N

N

A Simulated Annealing Algorithm for the Vehicle
Routing Problem with Time Windows and
Synchronization Constraints
Sohaib Afifi, Duc-Cuong Dang, Aziz Moukrim

» To cite this version:

Sohaib Afifi, Duc-Cuong Dang, Aziz Moukrim. A Simulated Annealing Algorithm for the Vehicle
Routing Problem with Time Windows and Synchronization Constraints. 7th International Conference,
Learning and Intelligent Optimization (LION 7), Jan 2013, Catania, Italy. pp.259-265, 10.1007/978-
3-642-44973-4_ 27 . hal-00916972

HAL Id: hal-00916972
https://hal.science/hal-00916972
Submitted on 12 Dec 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00916972
https://hal.archives-ouvertes.fr

A simulated annealing algorithm for the vehicle
routing problem with time windows and
synchronization constraints *

Sohaib Afifi', Duc-Cuong Dang':2, and Aziz Moukrim'

! Université de Technologie de Compitgne
Laboratoire Heudiasyc, UMR 7253 CNRS, 60205 Compiegne, France
2 University of Nottingham, School of Computer Science
ASAP Research Group, Jubilee Campus
Wollaton Road, Nottingham, NG8 1BB, UK
{sohaib.afifi,duc-cuong.dang,aziz.moukrim}@hds.utc.fr

Abstract. This paper focuses on solving a variant of the vehicle rout-
ing problem (VRP) in which a time window is associated with each
customer service and some services require simultaneous visits from dif-
ferent vehicles to be accomplished. The problem is therefore called the
VRP with time windows and synchronization constraints (VRPTWSyn).
We present a simulated annealing algorithm (SA) that incorporates sev-
eral local search techniques to deal with this problem. Experiments on
the instances from the literature show that our SA is fast and outper-
forms the existing approaches. To the best of our knowledge, this is the
first time that dedicated local search methods have been proposed and
evaluated on this variant of VRP.

Keywords: vehicle routing, synchronization, destruction/repair, simu-
lated annealing.

1 Introduction

The vehicle routing problem (VRP) [9] is a widely studied combinatorial opti-
mization problem in which the aim is to design optimal tours for a set of vehicles
serving a set of customers geographically distributed and respecting some side
constraints. We are interested in a particular variant of VRP, the so-called VRP
with time windows and synchronization constraints (VRPTWSyn). In such a
problem, each customer is associated with a time window that represents the
interval of time when the customer is available to receive the vehicle service.
This means that if the vehicle arrives too soon, it should wait until the opening
of the time window to serve the customer while too late arrival is not allowed.
Additionally, for some customers, more than one visit, e.g. two visits from two

* This work is partially supported by the Regional Council of Picardie and the Euro-
pean Regional Development Fund (ERDF), under PRIMA project.

different vehicles, are required to complete the service. Visits associated to a
particular customer need to be synchronized, e.g. having the same start time.

VRPTWSyn was first studied in [3] with an application in health care ser-
vices for elders. In such services, the timing and coordination are crucial and
therefore the temporal constraints. The readers are referred to [4] for a com-
plete review of those constraints involved in vehicle routing. As an extension of
VRP, VRPTWSyn is clearly NP-Hard. There are only a few attempts to solve
this problem in the literature [2, 3]. In those works, even heuristic ones, integer
linear programming is the key ingredient and the methods often require much
computational time to deal with large instances. Motivated by the potential
applications and by the challenge of computational time, in this work we pro-
pose a Simulated Annealing algorithm (SA) for solving VRPTWSyn. Our SA
incorporates several local search methods dedicated to the problem. It produces
high quality solutions in a very short computational time compared to the other
methods of the literature. New best solutions are also detected.

2 Simulated annealing algorithm

The main idea of a Simulated Annealing algorithm (SA) [6] is to occasionally
accept degraded solutions in the hope of escaping the current local optimum. The
probability of accepting a newly created solution is computed as e*%, where A
is the difference of fitness between the new solution and the current one and T’
is a parameter called the current temperature. This parameter is evolved during
the search by imitating the cooling process in metallurgy.

Our SA is summarized in Algorithm 1. The algorithm is implemented with a
reheating mechanism, due to lines 6 and 25. The simulated annealing routine is
from line 9 to line 23. In the algorithm, we use n to denote the number of visits.
The other functions are described as follows.

2.1 Constructive heuristic

The procedure BestInsertion(X) contains a constructive heuristic to build a
solution from scratch (X = @) or from a partial solution. At each iteration of
the heuristic, a visit with the less insertion cost is chosen to be inserted in the
associated route. Extra routes will be added when it is impossible to insert the
remained visits to the existing routes. The heuristic is actually terminated with
all visits being routed.

In order to evaluate the insertion cost in constant time O(1), some additional
computations for each visit are archived and updated during the process. When
an insertion is applied, the update is propagated through different routes because
of the related synchronization constraints. The propagation may loop infinitely
if the cross synchronizations are not prohibited, e.g. visiting v then v by the first
vehicle, visiting p then ¢ by the second one, and finally realizing that v and ¢
are the same customer as well as v and p (see Fig. 1). In our implementation,
such issues are avoided by carefully computing beforehand for each visit the set

Algorithm 1: Simulated annealing algorithm for VRPTWSyn.
Output: Xpest, the best solution found so far by the algorithm;

1 X < BestInsertion();
2 X < LocalSearch(X);
3 Xbest — X7
4 reheat < 0;
5 while (reheat < rhmaz) do
6 T < To;
7 iter < 0;
8 Xipest + X
9 while (iter < itermax) do
10 X' < Diversification(X, 1,d);
11 X' « LocalSearch(X');
12 A + Fitness(X') — Fitness(X);
13 iter < iter + 1;
14 r~U(0,1);
15 if (r < e*%) then
16 X « X,
17 T+ axT,
18 if (Fitness(X) < Fitness(Xipest)) then
19 iter < 0;
20 Xipest — X
21 if (Fitness(X) < Fitness(Xpest)) then
22 Kpest < X;
23 L reheat < 0;
24 X Diversification(X, §,n);
25 reheat < reheat + 1;

of valid positions (for insertion) from the existing routes. This process is known
as the computation of transitive closures.

u \'/

p q

Fig. 1. A cross synchronization

2.2 Diversification process

The function Diversi fication(X, dmin, dmas) first removes a number (randomly
generated between d,;n, and die.) of visits from the current solution, then
rebuilds it using the above constructive heuristic. This function is actually an
implement of the destruction/repair operator [1]. The aim is to obtain a new

solution from the current one without losing much of the quality, thanks to the
constructive heuristic.

In addition, a dynamic priority management is also administered to identify
critical visits. Each visit is associated with a priority number initialized to O.
This number is increased by 1 unit whenever the insertion of the visit causes the
creation of an extra route. Visits having the highest priority, i.e. frequently caus-
ing extra routes, are in fact critical. Therefore, they need to be inserted during
the early stages of the constructive heuristic. With this dynamic management,
the search is guided back to the feasible space whenever it hits the infeasible
one. In general, we remarked that the portion of explored infeasible solutions
over feasible ones is varied from one instance to another. This solely depends on
the size of the time windows, e.g. the algorithm hits infeasible solutions more
frequently with an instance having small time windows.

2.3 Local search procedure

The two following neighborhoods were adapted to the synchronization con-
straints and used in our local search procedure:

2-opt* (exchanges of paths between different routes [7]): in a 2-opt operator,
we look for the possibility of exchanging two links with two others in the same
route in order to find a local improvement. For the case of multiple vehicles, we
use 2-opt* to denote the same principle of exchange but related to two distinct
routes. This operator consequently implies the exchanges of paths between the
two routes. It is particularly suitable for our case because it is hardly possible
for the classical 2-opt to find an improvement due to preserved order of visits
from the time windows. Our 2-opt* is implemented as follows: a subset of visits

. . . / .

is randomly selected and for each couple of visits {r,r¥ }, we consider the
/ / . . o, . ..

arcs (ry,rf ;) and (7§, 7¥,) (where rj denotes the visit at position i in route

k). If the exchange of these two arcs for (rf,rﬁl) and (rf/,rﬁ_l) ensures the

feasibility then the associated cost is recorded. The feasibility check is handled
by the same process as the one used in the constructive heuristic to avoid cross
synchronizations. Therefore, the exchange cost is evaluated in constant time
for each couple {r¥, 7’?/}. The best one is then memorized and the exchange is
applied.

or-opt (relocation of visits in the same route [8]): in this operator, we look
for the possibility of relocating a sequence of (1, 2 or 3) visits from its original
place to another one in the same route. The implementation of this operator is
similar to 2-opt™ operator: a random selection at the beginning then a feasibility
check.

Our LocalSearch(X) function is then the following: at each iteration, a ran-
dom neighborhood w is chosen from the current set W, initialized to {2-opt*,
or-opt}. Neighborhood w is then removed from W and repeatedly applied to the
current solution until no improvement is found. If at least an improvement was
detected by w, then the other neighborhood will be put back to W (in case it
was removed). The procedure is terminated when W is empty.

3 Results

We tested our algorithm on the instances introduced by [3]. The benchmark
comprises 10 sets grouped in 3 categories based on the number of customers.
Each set has b varieties of instances, those are named after the width of the time
windows. Our algorithm is coded in C++ and all experiments were conducted
on an Intel Core i7-2620M 2.70GHz. This configuration is comparable to the
computational environment employed by Bredstrém and Roénngvist [2, 3] (a
2.67 GHz Intel Xeon processor). According to the protocol proposed in [2], all
the methods were tested with the varieties of S (small), M (medium) and L
(large) time windows. After several experiments on a subset of small instances,
we decided to fix the parameters as follows: Ty = 20, a = 0.99, d = 3, itermax =
10 x n and rhmazx = 10.

Table 1 shows our results compared to the literature. Instances, in which all
methods report the same results, are discarded from this table. Columns n, m,
s and Best show the number of visits, the number of vehicles, the number of
synchronizations and the best known solution from all methods (including ours)
respectively for each instance. A star symbol (*) is used in Best to indicate that
the solution is proved to be optimal. The other column headers are: MIP for the
results of the default CPLEX solver reported in [3]; H for the heuristic proposed
in [3] which is based on the local-branching technique [5]; BP1 and BP2 for
the results of the two branch-and-price algorithms presented in [2] and finally
SA for our simulated annealing algorithm. Columns Sol and CPU correspond to
the best solution found by each method and the associated total computational
time. Bold numbers in Sol indicate that the solution quality reaches Best.

MIP H BP1 BP2 SA
Sol CPU Sol CPU Sol CPU Sol CPU Sol CPU

Data n m s Best

1L 20 4 2 3.39% 3.44 3600.00 3.39 120.00 3.39 107.41 3.39 11.91 3.39 0.29

2L 20 4 2 3.42*% 3.58 3600.00 3.42 120.00 3.42 2.72 3.42 7.41 3.42 0.64

3M 20 4 2 3.33* 3.41 3600.00 3.33 120.00 3.33 17.57 3.33 4.31 3.33 0.92

4M 20 4 2 5.67* 5.91 3600.00 5.75 120.00 5.67 27.53 5.67 2.55 5.67 0.72

4L 20 4 2 5.13*% 5.83 3600.00 5.30 120.00 5.13 9.74 5.13 7.69 5.13 4.66

63 50 10 5 8.14*% - - - - 8.14 3600.00 8.14 197.92 8.14 93.78

6M 50 10 5 7.70 - - - - 7.71 3600.00 7.70 3600.00 7.70 3358.60
6L 50 10 5 T7.14*% - - - - 7.14 3279.48 7.14 3600.00 7.14 2440.95
7S 50 10 5 8.39*% - - - - 8.39 1472.39 8.39 169.30 8.39 163.03
7™ 50 10 5 7.49 - - - - 7.67 3600.00 7.56 3600.00 7.49 199.23
7L 50 10 5 6.86 - - - - 6.88 3600.00 6.88 3600.00 6.86 144.94
8S 50 10 5 9.54*% - - - - 9.54 931.95 9.54 850.52 9.54 149.95
8M 50 10 5 8.54% - - - - 8.54 3600.00 8.54 3490.57 8.54 276.46
8L 50 10 5 8.07 - - - - 8.62 3600.00 8.11 3600.00 8.07 335.72
95 80 16 8 12.13 - - - - - 3600.00 12.21 3600.00 12.13 397.876
9M 80 16 8 10.94 - - - - 11.74 3600.00 11.04 3600.00 10.94 641.838
9L 80 16 8 10.67 - - - - 11.11 3600.00 10.89 3600.00 10.67 376.24
10S 80 16 8 8.82 - - - - - 3600.00 9.13 3600.00 8.82 3099.28
10M 80 16 8 8.01 - - - - 8.54 3600.00 8.10 3600.00 8.01 757.87
10L 80 16 8 7.75 - - - - - 3600.00 - 3600.00 7.75 3247.71

Table 1. Comparison of results and CPU times

From these results, we remark that SA finds all known optimal solutions
(20 of 30) in very short computational times compared to the other methods.
Quality of the other solutions is also better than the one found in the literature.
The algorithm strictly improved the best known solutions for 9 instances of the
data sets. Those instances are TM, 7L, 8L, 95, 9M, 9L, 105, 10M and 10L. To
summarize, our SA is clearly fast and efficient.

4 Conclusion

The paper presented a simulated annealing based heuristic for VRPTWSyn.
Numerical results on the benchmark proposed by [3] demonstrate the compet-
itiveness of the algorithm for such a problem. They also demonstrate that de-
struction/repair operator and local search methods can be efficiently adapted
to the case of the synchronization constraints. As future work, we intend to in-
vestigate the performance of the SA on other variants of VRPTWSyn, such as
the one with customer-driver preferences and the one with route balance con-
straints [3]. We also plan to investigate the use of the obtained solutions as a
warm start for exact methods, such as mixed integer programming, to solve the
open instances of VRPTWSyn to the optimality.

Bibliography

[1] Bouly, H., Moukrim, A., Chanteur, D., Simon, L.: An iterative destruc-
tion/construction heuristic for solving a specific vehicle routing problem (in
French). In: MOSIM’08 (2008)

[2] Bredstrom, D., Rénnqvist, M.: A branch and price algorithm for the com-
bined vehicle routing and scheduling problem with synchronization con-
straints (Feb 2007)

[3] Bredstrom, D., Ronnqvist, M.: Combined vehicle routing and scheduling with
temporal precedence and synchronization constraints. European Journal of
Operational Research 191(1), 19-31 (Nov 2008)

[4] Drexl, M.: Synchronization in vehicle routing a survey of vrps with multiple
synchronization constraints. Transportation Science 46(3), 297-316 (2012)

[5] Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98(1-
3), 23-47 (Sep 2003)

[6] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated an-
nealing. Science 220, 671-680 (1983)

[7] Potvin, J.Y., Kervahut, T., Garcia, B.L., Rousseau, J.M.: The vehicle rout-
ing problem with time windows part I: tabu search. INFORMS Journal on
Computing 8(2), 158-164 (1996)

[8] Solomon, M.M., Desrosiers, J.: Time window constrained routing and
scheduling problems. Transportation science 22, 1-13 (1988)

[9] Toth, P., Vigo, D.: The Vehicle Routing Problem. Monographs on Discrete
Mathematics and Applications, Society for Industrial and Applied Mathe-
matics (2002)

