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Abstract

We study a class of dissipative PDE’s perturbed by an unbounded kick
force. Under some natural assumptions, the restrictions of solutions to in-
teger times form a homogeneous Markov process. Assuming that the noise
is rough with respect to the space variables and has a non-degenerate law,
we prove that the system in question satisfies a large deviation principle
(LDP) in 7-topology. Under some additional hypotheses, we establish
a Gallavotti-Cohen type symmetry for the rate function of an entropy
production functional and the strict positivity and finiteness of the mean
entropy production in the stationary regime. The latter result is applica-
ble to PDE’s with strong nonlinear dissipation.
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0 Introduction

Let H be a separable Hilbert space and let S : H — H be a continuous mapping.
We consider a discrete-time Markov process defined by the equation

up = S(uk_l) +n, k>1, (0.1)

where {nx} is a sequence of i.i.d. random variables in H. This type of systems
naturally arise when studying the large-time asymptotics of randomly forced
PDE’s, and we do not discuss here our motivation, referring the reader to Sec-
tion 2.3 of the book [KS12]. Equation (0.1) generates a homogeneous family of
Markov chains, and its ergodic theory is well understood in the case when S pos-
sesses a dissipativity property and the law of 7y is sufficiently non-degenerate.
Namely, let us assume that

IS@)| < gllull + € for any u € H, (0.2)

where ¢ < 1 and C' are some numbers not depending on u. If, in addition, the
mapping S is compact in the sense that the image under S of any bounded set is
relatively compact, then the existence of a stationary distribution can easily be
proved with the help of the Bogolyubov—Krylov argument. The uniqueness of a
stationary measure and its mixing properties are much more delicate questions,
and in this paper we deal with a “rough” noise, in which case convergence to the
unique stationary measure holds in the total variation distance. To describe the
problems and results, let us assume that the law ¢ of the random variables 7y is
a Gaussian measure. In this situation, the above-mentioned roughness condition
takes the form:
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(H) The mapping S is continuous from H to the Cameron—Martin space of ¢
and is bounded on any ball.

Under this hypothesis, the transition probabilities of the Markov family associ-
ated with (0.1) are all equivalent, and the uniqueness of a stationary measure
and its stability in the total variation norm follows from the well-known Doob’s
theorem; e.g., see Chapter 4 in [DZ96]. We refer the reader to the pioneering
articles [Yagd7, Doo48] for first results of this type, to the book [MT93] for a
general ergodic theory of Markov chains, and to the paper [BKLO1] for a proof of
the above-mentioned existence and stability result in the case of Navier—Stokes
equations on the 2D torus.

The aim of this paper is twofold: firstly, to establish a large deviation prin-
ciple (LDP) for occupation measures of (0.1) and some physically relevant func-
tionals and, secondly, to derive a Gallavotti-Cohen type symmetry for the rate
function corresponding to entropy production. Without going into technical de-
tails, we now describe our main results in the case of the 1D Burgers equation on
the circle S = R/27Z. Namely, let us denote by H the space of square-integrable
functions on S with zero mean value and consider the problem

Oru — v02u 4+ udyu = h(x) +n(t, z), (0.3)
u(0, z) = uo(x). (0.4)

Here z € S, v > 0 is a parameter, h € H is a fixed function, and 7n(t,z) is a
random process of the form

n(t,x) =Y ne(x)s(t — k), (0.5)
k=1

where {n;} is a sequence of ii.d. Gaussian random variables in H and d(t)
denotes the Dirac measure at zero. Normalising trajectories of (0.3) to be right-
continuous and denoting u; = u(k,z), we see that the sequence {uy} satisfies
Eq. (0.1), where S : H — H denotes the time-1 shift along trajectories of (0.3)
with 7 = 0. For any trajectory {u}, let ¢, (uo) be the corresponding occupation
measure:
=
Crluo) = ¢ > buns un = (u,l>n),

n=0
where 0, denotes the Dirac mass concentrated at v = (v;,l > 0) in the space
of probability measures on H = H%+. Thus, {,(uo)} is a sequence of random
probability measures on H, and we wish to investigate the problem of large
deviations for it. Let us denote by V*° the space of functions in the Sobolev
space of order s on S whose mean value is equal to zero.

Theorem A. Let us assume that h € V* for an integer s > 0 and the law ¢
of the i.i.d. random wvariables 1y is a centred Gaussian measure on H such
that V*+1 is continuously embedded into its Cameron—Martin space. Then the



discrete-time Markov process associated with (0.3) has a unique stationary mea-
sure ., which is exponentially mizing in the sense that the law of any trajectory
converges to p in the total variation metric exponentially fast. Moreover, for
any initial point ug € H, the occupation measures ¢ (ug) satisfy the LDP in the
Tp-topology with a good rate function not depending on ug.

The reader is referred to Section 1 for the definition of the concepts used in
this theorem. We now turn to the question of the Gallavotti—-Cohen fluctuation
principle. To this end, given a vector a € H, denote by ¢, the image of ¢ under
the translation in H by the vector a. The hypotheses of Theorem A imply that
the shifted measure g, is equivalent to £. Thus, the transition kernel of the
Markov chain defined by (0.1) is given by P(u,dv) = £g(,(dv) = p(u, v)l(dv),
the density p(u,v) being positive for any v € H and ¢-almost every v € H.
This further implies that, for any k£ > 0, the law A, of the random variable uy,
is equivalent to ¢, irrespective of the law Ag of the initial condition ug. In
particular, the stationary measure p is equivalent to /. We denote by p its
density. Thus, when discussing the long time behaviour of the system, we can
assume that all the measures \; belong to the equivalence class of /.

Adapting Gaspard’s argument [Ga04] to our setup, we measure the entropy
of the system at time k by the relative entropy of Ay w.r.t. the stationary mea-
sure ,

S(Ak) = Ent( Mg p) = — /log (il—);f) dAy.

We note that the basic properties of relative entropy imply that S(\) < 0, with
equality if and only if Ay = . The change of entropy in one time step is given
by

65(A) = S(BIA) — S,
where B3}, denotes the Markov semigroup associated with the transition kernel P.

Let X be the law induced on H by the initial distribution A. Define the following

function on H:
p(uo)p(uo, u1)

p(u)p(ur, uo)”

In the third section of the Appendix, we shall show that, under the hypotheses
of Theorem A,

J(u) = log (0.6)

5S(\) = Ep()) — / J(wA(dw), 0.7)
H

where the functional Ep(-) is such that Ep(\) > 0 for all A in the equivalence

class of £. Moreover, Ep(\) = 0 if and only if A = p and p satisfies the detailed

balance condition

p(u)p(u,v) = p(v)p(v,u), (0.8)

£ ® ¢-almost everywhere on H x H. The validity of Eq. (0.8) is well known to
be necessary and sufficient to ensure the time-reversal invariance of the Markov
chain under the stationary law p. The functional Ep(-) is thus a measure
of the breakdown of time-reversal invariance, a phenomenon usually connected



with the production of entropy. We shall therefore identify Ep(\) with the
entropy production rate of the system in the state X\. Reading Eq. (0.7) as an
entropy balance relation, we may consequently interpret the observable J as
the entropy dissipated into the environment, i.e., the integral of the outgoing
entropy flux over the unit time interval. Note that the vanishing of the entropy
flux observable J is equivalent to the detailed balance condition (0.8). We shall
prove in Section 2.3 that the unique stationary measure p does not satisfy the
detailed balance relation, so that Ep(A) > 0 for all \.
In terms of the random variables

=
Er(u) = A Z o (Un, Un+1), (0.9)
n=0
where
o(u,v) = log ZEZ: Z;,

we can write the entropy balance relation over k time steps as
1 =
£SO = 500) = 1 S BB - [ &(wA(du) (0.10)
k k o H

_ % / log p(1) (A (du) — Ao(du)).

The last term on the right hand side of this relation (a so-called boundary term)
becomes negligible in the large time limit. It vanishes in the stationary regime
where the previous relation becomes

B = [ )= [ pwpuvet o). (©11)

In the third subsection of the Appendix, we shall briefly discuss the relation of
the observable o with time-reversal of the path measure p and its connection
with dynamical (Kolmogorov—Sinai) entropy.

According to Eq. (0.11), the mean entropy flux is non-negative. By the
law of large numbers, the sequence & converges p-a.s. towards Ep(p). The
Gallavotti-Cohen fluctuation relation is a statement about the large deviations
of & from this limit. Roughly speaking, it says that

M ~e " for large k.
w &k~ +r)

The fact that the entropy production rate is non-negative and the defini-
tion of the entropy flux observable o are part of the general theory of non-
equilibrium statistical mechanics in the mathematical framework of determin-
istic and stochastic dynamical systems [ES94, GC95, Rue97, Kur98, Mae99,
Ga04, RMMO07, JPR11]. On the other hand, detailed dynamical questions like



strict positivity of the entropy production rate, LDP for the entropy flux, and
validity of the Gallavotti-Cohen fluctuation relation can be answered only in
the context of concrete models. In some cases, it is possible to relate the ob-
servable ¢ to the fluxes of some physical quantities, typically heat or some other
forms of energy. In this respect, we refer the reader to [BMO05] for the discussion
of a closely related model. In this paper, we shall prove the following result.

Theorem B. In addition to the hypotheses of Theorem A, assume that h €
V2t and the set of normalised eigenvectors of the covariance operator for £
coincides with the trigonometric basis in H. Then, for any initial condition
ug € H, the laws of the random wvariables (0.9) satisfy the LDP with a good
rate function I : R — [0,+00] not depending on wug. Moreover, the entropy
production rate s strictly positive,

Ep(p) = /H o(ug, u1r)p(du) > 0, (0.12)

and the Gallavotti-Cohen fluctuation relation® holds for I:
I(-=r)=I(r)4+r forreR. (0.13)

There is an enormous literature on mathematical, physical, numerical, and
experimental aspects of Gallavotti-Cohen fluctuation relation (some of the refer-
ences can be found in [JPR11, RMMO07]). The previous mathematically rigorous
works closest to ours are [LS99, EPR99]. Lebowitz and Spohn [LS99], building
on the previous work by Kurchan [Kur98], have developed general theory of
Gallavotti—-Cohen fluctuation relation for finite dimensional Markov processes
with applications to various models, including diffusion and simple exclusion
processes. In [EPR99], the authors consider a finite anharmonic chain coupled
to two thermal reservoirs at its ends. Its analysis reduces to study of suitable
finite dimensional Markov process with degenerate noise. In particular, the
local Gallavotti-Cohen fluctuation relation for this model has been established
in [RT02]. To the best of our knowledge, there were no previous mathematically
rigorous studies of Gallavotti-Cohen fluctuation relation for nonlinear PDE’s
driven by a stochastic forcing (see, however, the papers [Gou07b, Gou07a] for a
proof of LDP for the Navier—Stokes and Burgers equations perturbed by a rough
white-noise force and [JNPS12] for the case of a smooth bounded kick force).
On the physical level of rigour, Maes and coworkers [MRV01, MN03, Mae04]
have examined in depth the fluctuation relation for stochastic dynamics. In a
somewhat different spirit, inspired by the thermodynamic formalism of dynam-
ical systems, we should also mention the works of Gaspard [Ga04] and Lecomte
et al. [LAWOG].

The LDP for the Burgers equation stated in Theorem A is true for other more
complicated models, such as the Navier—Stokes system or complex Ginzburg—
Landau equation, while the Gallavotti-Cohen fluctuation relation of Theorem B

1Relation (0.13) means, in particular, that I(r) = +oc if and only if I(—7) = +co.



remains valid for problems with strong nonlinear dissipation, such as the reaction—
diffusion system with superlinear interaction. Moreover, the law of 7 does not
need to be Gaussian, and the results we prove are true for a rather general class
of decomposable measures; see Sections 1 and 2 for details.

The somewhat surprising fact that the global LDP for unbounded observ-
ables holds for Burgers and reaction-diffusion equation has its physical origin
in the strong dissipation characterising these models. It is natural to expect
that in more generic situations (like Navier—Stokes systems) only a local LDP
and, hence, a local fluctuation relation hold (like in [RT02]). However, in the
absence of a strong dissipative mechanism, our method of the proof of LDP for
occupational measures is not suited for establishing local LDP for unbounded
observables like the entropy flux. It is likely that more specific techniques that
deal directly with LDP for the entropy flux are needed to analyse this question.
We plan to address this problem in future publications.

The paper is organised as follows. In Section 1, we formulate our main
abstract results on the large deviations and the Gallavotti-Cohen fluctuation
theorem. Various applications of these results are discussed in Section 2. Sec-
tions 3 and 4 are devoted to proving the theorems announced in Section 1.
The Appendix gathers some auxiliary results on decomposable measures and
LDP for Markov chains and discusses the analogy between our models and heat
conducting networks.
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Notation

Let X be a Polish space with a metric d. We always assume that it is endowed
with its Borel o-algebra Bx. Given R > 0 and a € X, we denote by Bx (a, R) the
closed ball in X of radius R centred at a. The following spaces are systematically
used in the paper.

X = X7+ denotes the direct product of countably many copies of X. The
space X is endowed with the Tikhonov topology, and its elements are denoted
by © = (un,n > 0). We write X™ for the direct product of m copies of X.

C(X) is the space of continuous functions f : X — R. We denote by Cj,(X) the
subspace of bounded functions in C(X) and endow it with the natural norm
[flloo = supx [f]-

P(X) denotes the space of probability measures on X. Given p € P(X) and a



p-integrable function f: X — R, we write

mm:Lﬂwmw

The total variation metric on P(X) is defined by

1 — pallvar = 5 sup  [(f, 1) — (f, u2)| = sup [pa(T) — p2(T)].
IreBx

1
2 ) flle<t

C(J, H) denotes the space of continuous functions on an interval J C R with
range in the Banach space H. We write Cy(J, X) for the subspace of bounded
functions and endow it with the natural norm

If 1o (7,1 = esssup || £ (£)]| -
tedJ

LP(J, H) stands for the space of Borel-measurable functions f : J — H such
that

1/p
thm—(LU@ma) .

In the case p = oo, the above norm should be replaced by || f|| o (., #)-

We denote by C,C1, Cs, ... unessential positive numbers.

1 Main results

In this section, we introduce a class of discrete-time Markov processes and for-
mulate a result on the existence, uniqueness, and exponential mixing of a sta-
tionary measure and the large deviation principle for the occupation measures
and some unbounded functionals. We next discuss the Gallavottii-Cohen fluc-
tuation theorem for an entropy production functional.

1.1 The model

Let H be a separable Hilbert space, let S : H — H be a continuous mapping,
and let {ng,k > 1} be a sequence of i.i.d. random variables in H. We consider
the stochastic system (0.1), supplemented with the initial condition

up=u € H. (1.1)

Let us denote by (ug, P,,) the Markov family generated by (0.1), (1.1), by Pe(u,T")
its transition function, and by By : Cy(H) — Cp(H) and P} : P(H) — P(H)
the corresponding Markov semigroups. Given a measure A € P(H), we write
Px(-) = [ Pu(-)A(du). We shall always assume that S satisfies the two condi-
tions below.



(A) Continuity and compactness. There is a separable Banach space U
compactly embedded into H such that S is continuous from H to U and is
bounded on any ball.

(B) Dissipativity. There is a continuous function ¢ : H — R bounded
on any ball and such that $(u) — +0oo as ||u| — 400 and

P(S(u) +v) < qgP(u)+ C(P(v) +1) forallu,v € H, (1.2)

where ¢ < 1 and C' > 1 do not depend on u and v.

As for the random variables {7y}, we assume that their law has a particular
structure related to S. To formulate this condition, we shall use some concepts
defined in Section 5.1. Given a vector a € H and a measure ¢ € P(H), we
denote by 6, : H — H the shift operator in H taking u to u+a, by £, = £0 0,
the image of £ under 6,, and by H, the set of all admissible shifts for £.

(C) Structure of the noise. The support of the measure ¢ := D(n)
coincides with H, and there is § > 0 such that

ms(0) = /H e3P f(du) < oo, (1.3)

Moreover, the Banach space U defined in (A) is contained in the subgroup of
admissible shifts Hy, and the mapping 6 : U — P(H) that takes a € U to ¢, is
continuous, provided that the space P(H) is endowed with the total variation
norm.

A sufficient condition for the validity of some of the above properties is given
in Proposition 5.3. In the next two subsections, we formulate our main results
on the exponential mixing, the LDP in the space of trajectories (or level-3 LDP),
and the Gallavotti—-Cohen fluctuation relation.

1.2 Exponential mixing and large deviations

For the reader convenience, we begin with some well-known definitions. Let X
be a topological space, endowed with its Borel o-algebra Bx, and let P(X)
be the set of probability measures on X, which is endowed with a regular?
topology 7 and the corresponding Borel o-algebra. Recall that a mapping
I:P(X)— [0,+00] is called a rate function if it is lower semicontinuous, and
a rate function I is said to be good if its level sets are compact. For a Borel
subset I' € P(X), we write I(I") = inf,er I(0).

Now let {x} be a sequence of random probability measures® on X defined
on a measurable space (€2, F), let A be an arbitrary set, and let Py be a family
of probabilities on (€2, F).

2Recall that a topological space (Y,7) is said to be regular if any singleton is a closed
subset, and for any closed set F' C X and any point « ¢ F there are disjoint open subsets G
and Gg such that FF C G; and = € Ga.

3This means that (j is a measurable mapping from (2, F) with range in the space P(X).



Definition 1.1. We shall say that {;} satisfies the uniform LDP with A € A
and a rate function I if the following two properties hold.

Upper bound. For any closed subset F' C P(X), we have

1
limsup — log sup Pa{¢x € F} < —I(F).
k—oo k7 eA

Lower bound. For any open subset G C P(X), we have

1
N S _
hkrr_l)g;f z 10g/{161£]P)/\{Ck e G} > —I(G).

We now consider a particular case in which X is the product space H = H%+,
endowed with the Tikhonov topology. For any integer £ > 1, consider the
space P(H*) endowed with the 7-topology, which is defined as the weakest
topology with respect to which all the functionals p ~ (f, ) with f € L>®(HF)
are continuous. We shall write P, (H*) to emphasise the T-topology on P(H¥).
The space of probability measures P(H) is endowed with the projective limit
topology 7, of the system {P,(H¥),k > 1}. In other words, 7, is the weakest
topology on P(H) with respect to which all the functionals pu — (f, n) with
f € L*>®(H*) and any k > 1 are continuous.

Let us go back to system (0.1). Recall that a measure p € P(H) is said to
be stationary for a Markov family (ug,P,) if Piu = p. We denote by ¢, the
occupation measure in the trajectory space for a solution of (0.1); that is,

=
Cr = E;%n, (1.4)

where u,, = (u,l > n), and {u;} is a trajectory of (0.1). The following theorem
establishes uniqueness and mixing of a stationary measure for the Markov family
associated with (0.1) and a uniform LDP for ¢, in the 7,-topology. Its proof is
given in Section 3.

Theorem 1.2. Let Hypotheses (A), (B), and (C) be fulfilled and let (ux,P,,) be
the Markov family associated with (0.1). Then (ug,Py) has a unique stationary
measure ., and there are positive numbers v and C71 such that

IBEA — gt var < Cre= 7" (1+/ D(u) /\(du)> forany N € P(H), k> 0. (1.5)
H
Moreover, for any ¢ > 0 and any subset A C P(H) satisfying the condition

sup/ eCPW\(du) < oo, (1.6)
xeA JH

the uniform LDP with A € A and a good rate function I : P(H) — [0, +]
holds for the sequence of Px-occupation measures {{;,, k > 1}.

10



Theorem 1.2 combined with an approximation argument enables one to es-
tablish the LDP for various functionals of trajectories of (0.1) with moderate
growth at infinity. To formulate the corresponding result, we shall need the
concept of a stabilisable functional.

Let p : H — [0,400] be a lower semi-continuous function. We shall say
that p is uniformly stabilisable for the Markov family (ug,P,) if there is an
increasing continuous function @ : Ry — R, and a positive number 7 such that

Eyexp(p(u1) + -+ p(up)) < Q(lul))e?™ for k> 1,u e H. (1.7)

Theorem 1.3. Under the hypotheses of Theorem 1.2, let p be a uniformly
stabilisable functional, let m > 0 be an integer, and let f : H™*1 — R be a
measurable function that is bounded on any ball and satisfies the condition

|f(voy ... vm)]
p(vo) + -+ +p(vm)

=0 as |lvol| + - - + ||om]] = +oo. (1.8)
Then, for any measure A € P(H) satisfying the condition

/H(exp(cgp(u)) + ePWQ(|Jul))Mdu) < oo, (1.9)

with some ¢ > 0, the Px-laws of the real-valued random variables

k—1
1
gk:Er;)f(unu"'uun-i-m)a kzlu

satisfy the LDP with a good rate function Iy : R — [0, +00] not depending on A.

Theorems 1.2 and 1.3 are applied in Section 2 to prove the LDP for vari-
ous dissipative PDE’s with random perturbations. In the next subsection, we
discuss a symmetry property of the rate function for a particular choice of the
observable f.

1.3 Gallavotti—Cohen fluctuation relation

The entropy flux observable for a general Markov family in H is defined by (0.6),
provided that the transition function P; (u,dv) possesses a density with respect
to a reference measure £ € P(H),

Py (u, dv) = p(u,v)f(dv), (1.10)

and that p(u,v) > 0 for £ ® ¢-almost every (u,v). If (ug,P,) is the Markov
family associated with (0.1), then the existence of a density with respect to the
law of ), follows from Conditions (A) and (C), while a sufficient condition for its
positivity on a set of full measure is given by Proposition 5.3. By the parameter
version of the Radon—Nikodym theorem (see [Nov05]), if (ug,P,) possesses the
Feller property, then one can choose p to be a measurable function in (u,v).

11



Given a stationary distribution p of (ug,P,,), we denote by p the corresponding
path measure and note that u is absolutely continuous with respect to ¢, with
the corresponding density given by

p(v) = /H oz ) (). (111)

It is straightforward to check that p(v) > 0 for ¢-almost every v € H. We have
the following simple result.

Lemma 1.4. Let (ug,Py,) be a Feller family of discrete-time Markov processes
in H such that (1.10) holds for a reference measure £ € P(H) and a measurable
function p(u,v) that is positive { @ £-almost everywhere. Let p be a stationary
measure of (ug,Py,) such that

/ |log p(v)| p(dv) < co. (1.12)
H

Then the negative part of o is p-integrable, and the mean value of o with respect
to p is non-negative.

Proof. We only need to prove the p-integrability of the negative part of o
(which implies in particular that (o),, the mean value of ¢ with respect to p,
is well defined), because the fact that (o), is non-negative follows immediately
from (0.11) and the fact that Ep(u) > 0. To this end, setting po1 = p(vo, v1)
and p19 = p(v1,v9) and defining p to be the density of p against ¢, we write

/ o d“’ :/ I{P01§P10}
H H?2

= / I{Pm <pio} log P P(d’Uo, d’Ul)
H? Po1

< [ T (108 222 1o 22) P(du dun).
H? Popo1 00

log pﬂ‘ P(dvo, dvy)
P10

where p; = p(v;) and P(dvg,dvi) = popo1f(dvg)l(dvy). Using the inequality
logz < z for > 0, we see that the right-hand side of this inequality does not
exceed

[ ormmottcoo)ttdun) + [ ([logpo] + |10g pi]) P, dun).
H2 H2

The first term of this expression is equal to 1, while the second is finite in view
of (1.12). O

We now go back to the Markov family (uy,P,) associated with (0.1) and as-
sume that Conditions (A)—(C) are fulfilled. Furthermore, we make the following
hypothesis:
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(D) Entropy production. The densities p(u,v) can be chosen so that the
observable o(vg,vy) for (ug, P,,) is well defined and bounded on any ball of Hx H .
Moreover, there is a uniformly stabilisable functional p : H — [0, 4+00] such that

o (vo, v1)
p(vo) +p(v1)
The following theorem establishes the LDP for the entropy production functional

calculated on trajectories and the Gallavotti-Cohen fluctuation principle for the
corresponding rate function.

Theorem 1.5. Let us assume that Conditions (A)—(D) are fulfilled. Then,
for any initial measure A € P(H) satisfying (1.9), the LDP with a good rate
function I : R — [0, +00], independent of A, holds for the Py-laws of the real-
valued random variables (0.9). Moreover, if (1.9) is satisfied for A = £, then
the Gallavotti—Cohen fluctuation relation (0.13) holds for I.

— 0 as||vo|l + ||v1]] = +oo. (1.13)

A proof of Theorem 1.5 is presented in Section 4, and its applications are
discussed in Sections 2.3 and 2.4.

2 Applications

In this section, we discuss some applications of the results of the foregoing
section to various dissipative PDE’s perturbed by an unbounded kick force. We
first prove that the hypotheses of Theorems 1.2 and 1.3 are satisfied for the 2D
Navier—Stokes system and the complex Ginzburg—Landau equation. We next
show that, in the case of equations with strong damping (such as the Burgers
equation with periodic boundary conditions or a reaction-diffusion system with
superlinear interaction), Theorem 1.5 is also applicable.

2.1 Two-dimensional Navier—Stokes system

We consider the Navier-Stokes system on the torus T2 C R%. Let us denote
by L? the space of square-integrable vector fields on T? with zero mean value,
introduce the space

H:{u€L2:divu:00n T?}, (2.1)

and write II for the orthogonal projection in L? onto H. Restricting ourselves
to solutions and external forces with zero mean value with respect to the space
variables and projecting the Navier—Stokes system onto H, we obtain the non-
local evolution equation

Owu+vLu+ B(u) = f(t). (2.2)

Here v > 0 is a parameter, L = —A, B(u) = II({u, V)u) is the nonlinear term,
and f is an external force of the form

F&)=h+> md(t— k), (2.3)
k=1

13



where h € H is a deterministic function, 0(¢) is the Dirac mass at zero, and {7}
is a sequence of i.i.d. random variables in H. Normalising solutions of (2.2),
(2.3) to be right-continuous and setting u, = u(k), we obtain relation (0.1), in
which S : H — H stands for the time-one shift along trajectories of Eq. (2.2)
with f = h. We recall that L is a positive self-adjoint operator in H with a
compact inverse and denote by {e;} an orthonormal basis in H composed of
the eigenfunctions of L, with the eigenvalues {«;} indexed in a non-decreasing
order. Let V* be the domain of the operator L*/2, so that V* = H* N H,
where H* is the Sobolev space of order s on T?2.

The family of all trajectories for (0.1) form a discrete-time Markov process,
which will be denoted by (u,P,,); see Section 2.3 in [KS12] for details. We now
make the following hypothesis on the stochastic part of the external force (2.3).

Condition 2.1. The i.i.d. random variables n, have the form (cf. (5.2))
Nk = ijﬁjkej, (2.4)
j=1
where {b;} is a sequence of positive numbers such that
D b2 < oo, (2.5)
j=1

and {&} is a sequence of independent scalar random variables whose laws
possess densities p; € C! with respect to the Lebesgue measure, which are
positive everywhere and satisfy (5.6) and (5.10).

Let us note that if the laws of ;. are centred Gaussian measures with
variances 0]2 belonging to a bounded interval separated from zero, then (5.6)
and (5.10) are satisfied. The following result establishes the LDP for the occu-

pation measures of (uy,Py,).

Theorem 2.2. Let s > 2 be an integer, let h € V°, and let ni be random
variables for which Condition 2.1 is fulfilled. Assume, in addition, that the
law £ of ny satisfies (1.3) with ®(u) = ||u|| and some § > 0, and

ij_2aj_l_ < 00. (2.6)

Jj=1

Then (uk,Py,) has a unique stationary measure u € P(H), which is exponentially
mizing in the sense that (1.5) holds. Moreover, for any ¢ > 0 and any subset A C
P(H) satisfying (1.6), the uniform LDP with A € A and a good rate function
I:P(H)— [0,+00] holds for the sequence of Py-occupation measures (1.4).

Inequality (2.6) prevents the random kicks 75 to be very regular functions
of z. Indeed, it is well known that a; ~ j as j — oo; see [Mét78]. Hence, if
b;j = j~7 for j > 1, then the above theorem is applicable for any r € (1/2,s/2),
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so that the regularity of 7, is at most Ve Furthermore, by the Cauchy-
Schwarz inequality, we have

oo oo 1/2 oo
too=) a;' < (Zb?) <ij2aj2)
j=1 j=1 j=1

If s < 1, then (2.5) and (2.6) imply that the right-hand side of this inequality
is finite. Since s is an integer, we see that it must satisfy the inequality s > 2.
On the other hand, if s > 2, then the hypotheses of Theorem 2.2 are fulfilled for
any Gaussian measure whose covariance operator is diagonal in the basis {e;}
and has eigenvalues {b;} satisfying (2.5) and (2.6).

1/2

Proof of Theorem 2.2. We shall prove that the hypotheses of Theorem 1.3 hold
for the Markov family in question. This will imply all the required results.

Step 1: Continuity and compactness. We claim that Condition (A) is sat-
isfied for the pair (H,U), where H is defined by (2.1) and U = V**1. To
see this, we apply a standard regularisation property for the 2D Navier—Stokes
equations. Namely, as is proved in Chapter 17 of [Tay97], the time-1 shift
S : H — H along trajectories of the deterministic Navier—Stokes system (2.2)
(in which f(t) = h € V*) maps H to VT2, Moreover, the image by S of any
ball in H is a bounded subset in V*+2. Since S : H — H is continuous and the
embedding V512 ¢ V5! is compact, it follows that the mapping S : H — V*+!
is continuous and bounded on any ball.

Step 2: Dissipativity. We claim that inequality (1.2) holds with @(u) = ||u]|,
g = e ¥* and a sufficiently large C. Indeed, it is well known that (e.g., see
inequality (2.25) in [Tem88])

[S()| < qllull +C, ueH,
where C' > 1 does not depend on u. It follows that
?(S(u) +v) < gllull + C + |l < gP(u) + C(S(v) + 1).

Step 3: Structure of the noise. The fact that supp ¢ = H follows from (2.4)
and the positivity of the coefficients b; and densities p;. The validity of (1.3) is
required by the hypotheses of the theorem. It remains to prove that V! C H,
and the mapping 6 : V51 — P(H) taking a vector a to the shifted measure £,
is continuous. To this end, we shall show that inequality (5.11) holds, which
implies that the hypotheses of Proposition 5.3 are satisfied. Denoting by C; the
sum of the series in (2.6) and using the Cauchy—Schwarz inequality, we derive

1/2

00 oo 1/2 0o
Zbﬁl@veﬂ'S(Zbﬂ%”) <Zl<v,ej>|2a§“> = CM2|lullyesr.
j=1 j=1 j=1

We have thus shown that Hypotheses (A)—(C) are satisfied with ¢ = e™¥™
and any sufficiently large C' > 0. This completes the proof of the theorem. O
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Corollary 2.3. In addition to the hypotheses of Theorem 2.2, assume that the
law of ny, and the initial measure \ € P(H) satisfy the conditions

/ exp(a|ul|?)¢(du) < oo, / exp(a|ul|?)A(du) < oo (2.7)
H H

for some o > 0. Then, for any 6 € (0,2), the Px-laws of the random variables

1 k—1
_ 4
& = % 7;) [l |

satisfy the LDP with a good rate function I : R — [0, 4+00] not depending on .

Proof. As was shown above, the hypotheses of Theorem 1.2 are satisfied for the
Markov family (ug,P,). Therefore, the required result will be established if we
prove that the conditions of Theorem 1.3 hold for some uniformly stabilisable
functional p.

Let us denote p.(u) = ¢||u|* and recall the following estimate established
in [KS12] (see there Step 2 of the proof of Proposition 2.3.8 and inequal-
ity (2.53)), provided that ¢ satisfies the first inequality in (2.7):

E, exp(ps(ul) 4o+ ps(uk)) < exp(C’EHuH2 +Ck), k>1, (2.8)

where C' > 0 is an absolute constant and € > 0 is sufficiently small. Thus,
the functional p. is uniformly stabilisable and satisfies inequality (1.7) with
Q(r) = exp(Cer?). It remains to note that convergence (1.8) holds for the

continuous function f(v) = |[v]|?, and condition (1.9) is fulfilled for ¢ < 1
and any measure A € P(H) satisfying the second inequality in (2.7) with some
a > 0. O

2.2 Complex Ginzburg-Landau equation

We consider the following equation on the torus T¢ ¢ R
Ou — (v +i)(A = Vu+ialul*u = f(t,x), =T (2.9)

Here a > 0 is a parameter, u = u(t, ) is a complex-valued function, and f is a
random process. We assume that f has the form (2.3), where h € L?(T%) is a
deterministic complex-valued function and {n;} is a sequence of i.i.d. random
variables in the complex space H'(T?), where H*(T?) =: V* is the Sobolev
space of order s. If d < 4, then the Cauchy problem for (2.9) is well posed
in V! (e.g., see [KS04] or the book [Caz03] for the more complicated case of the
Schrédinger equation). This means that, for any ug € V!, problem (2.9) has a
unique solution satisfying the initial condition

u(0,2) = up(z). (2.10)
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Under the above hypotheses, the restrictions of solutions to (2.9) form a discrete-
time Markov process (u,P,,) in the space V1, which is regarded as a real Hilbert
space with the scalar product

d
(u,v)1 = (u,v) + Z(aju,ajv), (u,v) = Re /er uv dz.

Jj=1

Let {e;} be the complete system of eigenfunctions of —A+ 1, which are indexed
in an increasing order of the corresponding eigenvalues «;. We normalise e; to
be unit vectors in V := V'!. In what follows, we impose the following condition
on 7.

Condition 2.4. The ii.d. random variables n have the form (2.4), where {b;}
is a sequence of positive numbers satisfying (2.5), & = £, + €3, and §§k are
independent real-valued random variables. Moreover, the laws of %k possess

densities ﬁé € C! with respect to the Lebesgue measure, which are positive and
satisfy (5.6) and (5.10).

Let us define the functional

a

Hw) = [ (GIVu@P + 5@ + Jlu)*) as.

The following result is an analogue of Theorem 2.2 in the case of the Ginzburg—
Landau equation. Its proof is essentially the same, and we shall confine ourselves
to outlining it.

Theorem 2.5. Let s > d be an integer, let h € V=1 and let {ny} be a sequence
random variables for which Condition 2.4 is fulfilled. Assume, in addition, that
the law ¢ of ny satisfies (1.3) with ®(u) = (H(u))? for some positive numbers &
and 0, and inequality (2.6) holds. Then (ur,P,) has a unique stationary mea-
sure p € P(V'), which is exponentially mizing in the sense that (1.5) holds with
H = V. Moreover, for any ¢ > 0 and any subset A C P(V) satisfying con-
dition (1.6) in which H =V, the uniform LDP with A € A and a good rate
function* I : P(V) — [0,+00] holds for the sequence of Py-occupation mea-
sures (1.4).

Outline of the proof. We need to check Hypotheses (A)—(C), in which @(u) is
defined in the statement of the theorem, and S : V' — V stands for the time-1
shift along trajectories of problem (2.9) with f(¢) = h. The validity of (A) with
U = V* is a standard fact of the regularity theory for parabolic systems (e.g.,
see Chapter 15 in the book [Tay97] and the references therein), and we shall not
dwell on it. To check (B), let us note that if u(t, =) is a solution of (2.9), then

%H(U(t)) < —v(lA=DullP+a(ul?, [Vul*)+allul1s) + (- (A-Dutalul*u, f).

4We define V = VZ+.
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It follows that if f(¢) = h, then
Sty < M) + M.

where M = C(||h]|34 + 1) and 8 > 0. Applying the Gronwall inequality, we
derive

H(S(u)) < e PH(u) + B M. (2.11)

It is easy to see that H(z +v) < (14 a)H(z) + CoH(v) for any u,v € V, where
«a > 0 is arbitrary and C, > 0 depends only on a. Combining this inequality
with (2.11), we obtain

H(S(u) +v) < (1+a)e PH(u) + CoM(v) + (1 +a)f M.

Choosing o > 0 sufficiently small and raising the resulting inequality to power
6 > 0, we arrive at (1.2) with &(u) = (H(u))’ and H = V. Finally, the
verification of (C) is completely similar to that for the case of the Navier—Stokes
system, and we omit it. O

As in the case of the Navier—Stokes system, we can derive from Theorem 2.5
some results on LDP for observables with moderate growth at infinity.

Corollary 2.6. In addition to the hypotheses of Theorem 2.5, assume that the
law £ of ny. and the initial measure A € P(V') satisfy the conditions

/Vexp(a\/?-[(u))f(du) < 00, /Vexp(a\/’;'-[(u)))\(du) < 00, (2.12)

where o > 0. Then, for any measurable function f : V. — R satisfying the

condition \‘/f% — 0 as |lul]ly — oo, the Px-laws of the random variables
1 k—1
§p = 7 ; S ur)

satisfy the LDP with a good rate function not depending on .

Proof. As for the proof of Corollary 2.3, it suffices to show that p.(u) = ey/H(u)
is a uniformly stabilisable functional. To this end, we use inequality (1.2) with
D(u) = /H(u). Setting u = u,—1 and v =1, with n=1,...,k, we derive

D(up) < qP(un—1) + C(P(nn) +1).

Summing up these inequalities, we obtain

k k
> B(up) < C1(u) + C1 Y B(nn) + Crk.

n=1 n=1
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The independence of 7, now implies that

k
Eu exp(ps(ul) 4+ .+ pg(uk)) < 6501(45(“)+k) (/ eEC@(Z)ﬂ(dz)) '
\4

Taking into account the first condition in (2.12), we see that p. is uniformly
stabilisable for ¢ <« 1. It remains to note that, in view of the second condition
in (2.12), inequality (1.9) is also satisfied for ¢ < 1. O

2.3 Burgers equation

Let us consider problem (0.3)—(0.5). Our aim is to establish Theorems A and B
stated in the Introduction. In view of Theorem 1.2, to prove Theorem A, it
suffices to check the validity of Hypotheses (A)—(C), in which U = V5t The
fact that S : H — V**! is continuous and bounded on any ball is a standard
regularity result, and we omit it. Inequality (1.2) with &(u) = |lu| is also
well known, and the validity of (1.3) with any § > 0 follows from the Fernique
theorem; e.g., see Theorem 2.8.5 in [Bog98]. To check the remaining hypotheses
in (C), recall that the subgroup of admissible shifts for a Gaussian measure
coincides with its Cameron—Martin space; see Theorem 2.4.5 in [Bog98]. Hence,
the continuous inclusion of U = V**+! into H, holds in view of the hypotheses
of Theorem A. Finally, to prove the continuity of § : Vst! — P(H), we use
the following estimate for the total variation norm between shifts of a Gaussian
measure (see Lemma 2.4.4 in [Bog98]):

€0 = Larllvar < 2(1 — exp{—L[la—a'|2, })"/. (2.13)

Here a,a’ € H; are arbitrary vectors, and || - ||z, denotes the norm in the
Cameron—Martin space of /:

=)
HG’H?‘IZ :ij_2a’_?7 a:(al,QQ,---),
j=1

where a is expanded in the eigenbasis of the covariance operator for £. Since V51
is continuously embedded in Hy,, we see that the shift operator 8 is continuous
from V1 to P(H). This completes the proof of Theorem A.

We now turn to Theorem B. In view of Theorem 1.5, to prove the LDP and
the Gallavotti—Cohen relation for the rate function, it suffices to find a uniformly
stabilisable function p : H — R4 such that (1.13) holds and to check (1.9) for
A = (. Exactly the same argument as for the 2D Navier—Stokes system or
Ginzburg-Landau equation shows that p.(u) = e|u? with € > 0 is a uniformly
stabilisable functional, and the corresponding function @ entering (1.7) can be
chosen to be Q.(r) = exp(Cer?), where C > 0 does not depend on . By
Fernique theorem, it follows that condition (1.9) is satisfied for ¢, provided
that € > 0 is sufficiently small.
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We now prove the boundedness of o(vg,v1) on balls of H x H and conver-
gence (1.13). By the hypotheses of Theorem B, the measure ¢ can be decom-
posed in the standard trigonometric basis in H and written in the form (5.1),
where p; denotes the centred normal law on R with variance b?. It follows
from (5.4) that

p(u,v) = exp(—3 | S(w)§ + (S(u), v)s), (2.14)

where we set

(o) = Y05 2wy, Jully = (uw)
j=1
Combining (2.14) and (0.6), we see that

o(vo,v1) = 3[So)llz — 511S(w)l§ = (S(vo),v1)s + (S(v1),v0)p.  (2.15)

We now need the following lemma, which is a consequence of the Kruzhkov
maximum principle [Kru69]; its proof in the more difficult stochastic case can
be found in [Borl3, Section 3].

Lemma 2.7. Let h € V™ for some integer m > 2. Then the image of S is
contained in V™, the mapping S : H — V™t is continuous, and there is
K., > 0 such that

I1S(u)|my1 < Ky for any u € H. (2.16)
Now note that the continuity of the embedding V**t! C H, implies the
inequality
lwllfa =Y [ [P07* < CY " JwyP(1+ 51770 = Cllw5p) (2:17)
Jj=1 j=1

where w € V2t and w; = (w, e;). Combining this with inequality (2.16) and
relation (2.15), we obtain

1
o (vo, v1)] < 5 (IS (o)l + 1S (w)IF) + lleoll 1S (wa)lls2 + ol 1S (wr)lly2
C
< 5(|\S(vo)||§+1 + [1S@D341) + Cllvoll 1S (w1)llagsr1y + Cllvoll 1S (v1)[l2(s 1)
< CK? + CKasqa(|Jvoll + [lol]). (2.18)

We see that Condition (D) is fulfilled for the Burgers equation. Thus, the LDP
and the Gallavotti-Cohen symmetry hold for the entropy production and the
corresponding rate function. We note that a similar argument leads to the
following rough estimate on the density of the measure B*A which applies, in
particular to the stationary measure p = B*pu,

C(1+|lul) < < C(1+|lul)
e 7 (U) e s
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where the constant C' is independent of A\. It easily follows from this estimate
that the boundary term in the entropy balance relation (0.10) is indeed O(k~1)
for large k provided the measure A satisfies (1.9).

It remains to prove the positivity and finiteness of the mean entropy produc-
tion (o),. As was explained in the introduction, we always have (o), > 0, and
the equality holds if and only if the detailed balance condition (0.8) is satisfied
£ ® £ almost everywhere. Recalling (2.14), we can write this condition as

exp(~ 315 @I} + (S(o1), v0)s) /H oz, 01)u(dz)

:eXp(—%IIS(vo)|\§+(S(vo),vl)b)/Hp(z,vo)u(dZ)- (2.19)

It follows from inequality (2.17) and Lemma 2.7 that the left- and right-hand
sides are continuous functions on H x H, and since supp(¢ ® ¢) coincides with
the whole space, we see that relation (2.19) must hold for all (vg,v1) € H x H.
Taking the logarithm of both sides of (2.19), replacing v; by Avi, and dividing
by A, we derive

1 _
(S(w0), 1) = 1 log /H IO exp(~1]1S(2)[2) u(dz) + A r(Y),  (2.20)

where we set
r(A) = 3 (I1So)lls = IS(Avr)ll5) + (S(Avl)avo)+10g/Hp(zavo)u(d2)-

It follows from inequality (2.16) with m = 2s 4 1 that r is a bounded function
of A € R, so that the second term on the right-hand side of (2.20) goes to zero
as A\ — +o00. Since the first term on the right-hand side does not depend on vy,
passing to the limit in (2.20) as A — 400, we conclude that

(S(’Uo),’vl)b =C(v1) forall vy,v1 € H,

where C(v1) depends only on v;. It follows that S(v) is a constant function
on H. This contradicts the backward uniqueness of solutions for the Burgers
equation.

To prove the finiteness of (o), note that, in view of (2.18), we have

(o) < /HXH |o(vo, v1) |p(dvg, dvy) < C<1 + /H |v||u(dv)>. (2.21)

The integral on the right-hand side of this inequality is equal to
Eullusll < EullS(uo)ll + Ellm || < oo,

where we used inequality (2.16). The proof of Theorem B is complete.
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2.4 Reaction-diffusion system

Let D C R? be a bounded domain with C*-smooth boundary dD. We consider
the problem

i —alAu+ g(u) = f(t,x), (2.22)

ul,, =0, (2.23)

u(0,x) = up(x). (2.24)

Here u = (u1,...,u;)" is an unknown vector function, a is an [ X [ matrix such
that

atat >0, (2.25)

g € C=(R!Y,RY) is a given function, and f is a random process of the form (2.3).
We assume that g € C! satisfies the following growth and dissipativity condi-
tions:

(g(u),u) > —C + clulP™, (2.26)
g'(u) +g'(u)" > =CI, (2.27)
lg'(u)] < C(1+ |ul)P~, (2.28)

where (-, -) stands for the scalar product in R!, ¢’(u) is the Jacobi matrix for g,
1 is the identity matrix, ¢ and C' are positive constants, and 1 < p < %. As
in the case of the 2D Navier—Stokes system, problem (2.22), (2.23) generates a
discrete-time Markov process denoted by (ug,P,), and our aim is to study the
LDP for the occupation measures (1.4).

Let us denote by {e;} an orthonormal basis in H = L?(D,R!) composed
of the eigenfunctions of the Dirichlet Laplacian —A and by V* the domain of
the operator (—A)*/2. The following theorem can be established by a literal
repetition of the arguments used in the case of the Navier—Stokes system, and

therefore we omit its proof.

Theorem 2.8. In addition to the above hypotheses, assume that s > d is an
integer, h € V*, the function g(u) belongs to C* and vanishes at uw = 0 together
with its derivatives up to order s, and {n;} is an i.i.d. sequence of random vari-
ables satisfying Condition 2.1 such that (2.6) and (1.3) hold with ®(u) = ||u]|.
Then (uk,Py,) has a unique stationary measure p € P(H), which is exponentially
mixing. Moreover, for any ¢ > 0 and any subset A C P(H) satisfying (1.6) the
uniform LDP with A\ € A and a good rate function I : P(H) — [0,+00] holds
for the sequence of Py-occupation measures (1.4).

We now turn to the Gallavotti-Cohen fluctuation principle. The following
result is an analogue of Theorem B for the reaction—diffusion system.

Theorem 2.9. In addition to the hypotheses of Theorem 2.8, let us assume
that h € V211 the function g belongs to C?**' and vanishes at u = 0 together
with its derivatives up to order 2s+ 1, the orthonormal basis entering decompo-
sition (5.1) for the measure ¢ coincides with the eigenbasis {e;}, the measure £
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satisfies the first condition in (2.7), and the second inequality in (5.10) holds for
anyy € R and A € [0, Ag], with an arbitrary Ag > 0 and constant C1 = C1(Ay).
Then, for any initial point ug € H, the laws of the random variables (0.9), in
which o(vg, v1) is the entropy production functional for (uk,Py), satisfy the LDP
with a good rate function I : R — [0, 4+00] not depending on ug. Moreover, the
Gallavotti-Cohen fluctuation relation (0.13) holds for I.

It is easy to check that the conditions imposed on ¢ are satisfied for any
Gaussian measure on H such that its Cameron-Martin space contains V5!,
and the eigenvectors of its covariance operator coincide with the eigenbasis {e;}
of the Dirichlet Laplacian in L2(D,R%).

Proof. We shall show that the hypotheses of Theorem 1.5 are fulfilled; this
will imply all required results. As was mentioned above, the verification of
Conditions (A) and (B), in which U = V26+1D and &(u) = |jul|, is similar to
the case of the Navier—Stokes system, and therefore we do not dwell on it.

Let us check Condition (D). To prove the positivity of p and the continuity
of the shift operator § : VSt1 — P(H), in view of Proposition 5.3, it suffices
to check inequality (5.12). To this end, we first note that (2.6) implies the
inequality

o0
Zb 2w, | <sup (lw;Pas™) > "b5%a; 7 < Crflw]|fess, (2.29)
j=1 j=1

541
where w € VSt and w; = (w,e;). Setting w; = vja;” in (2.29) and using

again (2.6), we obtain

1/2

1/2 , o0
Zb o] < (Zb o ) (ij2lvj|2a§“) < Calfollyaesn.
j=1

We now prove that o(vg, v1) is bounded on balls of H x H and satisfies (1.13)
for some uniformly stabilisable functional p. Exactly the same argument as for
the Ginzburg-Landau equation shows that p.(u) = ¢|jul|? is uniformly stabil-
isable, and one can take Q(r) = exp(Cer?) in (1.7). For wvg,v; € H, let us

write
oo

v, = Zvijej, S(’Ul) = ZSj(vi)ej, i = 0, 1.
Jj=1 j=1

Let p; be the density of the law of b;{;x, so that p;(r) = bj_lf)j(r/bj). Combining
this relation with (5.4) and (0.6), we obtain

. . p;(vo; — Sj(v1)) o p;(vi; — S;j(vo))
(s : )

o(vo,v1) = 0 (v0;) p;(v15)

i

(E)(vo,v1) — Ej(v1,20)), (2.30)
1

J
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where we set
(UOJ'_Sj(Ul))
b;

E;(vo,v1) = log p; —logﬁj(%).

Let us define A4;; = bj_1|Sj(vi)| and A = sup; ; A;j, where the supremum is
taken over i = 0,1 and j > 1. The second inequality in (5.10) implies that

1 L . A |5 b‘il’l} —r
o d¢ bj —A1; Pj (bj voj —T)
< C3(A) (bj_l|’UOj| + 1)A1j.

1= (vo,v1)| =

A similar estimate holds for =(v1, vg). Substituting them into (2.30) and using
the Cauchy—Schwarz inequality and condition (2.5), we obtain

oo, v)l < Ca Y 07 (07 vog| + D)1 (o0)] + (57 s, +1)18;(wo) )
j=1

< Cs([lvoll + 1) 1S (v1)[loz + Cs (Jvall + 1) 1S (vo)][p2, (2.31)

where the norm || - |2 is defined in (2.17). We now need the following lemma,
established at the end of this section.

Lemma 2.10. Let (2.25)—(2.28) be satisfied, let g € C™ be a function vanishing
at uw = 0 together with its derivative up to order m, and let h € V™ for some
integer m > 0. Then the image of S is contained in V™" and there is K,, > 0
such that

IS()|lym+1 < Ky, for any v € H. (2.32)

It follows from (2.29) and (2.32) with m = 2s+ 1 that

IS@)3: < Co Y- a3 V18, () = Col|S(0) |31y < CoK3pyr, v € H.

j=1
Substituting this inequality into (2.31), we obtain
lo(vo,v1)| < Cr([lvol + [lvrll),  vo,v1 € H. (2.33)

This implies the required properties of o.

It remains to show that (1.9) is also satisfied. To this end, we note that
the integrand in (1.9) does not exceed Cgexp(Cse||u?). In view of the first
inequality in (2.7), this function is integrable with respect to ¢, provided that
€ > 0 is sufficiently small. The proof of Theorem 2.9 is complete. o

Proof of Lemma 2.10. In view of the regularising property of the resolving op-
erator for the reaction-diffusion system, it suffices to prove that, if u(¢,z) is the
solution of (2.22)—(2.24) with f(¢,2) = h(x) and ug € H, then

u(3,)|| < K for any initial function ug € H, (2.34)
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where K > 0 does not depend on ug.
Taking the scalar product in L? of Eq. (2.22) (in which f = h) with u,
using (2.26), and carrying out some standard transformations, we derive

1
Oellul)? + 8] Vull® + 2¢ull73i: < Co+ [|RI1%,

where ¢ and ¢ are positive numbers. Since ||ul|ps+1 > Cal|ul|, we see that the
function ¢(t) = |lu(t)||? satisfies the differential inequality

¢ +2c10PTH2 < Oy (1 + ||A)?),

where ¢; > 0. It follows that, as long as ¢(t) > K; := cl_l(Cl(l—l— ||h||2))2/(p+1),
we have
¢+ crp®t/2 <.

Resolving this differential inequality, we obtain
olt) < (luoll 772 + Cot) /Y < (K0P 4 Cot) 7Y (2.35)

provided that ¢(s) > Kj for 0 < s < K;. Denoting by K> the value of the
right-hand side of (2.35) with ¢ = 1/2, we conclude that inequality (2.34) holds
with K = max(K1, K2). O

Finally, we discuss briefly the question of strict positivity and finiteness of
the entropy production rate. If the measure ¢ is Gaussian, then exactly the
same argument as in the case of the Burgers equation shows that the entropy
production rate is strictly positive and finite in the stationary regime. However,
these two properties are not related to the Gaussian structure of the noise and
remain valid under more general hypotheses. Indeed, the finiteness of (o),
follows from inequality (2.33) and the fact the first moment of the stationary
measure g is finite. On the other hand, the strict positivity of (o), holds under
some additional hypotheses. Since the corresponding argument is technically
rather complicated, we confine ourselves here to outlining the proof in the model
case when H = R. Namely, let us consider the Markov family associated with
Eq. (0.1) in which S : R — R is a non-constant continuous mapping with
bounded image and {n;} is a sequence of i.i.d. random variables in R whose
law ¢ has a continuous density 6 against the Lebesgue measure that has the
form

0(y) = exp(—aly|* +b(y)), rER, (236)

where o € (1,2], a > 0, and b is a bounded continuous function. As was
explained in Section 2.3, the entropy production rate is zero if and only if
(cf. (2.19))

exp(—alvy — S(vo)|* + b(vy — S(vo))) /H p(z,v0)p(dz)

= exp(—alon = S()|" + b = S01) [ plz,o0ulds)
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Taking the logarithm of both sides of this relation and carrying out some simple
transformations, we derive

—alvy — S(vg)|* = log/Rexp(—ahjl —S(2)|* +b(v1 — S(2))) u(dz) + 1 (vo, v1),

(2.37)
where we denote by r; bounded functions of their arguments. Now note that

lv1 — S(v)|* = vf — S (ve)v? ! 4 ro(vg, v1)vd % as v; — 4o0.

Substituting this expression into (2.37) and dividing by acv®~!, we obtain
1
S(vg) = ——— (log/ exp(aaS(2)vd ! — aryvd 2 +b(vy — 5(2)))u(dz) +T1) .
aowy R

Letting v; — 400, we obtain
S(vg) =C for all vy € R.

This contradicts the condition that S is non-constant and proves the strict
positivity of the entropy production rate.

3 Exponential mixing and LDP

In this section, we prove Theorems 1.2 and 1.3. To this end, we show that the
Markov family in question satisfies the four hypotheses of Proposition 5.4, so
that the LDP holds in the space of trajectories. We next use an approximation
argument to establish the LDP for functionals with moderate growth at infinity.

3.1 Proof of Theorem 1.2

Lyapunov function

Let us show that &(u) satisfies (5.17). Indeed, in view of (1.2), we have
/ D (0)Py(u,dv) = EP(S(u) +m1) < q¢P(u) + C’E(@)(m) +1).
H

This inequality coincides with (5.17) in which M = E®(n;) + C, and the finite-
ness of M follows from (1.3).

Uniform strong Feller

We first note that Py(u,-) = £g(,). By Condition (A), the mapping S is con-
tinuous from H to U, and by Condition (C), the mapping 6 : U — P(H) is
continuous from U to P(H). We see that the mapping u +— Pj(u,-) is continu-
ous as the composition of two continuous mappings.
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Irreducibility

By condition (C), the support of ¢ coincides with H. Since the measure P (u, -)
is a translation of ¢, the same property holds for it, and we see that Py (u,G) > 0
for any non-empty open set G C H.

Super-exponential recurrence

Given € > 0, let us denote by K. a compact subset in H such that £(KC.) > 1—e.
We claim that (5.18) and (5.19) hold for C = By (R)+K. with R > 1 and ¢ < 1.
The proof of this fact is divided into three steps.

Step 1. Let o, be the first hitting time of the set {u € H : ®(u) < p},
which is denoted by {® < p} in what follows. Suppose that, for any S > 0 and
sufficiently large p = p(8) > 0, we have proved the inequality

E,e?7 < Cre®®@ =248 for any u € H, (3.1)

where a = ¢§/C', the numbers ¢, C, and ¢ are defined in Conditions (B) and (C),
and C; > 0 is an absolute constant. In this case, the validity of (5.18) with the
above choice of C can be derived by a standard argument (e.g., see Section 3.3.2
of [KS12]). Indeed, choosing R so large that S({® < p}) C By(R), we see that

inf Py(u,C)>1—¢. 3.2
et 1(u,C) >1—¢ (3.2)

Let us introduce an increasing sequence of stopping times by the relations
o4 =0p, on=min{k>o0,_;+1:D(uy) < p}.

Setting o, = o/, + 1, we conclude from (3.2) and the strong Markov property
that

P,(m) := ]P’( N {to, ¢ C}) <em (3.3)
n=1
We shall show in Step 2 that
E,e’om < leeo“p(“)_o‘p form>0,ue H, (3.4)

where Q3 > 1 depends only on 8. Using (3.3), (3.4), and the Chebyshev
inequality, for any positive integers m and M we write

Pre>M} =P {rce >M,0p < M} +P,{7¢c > M,0,, > M}
<P e > 0om} +Pu{om > M} < P,(m) + e PME,efom
<My ngefﬁMJra@(u)fap.

Choosing m ~ % and € ~ Q};_B, we derive

PU{TC 2 M} S 02(1 + ea@(U)*aP)S*(ﬁfl)M7
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whence, for any A < 8 — 1, it follows that
E e < C3(1 + P =er), (3.5)

Since 8 > 0 was arbitrary, we see that (5.18) holds with any A > 0 and a suitable
compact set C(A) C H. Moreover, taking if necessary a larger constant C' > 0
in inequality (1.2), we can make « smaller than the number ¢ > 0 entering (1.6).
Then, integrating (3.5) with respect to A(du), we conclude that (5.19) is also
satisfied.

Step 2. We now prove (3.4). To this end, we introduce the stopping time

o, = min{k > 1: &(u;) < p}. In view of (3.1) and the Markov property, we

have
Eueﬁ"; < CyePlm)—apt2B

Combining this inequality with the strong Markov property and the fact that
Uy € {® < p}, we derive

E,o7m = Eu(Bu{e® | Fyy _}) = Eu(e”m 1By, )e")

m—1

<Cs (ﬂ)Eu eﬁginfl )

where F, denotes the o-algebra associated with the stopping time o, and we
write u(o7,) for u,: . Iterating the above inequality and using the definition
of o, we obtain the required estimate (3.4).

Step 3. It remains to prove (3.1). First note that, in view of the inequality
Iy, >1) < exp(0’'P(uy) — d'p), where ¢’ > 0, and relations (1.2) and (1.3), we
have

E, (e** ") 1y, 51y) < €700 E, (070

< e—§/p+(a+6/)(qé(u)""c)mc(a_’_(s/) (é)

Choosing ¢’ = (1 — ¢)0/C and recalling that o = ¢d/C, we obtain
g g
E, (2?1, _1y) < Comg(f) ex®) =07, (3.6)

We now introduce the quantities pg(u) = E, (eo‘é(“k)I{UPk}). Combining (3.6)
with the Markov property, we obtain

P (u) = Ey (eI, piy) = Eu{lio, >k Eu, (e Iy 21y) }
< Coms(0) Ey (eaé(uk)_g/pl{apk}) < Comg(£)e ™ Ppy(u).
Iterating this inequality and using (3.6), we get
By (200 [y ) < @®0~('p—Ck < ab(w)—(3+1)k,
where C3 = log(Cams(¢)) and p > 0 is so large that §’p— C3 > S+ 1. It follows

that
Pu{o, >k} < e “E, (eI, ~4y) < e mor=(BTDE (3.7

Inequality (3.1) with an arbitrary 8 > 0 and a sufficiently large p = p(8) > 0 is
a simple consequence of (3.7).
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3.2 Proof of Theorem 1.3

Step 1: Scheme of the proof of LDP. We shall derive the LDP for the laws
of & as a consequence of Theorem 1.2. To this end, we essentially repeat the
argument used by Gourcy [Gou07b, GouO7a] in the case of the Navier—Stokes
and Burgers equations. It is based on Lemma 2.1.4 of [DS89], which implies
that the LDP with the rate function®

Ip(r) :=inf{I(v) : {f,v) =r} (3.8)
will be established for the Py-laws of & if we prove the following two properties:
(a) Let fj = (f Aj)V (—j) and let I,,, : P(H™F') — [0, +00] be defined by

In(v) =inf{I(v) : v € P(H),II,,v = v},

where II,,, : H — H™%! denotes the natural projection sending the vector
v = (vp,n > 0) to (vo,...,vn) and I is the rate function constructed in
Theorem 1.2. Then, for any L > 0, we have

sup [(f; — f,v)] = 0 asj— oo, (3.9)

where the supremum is taken over all v € P(H™%1) such that I,,(v) < L.

(b) For any 6 > 0, we have

hmsup%logm{}(fj—f,c,i’”>>}>5}—>—oo asj— oo,  (3.10)

k—+oo

where C,gm) denote the occupation measures
m 1
G =23 buimys Un(m) = (s ). (3.11)

To prove (a), we shall need the following lemma, which gives a lower bound
for I, in terms of the stabilisable functional p. Its proof is given at the end of
this section.

Lemma 3.1. Let the hypotheses of Theorem 1.2 be fulfilled and let p(u) be a
stabilisable functional for (ug,P,). Then

1
m—+1

In(v) > / Zp(vn) v(dvg,...,dvy) —y for any v € P(H™').
Hm+1 n=0

(3.12)

5We may consider f as a measurable function on H depending only on the first m + 1
components of the argument v = (vn,n > 0), so that the integral (f, ) makes sense.
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Step 2: Proof of (a). We first note that, in view of (3.12), if I,,(v) < L,
then

/HW 3 p(va) vldv, ... dvy) < (m+ 1)(L + 7). (3.13)

n=0

Furthermore, since f is bounded on the balls of H™+!, we have
Aj={(vo,-..,vm) € H™ M 1| f(vo,...,vm)| > 5} C Bu(ry)S, j>1, (3.14)

where By, (r) denotes the ball in H™ ! of radius r centred at zero and {r;} C Ry
is a sequence going to +oo with j. It follows from (1.8) that

[f(vo, -y vm) _ N
(o) + -+ plom) <¢g; for (vo,...,vm) € Bn(r;j)S, (3.15)

where €; — 0 as j — co. Combining (3.13)—(3.15), we write

/ |fj—f|dus/ |f|dus/ fldv
Hm+1 A, B ()¢

J

<e n) V(dvo, ..., dvy,
<o [ Dbl vl den)
<egj(m+1)(L+7).

This implies the required convergence (3.9).
Step 3: Proof of (b). Using (3.15), (1.7), and the Chebyshev inequality, we

write

k
PA{\<fj—f,C£m)>!>5}=PA{%Zf T L——

IN

k—1
< P,\{Z |F (s o tnm)| Ta, (s oy Ungm) > 6k}
n=0

k+m—1 5
e 2w >>m’“}
< O e k(g =)} | @01l At

Since €; — 0 as j — oo, this implies the required convergence (3.10). This
completes the proof of Theorem 1.3.

Proof of Lemma 3.1. Let p; : H — Ry be an increasing sequence of bounded
continuous functions such that p;(u) — p(u) for any v € H. For instance, we
can take

piw) = j A inf (p(v) + lu— o]]).
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By the Varadhan lemma (see [DZ00, Section 4.3]),

Jim 108 exp (e (95 (00) + -+ by (vm), (™)

k—o0

= sup <m+1Lm+1ZpJ Un) dvo,...,dvm)—Im(u)). (3.16)

vEP(Hm+1)

On the other hand, since p; < p and p is a stabilisable functional, in view
of (1.7) we have

k+m—1
E, exp (5 (pj(v0) + -+ 4 1 (0m), (™)) < E, exp( Z P“")
< Q(HUH)e”(’“*’” DFp(),

Substituting this inequality into (3.16), for any v € P(H™"!) we obtain

1 m
m—H /I:Im+1 ;pﬂ(vn) V(dvo’ e ,d’Um) - Im(V) <.

The required inequality (3.12) follows now from the Fatou lemma. O

4 Gallavotti—Cohen fluctuation theorem for the
entropy production functional

In this section, we prove Theorem 1.5. To this end, we first note that, by
Theorem 1.3, the Py-laws of the random variables (0.9) satisfy the LDP with
the good rate function (cf. (3.8))

I(r) :=inf{I(v) : (o,v) =1}. (4.1)
We shall use the Varadhan lemma and a symmetry property of the Feynman—

Kac semigroup to prove the Gallavotti-Cohen fluctuation principle.

For any o € R we define (formally) a family of linear mappings by the
relation

o 1)) = Eu{exo - Z (tnetensn) )} 820

where f € C(H). In view of Condition (D) and inequality (1.7), the function
P f is continuous on H for any f € Cp(H). We claim that ©

B f,9)e = (£, BV 7g), for all k >0, (4.2)

6The right- and left-hand sides of (4.2) are well defined as integrals of positive functions.
Relation (4.2) means, in particular, that if one of them is infinite, then so is the other.
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where f,g € C(H) are arbitrary non-negative functions, and we set

(f.9)e = /H £(u)g(u) £(du).

Indeed, the Markov property for (ug,P,) implies that, for any continuous func-
tion f > 0, we have

Pilif =B7 (B ), k1 =0.

Therefore it suffices to prove (4.2) for k = 1. Using the definitions of o and P
and the Fubini theorem, we write

(P97 f.g)e = /H E, {e= (00 f(uy) bg (ur) £(du)

= [ ([ entmrtemr-tonstso syt wye(a) )ty
-/ f(v)< | ctmentesstuntos e ), )t ) )

/ f {e (1—a)o(uo,u1) ul }Z d’U (f m(l a)o )

We can now derive (0.13). Since the measure ¢ satisfies (1.9), the LDP with
the good rate function (4.1) holds for the Py-laws of the sequence of random
variables (0.9). Therefore, by the Varadhan lemma, we have

lim 1 log E¢ exp(—ak&r) = sup(—ar — I(r)) =: I*(—a), (4.3)
k—o0 k reR

where o € R is arbitrary, and I* stands for the Legendre transform of I. Now
note that

E¢ exp(—aké) = (PR, 1)@7

where 1 : H — R stands for the function identically equal to 1. Substituting
this relation into (4.3) and using (4.2), for any a € R we derive

I"(—a) = lim log(ﬁp 1), = klim

koo k

klog( (1=ajoy 1), =I"(a—1).

Combining this with the well-known relation I(r) = sup,cgp(ar — I*(a)), we
obtain (0.13). This completes the proof of Theorem 1.5.

5 Appendix

5.1 Admissible shifts of decomposable measures

Let H be a separable Hilbert space endowed with its Borel o-algebra By.
Given p € P(H) and a € H, we denote by 6, : H — H the shift operator
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by the vector a (that is, 0,u = u + a) and by u, = po 6, the image of u
under §,. Recall that a € H is called an admissible shift for p if u, is absolutely
continuous with respect to u. We denote by H,, the set of all admissible shifts

for p and by p,(a;u) = d;if the corresponding densities. It is straightforward
to check that H,, is an additive subgroup in H.
We shall say that u is a decomposable measure if there is an orthonormal

basis {e;} in H such that
j=1

where p1; = po P;l, and P; : H — H is the orthogonal projection to the straight
line spanned by e;. It is clear that if u is a decomposable measure, then it is
the law of a random variable of the form 7

n=>_&ej, (52)
j=1

where {¢;} is a sequence of independent scalar random variables such that
D(&;) = pj. A proof of the following result can be found in [GS80] (see Theo-
rem 5 in Section VIL.2).

Proposition 5.1. Let p be a decomposable measure such that p; possesses a
density p; with respect to the Lebesgue measure on R for any j > 1. Then
a € H,, if and only if the series

Z log p; (& — (a,e;)m) —log p;(&;)) (5.3)

converges almost surely. In this case, the corresponding density is given by

pula;u) = exp (Z log M), ueH, (5.4)

j=1 p](uJ)

where we set uj; = (u,e;)g and a; = (a,€;)H.

Let us note that, in view of the Kolmogorov zero-one law, series (5.3) either
converges a.s. or diverges a.s. In the latter case, the measures u, and p are
mutually singular. Furthermore, if a € H,,, then u < uq,. What has been said
implies that, under the hypotheses of the proposition, the subset H, C H is a
group, and the measures p, and p with a,a’ € H, are absolutely continuous
with respect to each other, with the corresponding density given by

dua pi(u; —aj)
‘. pi\uj — aj)
pula,a’;u) = d,ua’ = exp( E log =————< Py uj ) u € H. (5.5)

"For instance, one can take the random variables &; = (u,ej)g on the probability space
(H7 BH ’ )u‘)
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We now wish to estimate the total variation distance between two admissible
shifts of a decomposable measure. To this end, we assume that j; is the law of
a random variable of the form §; = bjéj, where {b;} is a sequence of positive
numbers and éj is a random variable whose law is absolutely continuous with
respect to the Lebesgue measure, and the corresponding density p; € C! is
positive everywhere and satisfies the inequality

Var(p;) < C forall j > 1, (5.6)

where Var(-) denotes the total variation of a function and C' > 0 does not depend
on j.

Proposition 5.2. Let u be a decomposable measure satisfying the above hy-
potheses. Then for any a,a’ € H,, we have

C = la; — dj
H,UJa _,Ua’Hvar S EZ%, (57)
7j=1

where C' is the same constant as in (5.6).

Proof. Let us recall that
1
e =t = 5 [ o) = p(a'su)] ). (59
In view of (5.4), we have

/ ’ pk(uk - ak) pk(uk - a;g)
pula;u) — pua’;u) E Dy (a,a’;u ,
M( ) M( —~ ) Pk(uk)

where

Dy(a,a’;u) = exp (Z log =—————= Pius = 45)

Jj=1

I AR

p j=k+1

Substituting the above relation into (5.8), using decomposition (5.1), and re-
calling that u;(du;) = pj(u;) du;, we obtain

1 o0
o = bl < 5 35 [ loun = a1) = pulun = il (59)
k=1
The mean value theorem implies that

1
pr(ur — ar) — pr(uk — aj,) = / pie (ur — Oy, — (1 — 0)ay,)do (ax — aj).
0

Combining this with (5.9) and the relation py(r) = by ' py. (b, '7), we obtain (5.7).
o
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Finally, we need some sufficient conditions ensuring the continuity of the
shift operator and the positivity of density for shifted measures.

Proposition 5.3. Let u be the same as in Proposition 5.2 and let the densi-
ties p; satisfy the inequalities

_ Ay =7
[rp;(r)dr < Ch, ————dr <Ci(jy| +1)A (5.10)
R —a pily—r)
forj>1,yeR, and A€ [0,1]. Let U C H be a Banach space such that
Zb;1|(v,ej)| < Cyllvlly  for anyv e U, (5.11)
j=1

where {e;} is the orthonormal basis entering (5.1). Then the inclusion U C H,,
holds, and the density p,(a;u) is positive for (a,u) € U x U. Moreover, the
function 0 : U — P(H) taking a € U to p, is Lipschitz continuous, provided
that P(H) is endowed with the total variation norm. Finally, if there is C3 >0
such that

> b2 (v,e5)| < Csllvlly for any v € U, (5.12)
j=1
then the density p,(a;u) is positive on U x H.
Proof. If we know that a,a’ € H,, then combining (5.7) and (5.11), we obtain
immediately the Lipschitz continuity of the mapping 6. Thus, we need to show
the inclusion U C H,, and the positivity of p, on U x U (and on U x H under
the additional condition (5.12)).

In view of Proposition 5.1, the required inclusion will be established if we
prove that

Z/ |log p;(uj — a;) —log p;(u;)| p(du) < oo for any a € U. (5.13)
j=1"H1

To prove this, note that, in view of the second inequality in (5.10), we have

s (=1
< [ BT,

log pj(uj —a;) —log pj(u;)| < -
’ VAN J J J} o, pj(bjluj—r)
< Ci(bj uy| +1)8; for j > N, (5.14)

where 0; = b;1|aj| and N > 1 is the least integer such that §; < 1. Using the
Fubini theorem and decomposition (5.1), we obtain

> /H|10gpj(uj —a;) —log p;(u)| pldu) < C1 > 0; | (b uj| +1)p;(u;) du,
j=N

T
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The first inequality in (5.10) and inequality (5.11) with v = a now imply
that (5.13) holds.

To establish the positivity of the density p,(a;u) on U x U, recall that it is
given by (5.4). Therefore it suffices to show that

o0

An(a;u) := Z [log p;(u; — a;) — log p;(u;)| < oo (5.15)
j=N

for a,u € U. To this end, note that, by (5.14) and (5.11), we have
An(azu) < C1 Y (b2 ugl las] + by Hagl) < CrCallallu (Jullv +1).  (5.16)
j=N

Finally, to establish the positivity of p,(a;u) on U x H under the additional
condition (5.12), it suffices to prove that (5.15) holds for a € U and v € H.
This follows immediately from the first inequality in (5.16). O

5.2 Exponential mixing and LDP for Markov chains

Let X be a separable Banach space with a norm ||-|| and let (uy,P,) be a family
of Markov chains in X. Given A € P(X), we define the probability measure
Pr(-) = [y Pu(-)A(du) and denote by Ej the corresponding mean value. Recall
that we denote by Py (u,I") the transition function for (ug,P,) and by B and PB;,
the corresponding Markov semigroups. Given a closed subset K C X, let 7x be
the first positive hitting time of K:

7k =min{k > 1:u € K}.

The following proposition is a consequence of general results on mixing and LDP
established in [MT93, Chapters 15 and 16] and [Wu01] (see Theorem 2.1 and
Proposition A.2).

Proposition 5.4. Let a Markov process (ug,P,) and a subset A C P(X) be
such that the following hypotheses hold.

Lyapunov function. There is a continuous function @ : X — Ry which is
bounded on any ball of X and goes to +00 as ||u|| = oo such that

/ D(v) P (u,dv) < qP(u)+ M forallue X, (5.17)
p's

where ¢ < 1 and M are some positive constants.

Uniform strong Feller. The mapping u — Pi(u,-) is continuous from X to
the space P(X) endowed with the total variation norm.

Irreducibility. We have Py(u,G) > 0 for any u € X and any non-empty open
set G C X.
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Hyper-exponential recurrence. For any A > 0 there is a compact subset
C=C(A) C X such that

sup E, exp(A7e) < o0, (5.18)
ueB
sup Ej exp(Are) < o0, (5.19)
AEA

where B C X is an arbitrary ball in X. Then (uk,P,) possesses a unique
stationary measure p € P(X), which is exponentially mizing in the sense that

| Pi(ut, ) = pillvar < Ce™ (1 4+ @(u)) for allue X and k > 0, (5.20)

where C and ~y are positive constants. Moreover, the LDP in the T,-topology
holds for the Py-occupation measures (1.4), uniformly with respect to X € A.

This result implies, in particular, that for any ball B C X the LDP holds
for the P,-occupation measures (1.4) uniformly with respect to u € B.

5.3 The entropy balance equation

In this section, we consider the entropy balance equation stated in the introduc-
tion. We prove that the entropy production functional Ep(-) is non-negative
and vanishes if and only if the detailed balance condition is satisfied. We also
show how the entropy flux observable o relates to time-irreversibility.

Let us set f = dA\/df and define the density transfer operator by

:/ﬂwm%mmmy

A direct calculation shows that (0.7) holds with

[ (RO )
Ep()\)—/H lg( ionrien >,\(d ) (5.21)

Jensen’s inequality yields

(Rf)(u1)p(u1, uo)
Bp(Y) 2 ~log Flaptio Aldu)

. RO,
= —tos | (0 SHEE S )

=A%ﬂWﬁwwm=o

Moreover, this inequality is saturated if and only if

(RF)(W)p(v;u) = cf (w)p(u, v),

{® L-almost everywhere for some constant c. Integrating this relation over £(dv)
yields R?2f = cf and ¢ = 1 follows from one more integration over . We deduce
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that Rf — f is either 0 or an eigenvector of R to the eigenvalue —1. Since the
second alternative contradicts the mixing property of the stationary measure p,
we conclude that Rf = f, so f is the density of a stationary measure. Inserting
this relation into Eq. (5.21) yields

0= Ep(3) = [ Fu)ptu,v)tos ( FEEE ) ety

- 5/(f(u)p(u V) = F(©)p(v,u)) log <M

fw)p(v,u)
which clearly implies the detailed balance relation.

To connect the observables J and o with time reversal of the stationary
Markov chain, we follow Maes and Neto¢ny [MNO3]. Denote by ]P)fﬁ) the measure
induced by p on the finite segment (ug,...,ur) of the Markov chain and by
7t (U, .- uk) — (uk, .. uo) the tlme-reversal map on this segment. The

) (du)¢(dv),

relative entropy Ent (P(k)UP’ om, ') is given by

arP
) apg
dP( ) o Ty

[ 0)p(uo, u1) - p(uk—1,uk) \ o) U w
_ /} g(p@% )PL (duo, . . ., duy)

)p(Uks u—1) - - - p(u, uo)

k—1
- [ oo ntw),
n=0

where ¢ denotes the left shift. Thus, we have

1 _
-EEnuPynpﬁﬂowkl):<ah“ (5.22)
which provides an alternative proof of the inequality (o), > 0. As noticed by
Gaspard [Ga04], the ergodicity of p implies that
o1
lim + log (p(uo)p(uo, un) -+ pluk 1, 1))
k—oo k
= /p(u)p(u, v)log p(u, v)¢(du)f(dv) = hy,

hm 1log( (ur)p(ur, ug—1) - - - p(ur, ug))

= [ pladotu,)tog (o, w)e(dupe(de) = b,

for p-almost every uw € H, where hy is the entropy per unit time (or entropy
rate, or Kolmogorov—Sinai entropy) of the stationary Markov chain and h_ is the
time-reversed entropy per unit time. Thus, relation (5.22) can be strengthened
to

1 dpP
— lim —log | —~t——(u) | = h— — hg = (o),
(dPL> ! o

koo k o

and the strict positivity of the entropy production rate translates into h— > h.
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