2 from Crossbow released a few years ago,

the radio module is connected to the microcontroller through

a high-speed bus (SPI for instance) which allows for much

higher data transfer rates, in which case a unicast transmission

of a single 100-byte packet with the same MAC parameter

would take 5.44ms + ǫ. However, as we will how later on,

not only the sending side should be taken into account and

sending fast is usually not reliable.

To highlight the importance of the time needed to write

to the radio on some hardware, we measure on real sensor

hardware and communication API the time spent in a generic

send() function (most communication APIs have a function to

send a packet), noted tsend, and the minimum time between

2 packet generation, noted tpkt. tpkt will typically take into

account various counter updates and data manipulation so

depending on the amount of processing required to get and

prepare the data, tpkt can be quite greater than tsend. With

tsend, we can easily derive the maximum sending throughput

that can be achieved if packets could be sent back-to-back, and

with tpkt we can have a more realistic sending throughput. In

order to measure these 2 values, we will use a traffic generator

that sends packet back-to-back with a minimum of data

manipulation needed to maintain some statistics (counters) and

to fill-in data into packets. When possible, we also add non-

intrusive accurate timing of the programming API.

We will consider Libelium WaspMote [7] that are used in a

number of Smart Cities and environmental monitoring projects

[8], [9], Arduino MEGA 2560 [10] (Libelium WaspMote IDE

is largely based on Arduino) and the iMote2 mote [11] which

is a powerful evolution of Mica2 and MicaZ motes, both

platforms being well-known to the WSN research community.

1) Libelium WaspMote & Arduino: Libelium WaspMote

use an IEEE 802.15.4 compliant radio module called XBee

manufactured by Digi [12] which offers a maximum applica-

tion level payload of 100 bytes. By default, the XBee module

uses a macMinBE value of 0 while the default value for

IEEE 802.15.4 is 3. The WaspMote features an Atmega1281

running at 8MHz. The XBee module and the micro controller

communicate through an UART, and for the WaspMote the

default data rate is set to 38400bps by the Libelium API. In a

first step we will investigate the off-the-shelves performance

of the WaspMote. However we use a modified version of the

”light” Libelium API that provides much higher performance

level compared to the ”full” Libelium API that additionally

handles long packets with fragmentation/reassembly support.

As WaspMote is very similar to the well-known Arduino

boards (WaspMote IDE is actually based on the Arduino IDE)

the results presented in this section also apply to the Arduino

MEGA 2560 board which features an ATmega2560 running

at 16MHz. This Arduino board is one of the fastest Arduino

boards in the market and is quite representative of UART-

based sensor boards. On the Arduino, we also use a very

lightweight communication library[13] and our modified API

for the WaspMote achieves the same level of performance than

the Arduino’s API.
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Fig. 1. Time in send() breakout, WaspMote

Figure 1 shows the time in send() breakout for the Wasp-

Mote (data transfer rate is 38400) where we can especially

see the time required to write to the radio. These results are

averaged over 20 packets for each packet size and even if the

tests can not be totally deterministic the statistical variations

are small enough. The sum of all the timing represents what we

called tsend. The ”time before radio” is the time to prepare

data before writing to the radio. We can see that the main

bottleneck here is the time to write to the radio as the data

transfer rate is only 38400bps.

Figure 2 shows both tsend and tpkt for the WaspMote. The

maximum realistic throughput could be derived from tpkt. On



the Arduino, the communication API is a bit more efficient

and tsend is roughly the time to write to radio: for a 100-

byte packet tsend (averaged) is found to be 29.8ms and tpkt
is 33.45ms.
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Fig. 2. Time between 2 packet generation and time in send(), WaspMote

We then increased the UART data transfer rate that is set by

default to 38400bps. However, increasing the baud rate cannot

be done without taking into account some timing constraints

that may make the serial communication unreliable [14]. The

WaspMote microcontroller runs at 8MHz while the XBee mod-

ule has an 16MHz clock and requires that the frequency is 16

times the baud rate. It means that for a baud rate of 38400, the

actual operating frequency need to be 16×38000 = 614400Hz.

For reliable communication, the WaspMote clock should also

produce a frequency close to 614000Hz. Since it runs at

8MHz, the dividing factor is 8000000/614000 = 13.020833.

Using the nearest integer dividing factor of 13, the actual

baud rate is 8000000/16/13 = 38461.54 which is 1.0016026

times greater than the target baud rate. The error is about

0.1602% which allows for reliable communication between

the microcontroller and the XBee module. Actually, 38400,

which is the value chosen by the Libelium API is the fastest

standard baud rate that provides acceptable errors between the

target baud rate and the actual baud rate. Using 57600 or

115200 baud rates would generate too many errors, making the

communication very unreliable and therefore not functioning

at all. Even on the XBee, 57600 and 115200 baud rates can

not accurately be achieved with the 16MHz clock. Using these

constraints, the perfect dividing factors for the WaspMote are

10, 5, 4, 2 and 1 which correspond to 50000, 100000, 125000,

250000 and 500000 baud rates respectively. As the maximum

IEEE 802.15.4 effective throughput is roughly 166666bps in

broadcast mode with no errors, there is no point to consider

500000 baud rate that would additionally overflow the trans-

mission buffer. On the Arduino, as the clock runs at 16MHz,

there is no problem in getting these baud rates with a dividing

factor of 20, 10, 8, 4 and 2 respectively.

With a serial transmission of 8 data bits, 1 start bit and 1 stop

bit that gives 10 bits per byte, Figure 3 shows the estimated

time to write to radio if baud rates up to 250000 were applied.

If we assume that reducing the time to write to radio does not

change the other overheads, we can estimate the new tBsend for

a baud rate B higher than 38400 as follows:

tBsend = t38400send − timeToWriteToRadio38400

+timeToWriteToRadioB
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Fig. 3. Time to write to radio at various baud rates

Then, assuming that the overheads between 2 packet gen-

eration are also independent from the time to write to radio,

we can estimate the new tBpkt for a baud rate B higher than

38400 as follows:

tBpkt = t38400pkt − t38400send + tBsend

To verify our assumption and to prepare for the experi-

mental image transmission tests using maximum achievable

performance, we set the baud rate of the XBee module to

125000 and 250000 and ran again the traffic generator on the

WaspMote after having changed the default data transfer rate

of the Libelium communication API from the default 38400

to 125000 and 250000. Figure 4 shows the estimated and

measured time between 2 packet generation for data transfer

rates of 125000 and 250000 with the WaspMote.

We can see that the estimated and the measured curves are

very close each other, thus validating our estimation method

of the time to write to radio and the constant overheads of

the communication API. We did the same for Arduino and

in summary, when using a 100-byte payload, we can have

t125000pkt ≈ 16ms and t250000pkt ≈ 12ms for the WaspMote; and

t125000pkt ≈ 13ms and t250000pkt ≈ 7ms for the Arduino. Note that

the send() function may returns before the entire packet has

been transmitted or before the transmission status has been

received, thus explaining the 7ms that is measured while the

minimum transmission time was found previously about 10ms

for a 100-byte packet. The results for the Arduino platform can

be seen as the minimum time between 2 packet generation that

could be achieved for sensor nodes with a similar architecture

using UART lines for communications between microcon-

troller and radio module. However, we observed many packet

losses at 250000 baud rate which was not the case at 125000

baud rate. Therefore, for maximum reliability, from now on,

we will use the WaspMote and the Arduino with a serial data

transfer rate of 125000bps. We will see in the next section

that we will have to take into account the limitations at the

receiver side.
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2) Crossbow iMote2: For the iMote2, we use the .NET

version with the MicroFramework environment. The iMote2 is

a high-end board with a TI CC2420 802.15.4 radio module. As

opposed to WaspMote and Arduino, communication between

the microcontroller and the CC2420 is realized through an

SPI bus which data transfer rate is much higher than UART

serial communication. Once again, with a traffic generator,

we measured the time in send() and found it very small:

2 to 3ms for a 100-byte payload. Therefore, on the iMote2

the microcontroller-radio interconnection is clearly not the

bottleneck. However, as the 802.15.4 transmission time of a

frame of maximum size takes roughly 5ms and as the CC2420

radio has only room for a full-size frame (128 bytes of buffer),

the time between 2 packet generation should at least be set

greater than this value.

B. Receiver performances

In the next set of experiments, we use the traffic generator

to send packets to a receiver. In general, flow control and

congestion control can be implemented but any control would

slow down the transmission anyway. Therefore, we are not

using flow control nor congestion control but experimentally

determine the minimum time between 2 packet generation at

the sending side that would not overflow the receiver.

Figure 5 shows for the WaspMote the minimum time be-

tween 2 packet generation to avoid frame drops or incomplete

frames at the receiver. We can see that with a receiver and the

concern that packets are not arriving too fast at the receiver

side, the minimum time between 2 packet generation increases

from ≈ 16ms to ≈ 63ms for the WaspMote for the maximum

payload size! On the Arduino, we do have the same behavior:

from ≈ 12ms to ≈ 40ms. For the iMote2, while the sending

time can be very small, it appeared that due to the very small

radio buffer size in the TI CC2420, the time between 2 packet

generation need to be increased to ≈ 80ms to keep the packet

losses rates below 10% at the receiver! This is a result that we

did not expect and that was quite surprising. We observed the

same problem on a SoftBaugh board built around an MSP430

microcontroller with the CC2420 radio module. Although this

is not a result that could be considered true for other high-end

boards, it appeared here that the iMote2 board under .NET

framework can not sustain high speed data reception rates.
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C. Multi-hop issues

In a WISN, images are sent from sensor nodes to a sink

or base station. This sink is not always the final destination

because it can also transmit the images to a remote control

center, but it is generally assumed that the sink has high

bandwidth transmission capabilities. Figure 6 shows a detailed

time diagram of a multi-hop transmission. We can see that all

the sensor nodes along the path from the source node to the

sink do have the same constraints regarding the minimum time

between 2 packet generation.

Actually, it is well-known that multi-hop transmissions gen-

erate higher level of packet losses because of interference and

contention on the radio channel (uplink, from the source; and

downlink, to the sink). In this case, when the minimum time

between 2 packet generation is too small, there are contention

issues between receiving from the source and relaying to the

sink. This is depicted in figure 6 by the gray block.
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Fig. 6. Multi-hop transmission of images

However, as we found that the minimum time between 2

packet generation is much greater than the radio transmission

time (about 5ms for a 100-byte packet), multi-hop transmis-

sions in this case will most likely rather suffer from high

processing latencies than from contention problem. On the



figure, we can see that the relay node, upon reception of the

packet from the source node, needs an additional delay to get

data from the radio (yellow block), before being able to send

it to the next hop. This delay is far from being negligible as

in the best case it is similar to the time to write to the radio.

For the WaspMote and the Arduino boards, we also found

that the time needed to read the received data, noted tread, is

quite independent from the communication baud rate between

the microcontroller and the radio module. In all our experi-

mentations, for baud rates of 38400, 125000 and 250000, tread
remains constant and depends only on the data size. Figure

7 plots tread for both the WaspMote and the Arduino. The

reason why tread only depends on the data size, at least at the

application level, is as follows: most of communication API

used a system-level receive buffer and when a packet arrives

at the radio, a hardware interrupt in raised and appropriate

callback functions are used to fill in the receive buffer that will

be read later on by the application. Therefore, the baud rate

has only an impact on the time needed to transfer data from

the radio module to the receive buffer. When in the receive

buffer, the time needed to transfer the data from the receive

buffer to the application depends on the speed of memory copy

operations, therefore depending mainly on the frequency used

to operate the sensor board and the data bus speed. As we can

see in figure 7, tread, for a 100-byte packet, is about 50ms

and 35ms on the WaspMote and Arduino respectively.

In total, when adding additional data handling overheads,

a relay node based on a WaspMote needs about 108ms to

process the incoming packet and to relay it to the next hop,

once again for a 100-byte packet. The Arduino can do it in

about 94ms, see Figure 7, blue and green curves.
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Fig. 7. Measured time to read data

In case the next packet from the source node arrives before

the previous packet has been read, the reception buffer may

overflow quite quickly. This case is depicted by the dashed

green arrow from the source to the first relay node. On more

elaborated OS and processors, it is possible to have a multi-

threaded behavior to process earlier the received packet but

in this case contention on serial or data buses need to be

taken into account. In all cases, we clearly see that in the

best case the next packet will not be sent before the return of

the last send. We can see that multi-hop transmission on this

type of platform adds a considerable overhead that put strong

constraints on the image encoding scheme.

On the iMote2 we measured tread and found it very similar

to the time in send() measured previously at about 2 to 3ms.

As the iMote2 radio module is connected with an SPI bus

this result is quite consistent. The iMote2 can theoretically

receive and relay a 100-byte packet in about 15ms but as

the reception rate was found previously to be very limited,

multi-hop communication with iMote2 has the same level of

performance than with Arduino nodes.

In summary, we found that the WaspMote, the Arduino

and the iMote2 boards have all strong limitations, mostly in

receiving packets where the overhead of memory and data

manipulation puts a minimum inter-packet time at the sending

side to roughly between 90ms and 110ms. In this context,

even an 128x128 image in raw format (16384 bytes) would

require between 14s and 18s to be transmitted in the best

case, assuming 100-byte packets. Table I summarizes the main

communication delays on the sensor motes we study in this

paper. WaspMote and Arduino use 125000 baud rate.

Sensor platform WaspMote Arduino iMote2

tsend (ms) 11 10 3

tpkt (ms) 16 13 6

trcv (ms) 63 40 80

tread (ms) 50 35 3

trly (ms) 108 94 91

TABLE I
SUMMARY OF TIME CONSTRAINTS

In the next section, we will present an optimized image cod-

ing scheme to efficiently reduce the image size and increase

the tolerance to packet losses and reception order.

III. OPTIMIZED IMAGE CODING SCHEME

Transmitting images on WSN faces numerous constraints

such as transmission latency, energy efficiency and reliability.

For surveillance applications, it is not very tractable to increase

reliability with retransmission mechanisms, and usage of re-

dundant information for error correction is very costly. Early

studies have confirmed that image communication needs to be

especially tolerant to packet losses [15] which automatically

make traditional JPEG compression scheme unsuitable as it

suffers from very high spatial correlation: an entire image

could be impossible to decode with only a few packets

missing. We therefore propose an optimized encoding scheme

based on the 2 following key points:

1) Image compression must be carried out by independent

block coding in order to ensure that data packets cor-

rectly received at the sink are always decodable.

2) De-correlation of neighboring blocks must be performed

prior to packet transmission by appropriate interleaving

methods in order to ensure that error concealment algo-

rithms can be efficiently processed on the received data.

The first point motivated the choice of block-based compres-

sion schemes. Among them, we chose a DCT-based method for



sake of simplicity implementation in the context of WSN. In

the following sections we detail first the proposed compression

scheme and, second, the proposed interleaving method.

A. Proposed compression scheme

Our image compression scheme is referred to as a JPEG-

like coder. It is based on the well known Discrete Cosine

Transform (DCT)-Scalar Quantization (SQ)-Entropy coding

chain applied on 8x8 pixel blocks. JPEG has shown its

efficiency in terms of rate-distortion tradeoff for real-life

image compression for many years, especially at moderate

compression ratios, which are of interest for WSN appli-

cations. However, the computational cost of JPEG is high

regarding the resource limitations of sensor nodes in terms

of processor speed and thus may contribute to increase the

energy consumption while it is used to reduce it. Thus, it

is crucial to minimize the number of operations required to

encode pixel blocks, in particular at the DCT step. The Arai-

Agui-Nakajima DCT (AAN) algorithm [16] is known to be

the most efficient 1D DCT for DCT coefficients that need to

be quantized, which is the case in the JPEG-like coders. It

requires only 5 multiplications and 29 additions for an 8 point

DCT, which leads to 80 multiplications and 464 additions for

2D blocks. Furthermore, SQ step requires 64 multiplications

per block. To still reduce the processing time, it is important

to use fixed-point arithmetic for calculation. At the end of

the chain, binary encoding operations could be also reduced

by using jointly Golomb and Multiple Quantization coders

instead of Huffmann coding [17] which leads to an optimized

compression ratio/energy consumption trade-off, with respect

to the application. More details on tuning of compression

parameters, in particular the quality factor (Q), of the enhanced

encoding scheme is detailed in [18].

B. Proposed block interleaving scheme

As stated previously, packet losses are inherent to WSN,

thus, packetization of JPEG encoded data should account it,

in order to allow error concealment methods to be efficient

at the decoder. To achieve this, each packet sent by the

camera node must contain an integer number of encoded

blocks, so that, at the decoder side each block is entirely

received or entirely lost. However, it is obvious that in case

of loss of several neighbor blocks, spatial error concealment

performance decreases significantly. Thus, combining a block

interleaving method with JPEG-like encoding should improve

visual quality of reconstructed images as the probability that

packet loss affects adjacent blocks of pixel decreases signifi-

cantly. Here we propose to use the method designed in [19]

which has shown both its efficiently in terms of visual quality

after reconstruction and computational complexity. Indeed,

only four multiplications, two additions and two divisions

modulo per block are required.

Finally, the combination of the fast JPEG-like proposed

encoder with the proposed block interleaving method allows to

an efficient tuning of the compression ratio/energy consump-

tion trade-off while maintaining an acceptable visual quality in

case of packet loss. Thus, it participates to the improvement of

the lifetime of the entire WSN. Figure 8 and Figure 9 show a

128x128 and 200x200 image respectively with various quality

factor (Q). We set the maximum image payload per packet

to 90 bytes because some bytes need to be reserved in the

802.15.4 payload for storing image information such as the

offset in the image of each data packet received.

Original BMP 16384b Q=50 S=4800b 63pkts Q=40 S=4268b 56pkts Q=30 S=3604b 46pkts 

Q=20 S=2781b 34pkts Q=15 S=2268b 28pkts Q=10 S=1757b 12pkts Q=5 S=1006b 12pkts 

PSNR=17.3283 PSNR=18.6861 PSNR=19.5864 PSNR=20.4087 

PSNR=22.0078 PSNR=23.4172 PSNR=24.6765 

Fig. 8. 128x128 image, typical of intrusion detection applications

Original BMP 40000b Q=50 S=11045b 142pkts Q=40 S=9701b 123pkts Q=30 S=8100b 101pkts 

Q=20 S=6236b 76pkts Q=15 S=5188b 63pkts Q=10 S=3868b 47pkts Q=5 S=2053b 24pkts 

PSNR=18.937 

PSNR=23.2264 PSNR=24.2231 PSNR=25.1661 

PSNR=20.5255 PSNR=21.4475 PSNR=22.1293 

Fig. 9. 200x200 image, typical of search&rescue applications

The number of generated packets, the total size of the

compressed image and the PSNR compared to the original

image are shown in the figure. We can see that a quality

factor of 20 is visually still acceptable while providing a good

compression ratio: 5.89 for the 128x128 image and 6.14 for

the 200x200 image. This is the value for Q that we will

choose for the next experiments but one could imagine setting

Q according to network congestion level for instance. The

128x128 size can typically be used for critical surveillance

applications, such as intrusion detection that need the lowest

latency, while the 200x200 size can be used for a situation-

awareness application which is less delay constrained.

IV. PERFORMANCE OF STILL IMAGE TRANSMISSIONS

A. Experimental test-bed and results

The experiment uses 1 source node consisting of an Arduino

Mega2560 with an XBee module connected to the micro



controller at 125000bps. The images are stored on an SD

card and we can dynamically select which file is going to

be sent, see Figure 10(left). The image file is fragmented in

a number of packets according to the encoding scheme. We

choose a quality factor of 20 that presents an acceptable quality

for a small image size, see section III. When the sending is

triggered, we can choose the time between 2 packet generation.

Fig. 10. Left: Arduino Mega2560 for sending images stored in the SD
card. Right: relay nodes, from left to right: Libelium WaspMote, iMote2 and
Arduino Mega2560

We then have 3 different relay nodes: 1 Libelium WaspMote

and 1 Arduino Mega 2560 with an XBee module (once again

the XBee module is connected to the micro controller at

125000bps), and 1 iMote2 with a CC2420 radio. These relay

nodes are programmed to relay incoming packets to the sink

which is, in our case, an XBee module connected to a Linux

computer running the reception program to receive the image

packets and display the image. Figure 10(right) shows the 3

types of relay nodes.

110ms  PSNR=25.2272 100ms  PSNR=15.4364 

90ms 

PSNR=14.1088 

Fig. 11. 128x128 image received, Libelium WaspMote relay

Figure 11 shows for the 128x128 desert image the various

reception qualities when the time between 2 image packets

is varied. These results are for the Libelium WaspMote relay

node. For inter-packet time greater than 110ms, the image is

received without any packet loss. At 110ms, the time needed to

send the image is about 3.86s. In all cases, the relay node needs

about 102 to 111ms to process an incoming packet and to relay

it to the next hop. This time, noted TR can be considered as

the minimum relay time introduced at every WaspMote relay

node. The image reception latency at the sink with 1 relay

node is about 3.86 + TR assuming that the reception from

serial port on a computer negligible.

Figure 12 shows for the 200x200 rescue image the various

reception qualities when the time between 2 image packets is

varied. The relay node is an Arduino.

90ms  PSNR=26.2259 80ms  PSNR=21.9901 

70ms  PSNR=17.265 60ms  PSNR=14.2429 

Fig. 12. 200x200 image received, Arduino relay

For an inter-packet time greater than 90ms, the image is

received without any packet loss. The time for sending the

image with 90ms inter-packet time is about 7s. This time can

decrease to about 6s when using 80ms between each packet at

the cost of more packet drops. The Arduino relay node needs

about 92ms to 100ms to process an incoming packet and to

relay it to the next hop. With an iMote2 as relay node, due to

the limited reception rate, we have similar results than for the

Arduino relay case.

B. Discussions

On the Arduino Mega2560 board using 90ms for the inter-

packet time gives low packet drop rates and the 128x128 desert

image with a quality factor of 20 can be sent in about 3.18s.

This is probably tractable for critical surveillance applications

such as intrusion detection. One can decrease the quality

factor or send faster at the cost of packet drops to have

much smaller transmission time: with Q=10 and 80ms inter-

packet time, the image can be sent in a bit more than 1s. For

situation-awareness applications, a single 200x200 image can

be obtained in about 7s with Q=20. Assuming a optimized

scheduling strategy for the image nodes we can assume that

the control center can get 100 images from 100 different

locations in about 12 minutes. Although these results could be

improved by a number of optimizations to grab a few ms on

the same hardware platforms, we believe that these values are

quite typical of what can be found on existing sensor boards

and radio modules. At least, it is much more realistic than

assuming only the cost of radio transmission as it is usually

the case in many simulation studies.

One source of high improvement can however come from

the relay node: we use in our experiments an application-level

relaying feature. It means that the packet must go up to the

application level to then be re-transmitted. If the relaying is

performed at the MAC layer as some radio firmware allows

it, such as the DigiMesh firmware available on the XBee

module, the relaying time could be reduced. We could not



however tested this feature of DigiMesh because it was not

possible to accurately perform specific timing measures of the

MAC relaying mechanism and of the AODV-based embedded

routing protocol. A more general solution could be to perform

the relaying not at the MAC level but once the packet is stored

in the reception buffer at the lowest level of the sensor board

API or OS. In all these cases, we can save the time to fetch

the data from the reception buffer to the application.

We chose to not address the overhead for capturing and

compressing the image. In practice, in addition to the com-

munication latency, each image adds a processing delay to

get image data from the camera, to compress the image

and to build the image packet. Our rationale for not having

addressed these issues is because there is a very large range

of possibilities, connection technologies (SPI, I2C, dedicated)

and some specific hardware can also speedup the compression

scheme. Moreover many camera boards have the possibility

to perform some processing task independently from the main

microcontroller. However, it has been reported for the Cyclops,

which is one of the earliest camera sensor proposed in the

research community, a capturing time of about 200ms for a

128x128 image. In addition, we do have an implementation

prototype of our proposed compression scheme on an early

Mica2 sensor which feature an ATmega128L microcontroller

that has the same level of performance than the Libelium

board and we measured a compression time of about 4s for

an 128x128 image and about 10s for an 200x200 image.

These values can certainly be greatly decreased with dedicated

hardware.

V. CONCLUSIONS

Multi-hop image transmission on wireless sensor networks

is a promising technique for surveillance applications. In this

paper, we presented experimentations with various sensor

boards and radio modules to highlight the main sources of

delays assuming no flow control nor congestion control. The

purpose of the study is to determine the best case performance

level that could be expected when considering IEEE 802.15.4

multi-hop connectivity. We showed that there are incompress-

ible delays due to hardware constraints and software API that

limit the time between 2 successive packet send. However, we

also showed that with an optimized image encoding scheme

for both reduced image size and tolerance towards packet

losses, it is possible to have latencies in the order of 3s for an

128x128 image that could suit the need of intrusion detection

applications for instance. When increasing the image size for

situation awareness applications, a latency of 7s is achievable

for an 200x200 image with a quality factor of 20.

Our contribution can be used in various ways. For instance,

more realistic values can be used to build more realistic

simulation models. Also, by identifying the limitations and the

bottleneck, more suitable control mechanisms could be studied

and proposed. For instance, while flow control and congestion

control are of prime importance we believe that traditional

approaches based on buffer management or rate control are

not efficient because they will add to much latency that is not

compatible with surveillance applications. Our further works,

based on the results presented in this paper, will rather propose

to have scheduling mechanisms to explicitly prevent nodes

from sending packets at the same time in the same area.
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