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Abstract We introduce a new model for robust combinatorial optimization where
the uncertain parameters belong to the image of multifunctions of the problem
variables. In particular, we study the variable budgeted uncertainty, an extension
of the budgeted uncertainty introduced by Bertsimas and Sim. Variable budgeted
uncertainty can provide the same probabilistic guarantee as the budgeted uncer-
tainty while being less conservative for vectors with few non-zero components.
The feasibility set of the resulting optimization problem is in general non-convex
so that we propose a mixed-integer programming reformulation for the problem,
based on the dualization technique often used in robust linear programming. We
show how to extend these results to non-binary variables and to more general mul-
tifunctions involving uncertainty set defined by conic constraints that are affine in
the problem variables. We present a computational comparison of the budgeted
uncertainty and the variable budgeted uncertainty on the robust knapsack prob-
lem. The experiments show a reduction of the price of robustness by an average
factor of 18%.

Keywords Robust optimization · Multifunction · Combinatorial optimization ·
Variable uncertainty · Chance constraint

1 Introduction

For a large class of linear programs it is very hard or even impossible to compute
exactly the parameters. Two main frameworks have been introduced to address
this difficulty: stochastic programming and robust programming. Stochastic pro-
gramming supposes that the unknown parameters are described by known random
variables and replaces the deterministic constraints by chance constraints that
must be satisfied with a given probability. Robust programming supposes that the
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unknown parameters belong to known uncertainty sets and imposes that the con-
straints are feasible for all values of the parameters in the uncertainty sets. The
two frameworks have also been considered in a dynamic context, where subsets of
the decision variables must be fixed only after part of the uncertainty has been
revealed. This is usually known as multi-stage stochastic programming (Birge and
Louveaux, 2011) and adjustable robust optimization (Ben-Tal et al, 2009), respec-
tively. In this paper, we are interested by the static situation where all decisions
must be taken before the uncertainty is revealed.

Linear chance constraints suffer from two main drawbacks: (i) the probability
distributions of the random parameters are often impossible to describe with pre-
cision and (ii) the resulting optimization problems are very hard to solve exactly.
In contrast, computing uncertainty sets for robust linear constraints requires less
information on the parameters and, as long as these sets are defined by a conic
system of constraints, the resulting optimization problems are essentially of the
same computational complexity as their deterministic counterparts (Ben-Tal et al,
2009). Namely, the robust counterparts of linear programs subject to uncertainty
sets defined by linear inequalities, second-order cone constraints, or matrix lin-
ear inequalities are, respectively, linear programs, second-order cone programs, or
semi-definite programs, which are all solvable in polynomial time. The tractability
of robust optimization has motivated the large interest on the topic for the last ten
years, see Ben-Tal et al (2009). Between these two extremes, ambiguous chance
constraints models constraints where the parameters are described by random
variables which are not known exactly. Namely, the constraint must be satisfied
with a given probability for all probability distributions in a given set (Erdogan
and Iyengar, 2006).

Among the large literature on robust optimization, researchers have proposed
uncertainty sets that allow a robust constraint to approximate a chance constraint
or an ambiguous chance constraint in the following sense: any solution to the
robust constraint will be feasible for the original chance constraint or ambiguous
chance constraint. For instance, Ben-Tal and Nemirovski (2000) and Bertsimas
and Sim (2004) have introduced uncertainty sets for which a robust constraint
approximates an ambiguous chance constraint where the coefficients are described
by bounded random perturbations that are only assumed to be symmetrically and
independently distributed around their means.

In this paper, we introduce a novel model for combinatorial optimization under
uncertainty. Given a linear constraint

∑n
i=1 aixi ≤ b, its robust counterpart is

defined as
n∑
i=1

aixi ≤ b, a ∈ U, (1)

where U ⊂ Rn is the uncertainty set. Herein, we extend inequality (1) by consid-
ering the constraint

n∑
i=1

aixi ≤ b, a ∈ U(x), (2)

where U : Rn ⇒ Rn is a multifunction of x. We recall in Section 2.1 the uncertainty
polytope UΓ introduced by Bertsimas and Sim (2004) and introduce in Section 2.2
a multifunction Uγ that generalizes UΓ . Model Uγ is motivated by the probabilistic
bounds discussed in Section 3. We see that Uγ is less conservative than UΓ while
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protecting the associated ambiguous chance constraint with the same probability.
We provide an example showing that the feasibility set delimited by (2) is in
general non-convex, which contrasts with the convexity of robust linear programs.
We show in Section 4 how the classical dualization technique can be generalized
to Uγ . Section 5 extends our results to non-binary variables and considers the case
of multifunctions described by conic constraints that are affine in the problem
variables. Section 6 provides a numerical evaluation of model Uγ on the robust
knapsack problem. We conclude the paper in Section 7.

In the rest of this paper, ‖x‖ =
∑n
i=1 |xi| denotes the L1 norm and

∑
refers

to the summation over the set {1, . . . , n} unless stated otherwise.

2 Variable budgeted uncertainty

2.1 Static model

Combinatorial optimization problems that feature robust constraints of the type
(1) have witnessed an increasing attention in recent years, see for instance Agra
et al (2012); Klopfenstein and Nace (2012). This success can be explained by two
main reasons. First, Ben-Tal and Nemirovski (1999) have shown how the infinite set
of constraints (1) can be reformulated as a finite set of constraints by introducing
a new set of real variables. Given a linear description of U, this reformulation
adds n linear constraints to the problem as well as a number of variables equal to
the number of linear constraints that define U; we come back to this technique
in Section 4. Second, Bertsimas and Sim (2004) have introduced a rich class of
uncertainty polytopes with a conservatism that can be regulated by parameter Γ :

UΓ :=
{
a ∈ Rn : ai = ai + δiâi, 0 ≤ δi ≤ 1,

∑
δi ≤ Γ

}
. (3)

Clearly, increasing Γ increases the size of UΓ and thus, the conservatism of the
approach. For instance, if Γ ≥ n, then all components of a can take simultaneously
their peak values and the robust constraint becomes

∑
(ai + âi)xi ≤ b. On the

opposite side, if Γ = 0, all components of a are equal to their non-peak values and
the robust constraint becomes

∑
aixi ≤ b. Varying Γ between 0 and n enables

Bertsimas and Sim (2004) to define a wide variety of uncertainty polytopes.

2.2 Variable model

The uncertainty sets proposed by Bertsimas and Sim (2004) suffer from a practical
drawback: they are independent from the value of x. Because of this, binary vectors
with few non-zero components are more protected than binary vectors with larger
numbers of non-zero components. For instance, consider two binary vectors x1 and
x2 feasible for constraint (1) and suppose that ‖x1‖ = Γ while ‖x2‖ = 2Γ . The
robust constraints associated to x1 and x2 are∑

i:x1
i=1

ai ≤ b, a ∈ UΓ , (4)
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and ∑
i:x2

i=1

ai ≤ b, a ∈ UΓ , (5)

respectively. In a relative point of view, vector x1 is more protected than vec-
tor x2 since it is ensured that constraint (4) is feasible against the simultaneous
perturbation of all of its terms while constraint (5) is only protected against the
simultaneous perturbation of half of its terms. This relative point of view has a
natural probabilistic interpretation. If ãi are random variables distributed between
ai− âi and ai + âi, then the probability that constraint

∑
i:x1

i=1 ãi ≤ b be violated

is always zero while the probability that
∑
i:x2

i=1 ãi ≤ b be violated can be strictly

positive for particular choices of b and probability distributions.
To avoid this conservatism, we introduce in this paper a novel model of un-

certainty. Instead of considering an uncertainty set U ⊆ Rn independent of x, we
introduce a multifunction of x (point-to-set mapping) U : Rn ⇒ Rn. For each
value of x, uncertainty set U(x) ⊆ Rn contains all feasible values for the uncertain
parameters a. We consider in particular multifunctions that are generalizations of
the budgeted uncertainty. Given a non-negative function γ : Rn → R+, we define
the variable budgeted uncertainty as

Uγ(x) :=
{
a ∈ Rn : ai = ai + δiâi, 0 ≤ δi ≤ 1,

∑
δi ≤ γ(x)

}
. (6)

If γ is constantly equal to Γ , then Uγ(x) coincide with UΓ for any x. In general
however, Uγ enables us to avoid to overprotect vectors with few components,
yielding a less conservative model than UΓ . The pendant of (1) for the variable
budgeted uncertainty is ∑

aixi ≤ b, a ∈ Uγ(x). (7)

3 Probabilistic bounds

Using the probabilistic bounds derived in Bertsimas and Sim (2004), we show in
this section how Uγ enables us to guarantee exactly the same protection level
for every x ∈ {0, 1}n. The following notation is used throughout: ãi = ai + ηiâi
denotes the random variable associated with parameter ai and ηi, i = 1, . . . , n, are
arbitrary random variables independently and symmetrically distributed in [−1, 1].
Given any vector x∗ that satisfies the robust constraint (1) for UΓ , Bertsimas and
Sim (2004) prove that

P
(∑

ãix
∗
i > b

)
≤ exp

(
−Γ

2

2n

)
. (8)

We adapt below their bound to variable budgeted uncertainty. First we need to
make bound (8) dependent on x.

Lemma 1 Let x∗ be a binary vector that satisfies the robust constraint (1) for UΓ . It

holds that

P
(∑

ãix
∗
i > b

)
≤ exp

(
− Γ 2

2‖x∗‖

)
.
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Proof If ‖x∗‖ ≤ Γ then P (
∑
ãix
∗
i > b) = 0. Hence, suppose that ‖x∗‖ > Γ , so that

x∗ satisfies the robust constraint∑
i:x∗=1

aixi ≤ b, a ∈ UΓ . (9)

Then,

P

(
n∑
i=1

ãix
∗
i > b

)
= P

 ∑
i:x∗

1=1

ãix
∗
i > b


≤ exp

(
− Γ 2

2‖x∗‖

)
, (10)

where (10) follows from Proposition 2 and Theorem 2 from Bertsimas and Sim
(2004) applied to vector x∗ that satisfies robust constraint (9), which contains
with ‖x∗‖ terms.

Define the non-negative function αε(x) = (−2 ln(ε)‖x‖)1/2. The bound from Lemma 1
implies that any binary vector x∗ that satisfies a robust constraint for uncertainty
set Uαε(x

∗) will also satisfy the chance constraint with probability 1− ε. Because
Uαε(x

∗) = Uαε(x∗), this result can be applied to variable budgeted uncertainty.

Corollary 1 Let x∗ be a binary vector and consider ε ∈ (0, 1). If x∗ satisfies constraint

(7) with γ(x∗) = αε(x
∗), then P (

∑
ãix
∗
i > b) ≤ ε.

The interest of Corollary 1 lies in the fact that αε(x) is an increasing function
of ‖x‖. Then, taking x1 and x2 such that ‖x1‖ ≤ ‖x2‖, we have that Uαε(x1) ⊆
Uαε(x2). Hence, Uαε enables us to impose that x1 be protected against a smaller
uncertainty set than x2, and the uncertainty sets are tailored in such a way that
the probability of violating the constraint is at most ε for both x1 and x2. In
contrast, the classical budgeted uncertainty would have to protect both x1 and x2

against the variations of a in the uncertainty set Uαε(n).
Bertsimas and Sim (2004) mention that bound (8) is not very tight. For this

reason, they introduce more complex bounds that provide tighter approximations
of the probability P (

∑
ãix
∗
i > b). The strongest of these bounds states that any

vector x∗ that satisfies the robust constraint (1) for UΓ satisfies

P
(∑

ãix
∗
i > b

)
≤ B(n, Γ ) =

1

2n

(1− µ)

(
n

bνc

)
+

n∑
l=bνc+1

(
n

l

) , (11)

where ν = (Γ+n)/2, µ = ν−bνc. Their experiments show that the bound provided
by B(n, Γ ) is one order of magnitude smaller than bound (8) for n = 100 and
n = 2000.

Using the same reasoning as the one used for Lemma 1, we can make this bound
dependent of ‖x∗‖ by considering the subconstraint that contains only terms where
x∗ is different from zero.

Lemma 2 Let x∗ be a binary vector that satisfies the robust constraint (1) for UΓ . It

holds that P (
∑
ãix
∗
i > b) ≤ B(‖x∗‖, Γ ).
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To use this bound in the context of Uγ , we need to solve the following equation
in variable Γ

B(‖x∗‖, Γ )− ε = 0. (12)

The unicity of solutions to equation (12) follows from the following property of
B(n, Γ ).

Lemma 3 Function B(n, Γ ) is strictly decreasing in Γ .

Proof Let δ > 0 be small enough so that
⌊
n+Γ+δ

2

⌋
=
⌊
n+Γ
2

⌋
. Then,

B(n, Γ + δ)−B(n, Γ ) = − δ

2n

(
n

bνc

)
< 0.

Because B(n, Γ ) is strictly decreasing in Γ , equation (12) has at most one solution
for all B(n, Γ ), which we denote βε(x). However, the equation does not always have
a solution, that is, βε(x) is not defined for all x ∈ {0, 1}n and ε > 0. Taking for
instance x∗ with only one component equal to one (i.e. ‖x‖ = 1), the minimum of
B(‖x∗‖, Γ ) is equal to 0.5 and is obtained for Γ = 1. Hence, βε(x

∗) is not defined
for ε < 0.5.

In practice, βε(x) is defined for relatively small values of ‖x‖. Because B(n, Γ )
is decreasing in Γ , we can solve equation (12) to the required precision by using
a dichotomic search. Namely, we first evaluate B(n, n/2). If B(n, n/2) > ε, then
we know that βε(x) ∈ [0, n/2]. Otherwise, this means that βε(x) ∈ [n/2, n]. We can
proceed this way up to the required precision on Γ . We have computed β0.01 and
β0.05 numerically up to a precision of 0.01. These computations have shown that
equation (12) has a solution for ε equal to 0.01 and 0.05 when ‖x∗‖ is greater than
or equal to 8 and 5, respectively.

Whenever βε(x) is defined, it can be used to ensure that the probabilistic
constraint is satisfied.

Corollary 2 Let x∗ be a binary vector and consider ε ∈ (0, 1) so that βε(x
∗) is well-

defined. If x∗ satisfies the robust constraint (7) with γ(x∗) = βε(x
∗) then P (

∑
ãix
∗
i > b) ≤

ε.

We compare in Figure 1 the values of the two bounds discussed previously for ε
equal to 0.01 and 0.05. We see that β0.01 ≤ α0.01 and β0.05 ≤ α0.05 for all values of
‖x‖ depicted in the figure. This was expected because Bertsimas and Sim (2004)
had observed that B(n, Γ ) is tighter than bound (8). For this reason, we focus on
βε in the rest of the paper.

We present in Section 6 numerical results for the knapsack problem showing
that the use of Uβε reduces the cost of protecting the solution with probability 0.99
or 0.95 by 18% on average. More complex problems may witness more important
cost reductions. For instance, the protection cost is reduced to zero for the problem
described in Example 1.

Example 1 Let ai be random variables independently and symmetrically distributed
in [−1, 1] and let m and n be any integers such that (i) m ≤ β0.01(n) and (ii)
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Fig. 1 Comparison of the two bounds.
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β0.01(m) ≤ m − 1. Consider then the following combinatorial optimization prob-
lem:

max c xm

s.t. xi+1 ≤ xi, i = 1, . . . , n− 1
n∑
i=1

aixi ≤ m− 1,

x ∈ {0, 1}n.

The deterministic version of the problem replaces the random variables ai by their
mean values, 0, yielding the solution x∗i = 1 for 1 ≤ i ≤ m and x∗i = 0 otherwise,
with objective value c. Using uncertainty models Uβ0.01(n) and Uβ0.01 , we can
ensure that constraint

∑n
i=1 ãixi ≤ m− 1 is satisfied with probability 0.99 by any

solution to the robust models. The optimal solution costs to models Uβ0.01(n) and
Uβ0.01 are 0 and c, respectively. Therefore, the protection cost for model Uβ0.01(n)

is equal to c while there is no protection cost for model Uβ0.01 .

In this section, we have motivated the introduction of our new model, Uγ .
Given a function γ properly chosen, the model can be less conservative than UΓ

while ensuring the required level of protection. In spite of this good news, using
model Uγ is more complex than using model UΓ . This arises from the following ob-
servation. A robust constraint subject to a non-empty uncertainty polytope, such
as UΓ , can always be rewritten as a finite set of linear constraints. This reformu-
lation makes possible to solve a large class of robust combinatorial optimization
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problems efficiently. The situation is more complex in the case of budgeted vari-
able uncertainty Uγ . We show in the example below that the feasible region of the
vectors that satisfy (7) is in general non-convex.

Example 2 Consider the feasibility set of a linear constraint in two variables

X := {x ∈ R2 s.t. a1x1 + a2x2 ≤ 1 for all a ∈ Uγ(x)}.

where

Uγ(x) :=
{
a ∈ R2 : a = (1, 1) + (2, 0)δ, 0 ≤ δ ≤ 1, δ1 + δ2 ≤ x1 + x2

}
,

Set X is non-convex because x1 = (0.5, 0) ∈ X, x2 = (0, 1) ∈ X and 0.5x1 +0.5x2 /∈
X.

In view of Example 2, combinatorial optimization problems that present robust
variable constraints (7) belong to the general class of non-convex Mixed-Integer
Non-Linear Programming. Although some progress has been made for that type
of problems (Burer and Letchford, 2012), they remain very hard to solve to opti-
mality in general, especially when the constraints do not define a known structure.
Nevertheless, we show in the next section how the dualization technique can be
applied to Uγ . To simplify the notations, we often omit the index ε in the rest of
the paper.

4 Dualization

We recall in this section the classical dualization technique used in robust linear
programming and show how it extends to the case of variable uncertainty. The
method described below requires that function γ involved in the definition of Uγ
be an affine function of x. Recall, however, that neither α nor β are affine functions
so that we can not apply our method directly to Uβ . Therefore, we define below
another class of multifunctions that enables us to approximate Uβ by using only
affine functions of x.

Let γ1, . . . , γm be affine functions of x defined by γj(x) = γj0 +
∑
γji xi. For each

x ∈ {0, 1}n, the set Uγ
1...γm(x) contains vectors a ∈ Rn such that ai = ai + δiâi

and

0 ≤ δi ≤ 1, i = 1, . . . , n, (13)∑
δi ≤ γj(x), j = 1, . . . ,m. (14)

In what follows, we will use multifunction Uγ
1...γm as an approximation of Uβ . To

ensure that Uγ
1...γm yields the same probabilistic guarantee as Uβ , functions γj ,

j = 1, . . . ,m, must be greater than or equal to β for all x ∈ {0, 1}n.

Lemma 4 Let γ1, . . . , γm be affine functions of x such that γj(x) ≥ β(x) for all

x ∈ {0, 1}n. If x∗ ∈ {0, 1}n satisfies the robust constraint
∑
aix
∗
i ≤ b, for all a ∈

Uγ
1...γm(x), then P (

∑
ãix
∗
i > b) ≤ ε.
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Proof Since γj(x∗) ≥ β(x∗) for each j = 1, . . . ,m, it holds that Uγ
1...γm(x∗) ⊆

Uβ(x∗). Hence, the constraint
∑
aix
∗
i ≤ b is satisfied for all a ∈ Uβ(x∗) and Corol-

lary 2 implies the result.

The next result shows to handle the upper approximation provided by γ1, . . . , γm.

Theorem 1 Consider robust constraint

aT x ≤ b, a ∈ Uγ
1...γm(x),

x ∈ {0, 1}n,
(15)

and suppose that γ1, . . . , γm are affine functions of x, non-negative for x ∈ {0, 1}n.

Then, (15) is equivalent to

n∑
i=1

aixi +
m∑
j=1

(
γj0zj +

n∑
i=1

γjiwji

)
+

n∑
i=1

pi ≤ b (16)

m∑
j=1

zj + pi ≥ âixi, i = 1, . . . , n,

(17)

wji − zj ≥ −max
j

(âj)(1− xi), i = 1, . . . , n,

j = 1, . . . ,m,
(18)

p, w, z ≥ 0, (19)

x ∈ {0, 1}n. (20)

Proof The proof works in two steps. The first step applies the dualization technique
from Ben-Tal and Nemirovski (1999). Let p and z be the dual multipliers asso-
ciated to constraints (13) and (14), respectively. For any x ∈ {0, 1}n, γj(x) ≥ 0

so that Uγ
1...γm(x) is non-empty and bounded. Hence, strong duality in linear

programming implies that (15) is equivalent to

n∑
i=1

aixi +
m∑
j=1

γj(x)zj +
n∑
i=1

pi ≤ b (21)

m∑
j=1

zj + pi ≥ âixi, i = 1, . . . , n, (22)

p, z ≥ 0, (23)

x ∈ {0, 1}n. (24)

We are left to linearize the bilinear terms in (21): γ(x)jzj = (γj0 +
∑
γji xi)zj .

Introducing nm real variables wji to represent products xizj , constraint (21) for x
binary can be rewritten as

n∑
i=1

aixi +
m∑
j=1

(
γ0zj +

n∑
i=1

γiwji

)
+

n∑
i=1

pi ≤ b (25)

wji − zj ≥ −M(1− xi), i = 1, . . . , n,

j = 1, . . . ,m, (26)

w ≥ 0, (27)
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where M is a constant large enough. Because each zj must satisfies constraints
(22), M may be as large as maxi âi. Constraint (25) does not impose additional
restriction on the minimal value of zj , so that we can choose M equal to maxi âi.
Regrouping constraints (22)–(27) yields the result.

Some care must be taken when choosing functions γ1, . . . , γm. If β were a con-
cave and differentiable function defined for all x ∈ [0, 1]n, its differentials would
provide the best over-approximating affine functions. Unfortunately, β is defined
only for x ∈ {0, 1}n so that no differential is available. Moreover, the finite differ-
ences of step equal to 1 may not be sufficient because there exists x∗, x′ ∈ {0, 1}n
with ‖x∗ − x′‖ = 1 such that

β(x′) > β(x∗) + (x′ − x∗)(β(x′)− β(x∗)).

Therefore, we define the angular coefficient of each function γj by using x∗, x′ ∈
{0, 1}n with ‖x∗ − x′‖ > s for some step s. In our experiments, we use s equal to
5. Notice that because β(x) only depends ‖x‖, we only use affine functions where
the coefficients of all variables are equal. Then, to ensure that for each x ∈ {0, 1}n,
γj(x) is greater than or equal to β(x), we add the constant term

max
x∈{0,1}n

|β(x)− γj(x)|. (28)

Problem (28) is solved by enumeration over ‖x‖ ∈ {1, . . . , n}. We present in Figure 2
examples of piece-wise affine over-approximations of β for ε = 0.01.

5 Extensions

5.1 Non-binary variables

We show in this subsection how to extends the results developed in Sections 3
and 4 to a robust constraint that contains bounded real or integer variables, in
addition to the binary variables considered so far. Recall that our motivation
for introducing multifunctions Uα and Uβ arise from the probabilistic bounds
computed by Bertsimas and Sim (2004): these bounds depend on the number of
non-zero elements in a robust constraint, which we adapt to variable uncertainty
with binary variables by using the L1 norm ‖ ∗ ‖.

To count the number of non-zeroes for real or integer variables, we need to
use a function different from ‖ ∗ ‖. Given an arbitrary vector x∗ ∈ Rn, let 1x

∗

be the binary vector whose i-th coordinate is equal to 0 if x∗i is equal to 0 and
equal to 1 otherwise. We define ‖x∗‖0 := ‖1x

∗
‖, sometimes abusively called the

L0 norm. This function enables us to extend αε and βε to values of x∗ different

from zero and one: α0
ε (x
∗) = (−2 ln(ε)‖x∗‖0)

1/2 and β0
ε (x∗) is the unique solution

to equation B(‖x∗‖0, Γ )− ε = 0 in variable Γ (if the solution exists). The values of
‖x‖0 and ‖x‖ coincide for any binary vector x so that functions αε and α0

ε (resp.
βε and β0

ε ) coincide on {0, 1}n. We see immediately that the results from Section 3
extend to α0

ε and β0
ε . Namely, Corollary 2 becomes the proposition below, and we

can similarly adapt Corollary 1.
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Fig. 2 Approximating β.
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Proposition 1 Let x∗ be a vector in Rn and consider ε ∈ (0, 1) so that β0
ε (x∗)

is well-defined. If x∗ satisfies the robust constraint (7) with γ(x∗) = β0
ε (x∗) then

P (
∑
ãix
∗
i > b) ≤ ε.

The reformulation from Section 4 can also be extended to bounded real or
integer variables. By assumption, we know that there exists a positive real M
large enough so that any vector x∗ feasible for our problem belongs to BM (0),
the ball centered at the origin of radius M . Hence, ‖x‖0 can be expressed by



12 Michael Poss

introducing an auxiliary binary vector y, equal to 1x
∗
:

xi ≤ Myi, i = 1, . . . , n, (29)

y ∈ {0, 1}n. (30)

To extend Theorem 1 to non-binary variables and avoid products of real variables,
we need to restrict ourselves to affine functions γj that depend only on r := ‖x‖0:
γj(x) = γj0 + γj1‖x‖0. We present below an extension of Theorem 1 where it is
supposed that the affine functions depend on a unique variable r. This restricted
version of the result does not prevent us from approximating α0 and β0 with affine
functions because α0 and β0 can be expressed as functions of r := ‖x‖0. Similarly,
we mentioned already that α and β can be expressed as functions of r := ‖x‖. The
proof of the next result is essentially the same as the proof of Theorem 1.

Theorem 2 Consider robust constraint

aT x ≤ b, a ∈ Uγ
1...γm(x),

x ∈ BM (0),
(31)

and suppose that γ1, . . . , γm are affine functions of r := ‖x‖0, non-negative for all

x ∈ BM (0). Then, (31) is equivalent to

n∑
i=1

aixi +
m∑
j=1

(
γj0zj + γj1

n∑
i=1

wji

)
+

n∑
i=1

pi ≤ b

wji − zj ≥ −max
j

(âj)(1− yi), i = 1, . . . , n,

j = 1, . . . ,m,

x ∈ BM (0),

(17), (19), (29), (30).

5.2 Conic uncertainty sets

So far we have only considered a very particular multifunction, Uγ , which can
be seen as a generalization of the budgeted uncertainty set from Bertsimas and
Sim (2004), UΓ . This is motivated by the probabilistic bounds that Bertsimas
and Sim (2004) have provided for UΓ , and the fact that these bounds extend to
Uγ for proper choices of γ. However, the concept of variable uncertainty could be
applied to more general multifunctions U . For instance, the specific knowledge of
a practical problem could motivate the use of a multifunction different from Uγ ,
justified by the application.

The aim of this subsection is to show that Theorem 1 can be generalized to
multifunctions whose images are sets defined by conic inequalities that depend
affinely on x. More precisely, we consider again a robust constraint

aT x ≤ b, (a, b) ∈ U(x), (32)

and we suppose that the uncertainty set is defined by

U(x) := {(a, b) = (a0, b0) +
L∑
`=1

(a`, b`)ζ` : ζ ∈ Z(x)},
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where the perturbation set Z(x) is given by the conic representation

Z(x) := {ζ ∈ RL : ∃u ∈ RK : P (x)ζ +Q(x)u+ p(x) ∈ K}, (33)

where K is closed convex pointed cone in RN with nonempty interior, and for all x,
P (x), Q(x) are given matrices and p(x) is a given vector. In the case where K is not
a polyhedral cone, we assume that the Slater’s condition holds for all x ∈ {0, 1}n,
see for instance Ben-Tal et al (2009). As in the classical case, where P (x), Q(x)
and p(x) are constant, we can apply the strong duality of conic programming
and replace (32) by a finite set of conic constraints, see for instance Ben-Tal and
Nemirovski (2002) for a proof.

Proposition 2 The robust constraint (32) can be represented by the following system

of conic inequalities in variables x ∈ Rn, y ∈ RN :

pT (x)y + (a0)T ≤ b0 (34)

QT (x)y = 0 (35)

(PT (x)y)` + (a`)T x = b`, ` = 1, . . . , L, (36)

y ∈ K∗,

where K∗ = {y : yT z ≥ 0 ∀ z ∈ K} is the cone dual to K.

If p(x), P (x), and Q(x) are affine functions of x, the products of variables that ap-
pear in constraints (34)–(36) can be linearized with the help of big-M coefficients,
yielding a mixed-integer conic reformulation for constraint (32) that generalizes
the reformulation of Theorem 1.

6 Computational experiments

This section studies two numerical aspects of the robust knapsack problem under
uncertainty model Uγ . First, we compare the prices of robustness of Uγ and UΓ :
we show that the cost of protecting the capacity constraint with a probability of
0.99 or 0.95 is strictly less for Uγ than for UΓ . Second, we study the computational
complexity of Uγ . We perform this comparison for the binary knapsack problem
as well as for its linear relaxation. We performed our experiments on a computer
equipped with a processor Intel Core i5 at 2.53 GHz and 4 GB of RAM memory
and calling CPLEX 12.1 in JAVA via Concert Technology (IBM, 2012).

Given a set of n items, each with profit pi and weight ai, the knapsack problem
aims at choosing a subset of these items not exceeding the available capacity b and
maximizing the profit:

max
n∑
i=1

pixi

s.t.
n∑
i=1

aixi ≤ b, (37)

x ∈ {0, 1}n. (38)

Although NP-hard to solve exactly, state of the art MIP solvers can easily solve
instances of the knapsack problem with thousands of variables. This problem is
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central to integer programming because many complicated integer programs fea-
ture capacity constraints like (37). For this reason, the problem is often used to
benchmark new approaches for integer linear programs in the uncertain context.
In stochastic programming, Kleywegt et al (2002) use the knapsack problem to
test their sample average approximation algorithm and Fortz et al (2012) use the
problem to test their simple-recourse reformulations and evaluate its complexity.
In robust programming, Bertsimas and Sim (2004) use the problem to evaluate
the cost of protecting the capacity constraint for various probability guarantees.

To evaluate our new model Uβ , we generate our instances similarly to Bertsimas
and Sim (2004). We consider different item numbers n ∈ {100, 200, . . . , 1000} and
set the capacity to b = 20n for each value of n. For each value of n, we generate
randomly five instances as follows. For each i = 1, . . . , n, the average weight ai is
chosen uniformly from the set {20, 21, . . . , 29}, the deviation âi is equal to 10% of
ai, and the profit pi is chosen uniformly from the set {16, 17, . . . , 77}.

We compare in Figure 3 the optimal protection costs of the different models
with binary variables. For each value of n, we compute Γε = βε(n). Then, we
compute the affine function γε that overestimate βε as described in Section 4. Let
p(det), p(UΓε), and p(Uγε) denote the optimal solution costs to, respectively, the
deterministic model and the robust models where constraint (37) must be satisfied
for all values of a in UΓε or Uγε . We compute the cost c(∗) of protecting a solution

with a given probability for model ∗ as c(∗) = p(∗)−p(det)
p(det) . We present in Figure 3

the geometric means of these protection costs for each value of n. On average,
c(Uγε) is 18% less than c(UΓε).

We compare then the computational complexity of models Uγε and UΓε . Let
t(∗) be the solution time in seconds to solve model ∗ to optimality. The solution
time was less than 10 second for any of our instances. For ε = 0.01, the geometric
mean of the ratios t(Uγ0.01)/t(UΓ0.01) is equal to 1.7, with a maximum value of 7.68.
For ε = 0.05, these values increase to 2.5 and 10, respectively. The ratios do not
increase with the problem size. In addition to the solution times, we investigate the
bound provided by the linear relaxation of the problem. In particular, we want to
understand whether the bound proposed in Theorem 1 for the big-M coefficients is
tight. Our results show that the gap between the linear relaxation and the solution
of the problem are very close for both models. In fact, the gap of model Uγε is
10% better in average than the one of UΓε . However, replacing maxj(âj) by very
large numbers reduce significantly the bound provided by the linear relaxation.
For instance, setting M to 10000 multiplies the gap by an average factor of four.

We have also tested more refined linearizations, using two and three linear
over-approximations. Unreported results have shown that the solution times tend
to increase more than linearly with the number of linear functions used while
decreasing the protecting cost by less than 1%.

We turn then to the linear relaxation of the knapsack problem, where the binary
restriction (37) is replaced by x ∈ [0, 1]n. For this model, the robust counterpart
using model UΓε is a linear program, while the robust counterpart of model Uγε
requires the introduction of binary variables to describe ‖ ∗ ‖0, see Theorem 2.
Similarly to the case of the binary knapsack problem, we compute the optimal
protection costs of the two models and compare the geometric means of their
ratios in Figure 4. On average, model Uγε is 18% cheaper than UΓε , as in the
case of the binary knapsack problem. Without surprise, the solution times of Uγε
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Fig. 3 Cost of protecting the solution for the knapsack problem.
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are higher than those of UΓε , but the average ratio t(Uγ0.01)/t(UΓ0.01) are hard
to compute exactly because a large part of the solutions times for Uγ0.01 are too
small to be measured. For both models, most instances are solved in less than 0.05
seconds, and the ratio t(Uγ0.01)/t(UΓ0.01) can be as large as 60 for the instances
with 1000 items.

7 Conclusion

We have presented a new model for combinatorial optimization under uncertainty
where the uncertain parameters are allowed to vary in uncertainty sets defined by
multifunctions of the problem variables. We have motivated this general model
by proposing a particular example of multifunction Uγ that extends the budgeted
uncertainty set UΓ studied by Bertsimas and Sim (2004). Using multifunction Uγ ,
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Fig. 4 Cost of protecting the solution for the fractional knapsack problem.
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one can obtain less conservative solutions than using UΓ , while ensuring the same
probabilistic satisfaction of the constraint.

We have then shown how the robust counterpart of linear constraints can be
computed in the new model, assuming that the uncertainty sets are delimited
by conic inequalities that depend affinely on the variables of the problem. If the
variables of the original problem are all binary, the dualization of the new model
introduces a polynomial number of real variables and constraints, in addition to
those added by the classical model. In that case, the new model can be almost
as easy to solve as the classical robust model. However, if the original problem
contains fractional or integer variables, the dualization requires to introduce ad-
ditional binary variables and big-M coefficients.

We have provided computational experiments for the robust knapsack problem.
The experiments show that using model Uγ reduces the cost of protecting the
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constraint of model UΓ by 18% on average both for the binary and the fractional
versions of the problem.
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