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Large deviations and Gallavotti–Cohen principle

for dissipative PDE’s with rough noise

V. Jakšić∗ V. Nersesyan† C.-A. Pillet‡ A. Shirikyan§

December 10, 2013

Abstract

We study a class of dissipative PDE’s perturbed by an unbounded kick
force. Under some natural assumptions, the restrictions of solutions to in-
teger times form a homogeneous Markov process. Assuming that the noise
is rough with respect to the space variables and has a non-degenerate law,
we prove that the system in question satisfies a large deviation principle
(LDP) in τ -topology. Under some additional hypotheses, we establish
a Gallavotti–Cohen type symmetry for the rate function of an entropy
production functional and the strict positivity and finiteness of the mean
entropy production in the stationary regime. The latter result is applica-
ble to PDE’s with strong nonlinear dissipation.
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0 Introduction

LetH be a separable Hilbert space and let S : H → H be a continuous mapping.
We consider a discrete-time Markov process defined by the equation

uk = S(uk−1) + ηk, k ≥ 1, (0.1)

where {ηk} is a sequence of i.i.d. random variables in H . This type of systems
naturally arise when studying the large-time asymptotics of randomly forced
PDE’s, and we do not discuss here our motivation, referring the reader to Sec-
tion 2.3 of the book [KS12]. Equation (0.1) generates a homogeneous family of
Markov chains, and its ergodic theory is well understood in the case when S pos-
sesses a dissipativity property and the law of ηk is sufficiently non-degenerate.
Namely, let us assume that

‖S(u)‖ ≤ q‖u‖+ C for any u ∈ H, (0.2)

where q < 1 and C are some numbers not depending on u. If, in addition, the
mapping S is compact in the sense that the image under S of any bounded set is
relatively compact, then the existence of a stationary distribution can easily be
proved with the help of the Bogolyubov–Krylov argument. The uniqueness of a
stationary measure and its mixing properties are much more delicate questions,
and in this paper we deal with a “rough” noise, in which case convergence to the
unique stationary measure holds in the total variation distance. To describe the
problems and results, let us assume that the law ℓ of the random variables ηk is
a Gaussian measure. In this situation, the above-mentioned roughness condition
takes the form:
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(H) The mapping S is continuous from H to the Cameron–Martin space of ℓ
and is bounded on any ball.

Under this hypothesis, the transition probabilities of the Markov family associ-
ated with (0.1) are all equivalent, and the uniqueness of a stationary measure
and its stability in the total variation norm follows from the well-known Doob’s
theorem; e.g., see Chapter 4 in [DZ96]. We refer the reader to the pioneering
articles [Yag47, Doo48] for first results of this type, to the book [MT93] for a
general ergodic theory of Markov chains, and to the paper [BKL01] for a proof of
the above-mentioned existence and stability result in the case of Navier–Stokes
equations on the 2D torus.

The aim of this paper is twofold: firstly, to establish a large deviation prin-
ciple (LDP) for occupation measures of (0.1) and some physically relevant func-
tionals and, secondly, to derive a Gallavotti–Cohen type symmetry for the rate
function corresponding to an entropy production functional. Without going into
technical details, we now describe our main results in the case of the 1D Burgers
equation on the circle S = R/2πZ. Namely, let us denote by H the space of
square-integrable functions on S with zero mean value and consider the problem

∂tu− ν∂2
xu+ u∂xu = h(x) + η(t, x), (0.3)

u(0, x) = u0(x). (0.4)

Here x ∈ S, ν > 0 is a parameter, h ∈ H is a fixed function, and η(t, x) is a
random process of the form

η(t, x) =
∞
∑

k=1

ηk(x)δ(t− k), (0.5)

where {ηk} is a sequence of i.i.d. Gaussian random variables in H and δ(t)
denotes the Dirac measure at zero. Normalising trajectories of (0.3) to be right-
continuous and denoting uk = u(k, x), we see that the sequence {uk} satisfies
Eq. (0.1), where S : H → H denotes the time-1 shift along trajectories of (0.3)
with η ≡ 0. For any trajectory {uk}, let ζk(u0) be the corresponding occupation
measure:

ζk(u0) =
1

k

k−1
∑

n=0

δun
, un = (ul, l ≥ n),

where δv denotes the Dirac mass concentrated at v = (vl, l ≥ 0) in the space
of probability measures on H = HZ+ . Thus, {ζk(u0)} is a sequence of random
probability measures on H, and we wish to investigate the problem of large
deviations for it. Let us denote by V s the space of functions in the Sobolev
space of order s on S whose mean value is equal to zero.

Theorem A. Let us assume that h ∈ V s for an integer s ≥ 0 and the law ℓ
of the i.i.d. random variables ηk is a centred Gaussian measure on H such
that V s+1 is continuously embedded into its Cameron–Martin space. Then the
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discrete-time Markov process associated with (0.3) has a unique stationary mea-
sure µ, which is exponentially mixing in the sense that the law of any trajectory
converges to µ in the total variation metric exponentially fast. Moreover, for
any initial point u0 ∈ H, the occupation measures ζk(u0) satisfy the LDP in the
τp-topology with a good rate function not depending on u0.

The reader is referred to Section 1 for the definition of the concepts used in
this theorem. We now turn to the question of the Gallavotti–Cohen fluctuation
principle for an entropy production functional. To this end, given a vector
a ∈ H , denote by ℓa the image of ℓ under the translation in H by the vector a.
The hypotheses of Theorem A imply that the shifted measure ℓS(u) is absolutely
continuous with respect to ℓ, and the corresponding density ρ(u, v) is positive
for any u ∈ H and ℓ-almost every v ∈ H . Define the function

σ(v0, v1) = log
ρ(v0, v1)

ρ(v1, v0)
, (0.6)

which will be called the entropy production functional of the Markov process
associated with (0.3). In the third subsection of Appendix, following [BM05]
we will briefly discuss the analogy between entropy production functional in
Burgers equation and that of suitable heat conducting networks. This analogy
sheds a light on the physical origin of the entropy production functional.

The mean entropy production (in the stationary regime) is given by

〈σ〉µ :=

∫

H

σ(v0, v1)µ(dv). (0.7)

where µ ∈ P(H) denotes the law of a stationary trajectory for (0.1). Let us
note that

〈σ〉µ =

∫

H×H

σ(v0, v1)ρ(v0, v1)µ(dv0)ℓ(dv1).

It follows that the mean entropy production is always non-negative. Indeed,
define the time-reversal mapping π : H×H → H×H by π[v0, v1] = [v1, v0] and
denote by P (dv0, dv1) the restriction of µ ∈ P(H) to the first two components
and by Q(dv0, dv1) its image under π:

P (dv0, dv1) = ρ(v0, v1)µ(dv0)ℓ(dv1) = ρ(v0, v1)〈ρ(·, v0)〉µ ℓ2(dv0, dv1), (0.8)

Q(dv0, dv1) = ρ(v1, v0)µ(dv1)ℓ(dv0) = ρ(v1, v0)〈ρ(·, v1)〉µ ℓ2(dv0, dv1), (0.9)

where 〈ρ(·, v)〉µ =
∫

H ρ(z, v)µ(dz) and ℓ2 = ℓ ⊗ ℓ. These two measures are
mutually absolutely continuous, and the relative entropy of P with respect to Q
can be written as

Ent(P |Q) =

∫

H×H

log
dP

dQ
dP

=

∫

H×H

log
ρ(v0, v1)〈ρ(·, v0)〉µ
ρ(v1, v0)〈ρ(·, v1)〉µ

ρ(v0, v1)µ(dv0)ℓ(dv1)

= 〈σ〉µ +

∫

H×H

log
〈ρ(·, v0)〉µ
〈ρ(·, v1)〉µ

ρ(v0, v1)µ(dv0)ℓ(dv1).
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Using the invariance of µ, it is straightforward to check that the second term
on the right-hand side is zero, so that we obtain the equality

Ent(P |Q) = 〈σ〉µ. (0.10)

It follows from the Jensen inequality that the relative entropy is always non-
negative, and it is equal to zero if and only if P = Q. This relation is nothing
else but the detailed balance for the stationary measure µ.

The definition of the entropy production functional and the fact that the
mean entropy production is non-negative are part of the general theory of non-
equlibrium statistical mechanics in the mathematical framework of deterministic
and stochastic dynamical systems [ES94, GC95, Kur98, Mae99, Rue97, RM07,
JPR11]. On the other hand, the detailed dynamical questions like strict positiv-
ity of the mean entropy production, LDP for the entropy production functional,
and validity of the Gallavotti–Cohen fluctuation relation can be answered only
in the context of concrete models. In this paper, we shall prove the following
result.

Theorem B. In addition to the hypotheses of Theorem A, assume that h ∈
V 2s+1 and the set of normalised eigenvectors of the covariance operator for ℓ
coincides with the trigonometric basis in H. Then, for any initial state u0 ∈ H,
the laws of the random variables

ξk =
1

k

k−1
∑

n=0

σ(un, un+1), k ≥ 1, (0.11)

satisfy the LDP with a good rate function I : R → [0,+∞] not depending on u0.
Moreover, the mean entropy production is positive,

〈σ〉µ > 0, (0.12)

and the Gallavotti–Cohen fluctuation relation 1 holds for I:

I(−r) = I(r) + r for r ∈ R. (0.13)

There is an enormous literature on mathematical, physical, numerical, and
experimental aspects of Gallavotti–Cohen fluctuation relation (some of the ref-
erences can be found in [JPR11, RM07]). The previous mathematically rigorous
works closest to ours are [LS99, EPR99]. Lebowitz and Spohn [LS99], building
on the previous work by Kurchan [Kur98], have developed general theory of
Gallavotti–Cohen fluctuation relation for finite dimensional Markov processes
with applications to various models, including diffusion processes. In [EPR99],
the authors consider a model of finite harmonic chain coupled to two thermal
reservoirs at the ends. Its analysis reduces to study of suitable finite dimensional
Markov process with degenerate noise. In particular, the local Gallavotti–Cohen
fluctuation relation for this model has been established in [RT02]. To the best

1Relation (0.13) means, in particular, that I(r) = +∞ if and only if I(−r) = +∞.
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of our knowledge, there were no previous mathematically rigorous studies of
Gallavotti–Cohen fluctuation relation for nonlinear PDE’s driven by a stochas-
tic forcing (see, however, the papers [Gou07b, Gou07a] for a proof of LDP for
the Navier–Stokes and Burgers equations perturbed by a rough white-noise force
and [JNPS12] for the case of a smooth bounded kick force). On the physical
level of rigour, Maes and coworkes [MRV01, MN03, Mae04] have examined in
depth the fluctuation relation for stochastic dynamics.

The LDP stated above for the Burgers equation is true for other more compli-
cated models, such as the Navier–Stokes system or complex Ginzburg–Landau
equation, while the Gallavotti–Cohen fluctuation relation remains valid for prob-
lems with strong nonlinear dissipation, such as the reaction–diffusion system
with superlinear interaction. Moreover, the law of ηk does not need to be Gaus-
sian, and the results we prove are true for a rather general class of decomposable
measures; see Sections 1 and 2 for details.

A somewhat surprising fact that the global LPD for unbounded observables
holds for Burgers and reaction-diffusion equation has its physical origin in the
strong dissipation characterising these models. It is natural to expect that in
more generic situations (like Navier-Stokes system) only a local LDP and, hence,
a local fluctuation relation hold (like in [RT02]). However, in the absence of a
strong dissipative mechanism, our method of the proof of LDP for occupational
measures is not suited for establishing local LDP for unbounded observables
like entropy production functional. It is likely that more specific techniques
that deal directly with LDP for entropy production functional are needed to
analyse this question. We plan to address this problem in future publications.

The paper is organised as follows. In Section 1, we formulate our main
abstract results on the large deviations and the Gallavotti–Cohen fluctuation
theorem. Various applications of these results are discussed in Section 2. Sec-
tions 3 and 4 are devoted to proving the theorems announced in Section 1.
The Appendix gathers some auxiliary results on decomposable measures and
LDP for Markov chains and discusses the analogy between our models and heat
conducting networks.
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Notation

Let X be a Polish space with a metric d. We always assume that it is endowed
with its Borel σ-algebra. Given R > 0 and a ∈ X , we denote by BX(a, r) the

6



closed ball inX of radius R centred at a. The following spaces are systematically
used in the paper.

X = XZ+ denotes the direct product of countably many copies of X . The
space X is endowed with the Tikhonov topology, and its elements are denoted
by u = (un, n ≥ 0). We write Xm for the direct product of m copies of X .

C(X) is the space of continuous functions f : X → R. We denote by Cb(X) the
subspace of bounded functions in C(X) and endow it with the natural norm
‖f‖∞ = supX |f |.
P(X) denotes the space of probability measures on X . Given µ ∈ P(X) and a
µ-integrable function f : X → R, we write

〈f, µ〉 =
∫

X

f(u)µ(du).

The total variation metric on P(X) is defined by

‖µ1 − µ2‖var =
1

2
sup

‖f‖∞≤1

|〈f, µ1〉 − 〈f, µ2〉| = sup
Γ∈BX

|µ1(Γ)− µ2(Γ)|,

where BX stands for the Borel σ-algebra on X .

C(J,H) denotes the space of continuous functions on an interval J ⊂ R with
range in the Banach space H . We write Cb(J,X) for the subspace of bounded
functions and endow it with the natural norm

‖f‖L∞(J,H) = esssup
t∈J

‖f(t)‖H .

Lp(J,H) stands for the space of Borel-measurable functions f : J → H such
that

‖f‖Lp(J,H) =

(
∫

J

‖f(t)‖pHdt

)1/p

< ∞.

In the case p = ∞, the above norm should be replaced by ‖f‖L∞(J,H).

We denote by C,C1, C2, . . . unessential positive numbers.

1 Main results

In this section, we introduce a class of discrete-time Markov processes and for-
mulate a result on the existence, uniqueness, and exponential mixing of a sta-
tionary measure and the large deviation principle for the occupation measures
and some unbounded functionals. We next discuss the Gallavottii–Cohen fluc-
tuation theorem for an entropy production functional.
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1.1 The model

Let H be a separable Hilbert space, let S : H → H be a continuous mapping,
and let {ηk, k ≥ 1} be a sequence of i.i.d. random variables in H . We consider
the stochastic system (0.1), supplemented with the initial condition

u0 = u ∈ H. (1.1)

Let us denote by (uk,Pu) the Markov family generated by (0.1), (1.1), by Pk(u,Γ)
its transition function, and by Pk : Cb(H) → Cb(H) and P∗

k : P(H) → P(H)
the corresponding Markov semigroups. Given a measure λ ∈ P(H), we write
Pλ(·) =

∫

H
Pu(·)λ(du). We shall always assume that S satisfies the two condi-

tions below.

(A) Continuity and compactness. There is a separable Banach space U
compactly embedded into H such that S is continuous from H to U and is

bounded on any ball.

(B) Dissipativity. There is a continuous function Φ : H → R+ bounded

on any ball and such that Φ(u) → +∞ as ‖u‖ → +∞ and

Φ(S(u) + v) ≤ q Φ(u) + C(Φ(v) + 1) for all u, v ∈ H, (1.2)

where q < 1 and C ≥ 1 do not depend on u and v.

As for the random variables {ηk}, we assume that their law has a particular
structure related to S. To formulate this condition, we shall use some concepts
defined in Section 5.1. Given a vector a ∈ H and a measure ℓ ∈ P(H), we
denote by θa : H → H the shift operator in H taking u to u+ a, by ℓa = ℓ ◦ θ−1

a

the image of ℓ under θa, and by Hℓ the set of all admissible shifts for ℓ.

(C) Structure of the noise. The support of the measure ℓ := D(η1)
coincides with H , and there is δ > 0 such that

mδ(ℓ) :=

∫

H

eδΦ(u) ℓ(du) < ∞. (1.3)

Moreover, the Banach space U defined in (A) is contained in the subgroup of

admissible shifts Hℓ, and the mapping θ : U → P(H) that takes a ∈ U to ℓa is

continuous, provided that the space P(H) is endowed with the total variation

norm.

A sufficient condition for the validity of some of the above properties is given
in Proposition 5.3. In the next two subsections, we formulate our main results
on the exponential mixing, the LDP in the space of trajectories (or level-3 LDP),
and the Gallavotti–Cohen fluctuation relation.

1.2 Exponential mixing and large deviations

For the reader convenience, we begin with some well-known definitions. Let X
be a topological space, endowed with its Borel σ-algebra, and let P(X) be the set
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of probability measures on X , which is endowed with a regular2 topology T and
the corresponding Borel σ-algebra. Recall that a mapping I : P(X) → [0,+∞]
is called a rate function if it is lower semicontinuous, and a rate function I is
said to be good if its level sets are compact. For a Borel subset Γ ⊂ P(X), we
write I(Γ) = infσ∈Γ I(σ).

Now let {ζk} be a sequence of random probability measures 3 on X defined
on a measurable space (Ω,F), let Λ be an arbitrary set, and let Pλ be a family
of probabilities on (Ω,F).

Definition 1.1. We shall say that {ζk} satisfies the uniform LDP with λ ∈ Λ
and a rate function I if the following two properties hold.

Upper bound. For any closed subset F ⊂ P(X), we have

lim sup
k→∞

1

k
log sup

λ∈Λ
Pλ{ζk ∈ F} ≤ −I(F ).

Lower bound. For any open subset G ⊂ P(X), we have

lim inf
k→∞

1

k
log inf

λ∈Λ
Pλ{ζk ∈ G} ≥ −I(G).

We now consider a particular case in whichX is the product spaceH = HZ+ ,
endowed with the Tikhonov topology. For any integer k ≥ 1, consider the
space P(Hk) endowed with the τ -topology, which is defined as the weakest
topology with respect to which all the functionals µ 7→ (f, µ) with f ∈ L∞(Hk)
are continuous. We shall write Pτ (H

k) to emphasise the τ -topology on P(Hk).
The space of probability measures P(H) is endowed with the projective limit
topology τp of the system {Pτ (H

k), k ≥ 1}. In other words, τp is the weakest
topology on P(H) with respect to which all the functionals µ 7→ (f, µ) with
f ∈ L∞(Hk) and any k ≥ 1 are continuous.

Let us go back to system (0.1). Recall that a measure µ ∈ P(H) is said to
be stationary for a Markov family (uk,Pu) if P∗

1µ = µ. We denote by ζk the
occupation measure in the trajectory space for a solution of (0.1); that is,

ζk =
1

k

k−1
∑

n=0

δun
, (1.4)

where un = (ul, l ≥ n), and {ul} is a trajectory of (0.1). The following theorem
establishes uniqueness and mixing of a stationary measure for the Markov family
associated with (0.1) and a uniform LDP for ζk in the τp-topology. Its proof is
given in Section 3.

2Recall that a topological space (Y,T ) is said to be regular if any singleton is a closed
subset, and for any closed set F ⊂ X and any point x /∈ F there are disjoint open subsets G1

and G2 such that F ⊂ G1 and x ∈ G2.
3This means that ζk is a measurable mapping from (Ω,F) with range in the space P(X).
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Theorem 1.2. Let Hypotheses (A), (B), and (C) be fulfilled and let (uk,Pu) be
the Markov family associated with (0.1). Then (uk,Pu) has a unique stationary
measure µ, and there are positive numbers γ and C1 such that

‖P∗
kλ−µ‖var ≤ C1e

−γk

(

1+

∫

H

Φ(u)λ(du)

)

for any λ ∈ P(H), k ≥ 0. (1.5)

Moreover, for any c > 0 and any subset Λ ⊂ P(H) satisfying the condition

sup
λ∈Λ

∫

H

ec Φ(u)λ(du) < ∞, (1.6)

the uniform LDP with λ ∈ Λ and a good rate function I : P(H) → [0,+∞]
holds for the sequence of Pλ-occupation measures {ζk, k ≥ 1}.

Theorem 1.2 combined with an approximation argument enables one to es-
tablish the LDP for various functionals of trajectories for (0.1) with moderate
growth at infinity. To formulate the corresponding result, we shall need the
concept of a stabilisable functional.

Let p : H → [0,+∞] be a lower semi-continuous function. We shall say
that p is uniformly stabilisable for the Markov family (uk,Pu) if there is an
increasing continuous function Q : R+ → R+ and a positive number γ such that

Eu exp
(

p(u1) + · · ·+ p(uk)
)

≤ Q(‖u‖)eγk for k ≥ 1, u ∈ H. (1.7)

Theorem 1.3. Under the hypotheses of Theorem 1.2, let p be a uniformly
stabilisable functional, let m ≥ 0 be an integer, and let f : Hm+1 → R be a
measurable function that is bounded on any ball and satisfies the condition

|f(v0, . . . , vm)|
p(v0) + · · ·+ p(vm)

→ 0 as ‖v0‖+ · · ·+ ‖vm‖ → +∞. (1.8)

Then, for any measure λ ∈ P(H) satisfying the condition

∫

H

(

exp
(

c Φ(u)
)

+ ep(u)Q(‖u‖)
)

λ(du) < ∞ (1.9)

with some c > 0, the Pλ-laws of the real-valued random variables

ξk =
1

k

k−1
∑

n=0

f(un, . . . , un+m), k ≥ 1,

satisfy the LDP with a good rate function If : R → [0,+∞] not depending on λ.

Theorems 1.2 and 1.3 are applied in Section 2 to prove the LDP for vari-
ous dissipative PDE’s with random perturbations. In the next subsection, we
discuss a symmetry property of the rate function for a particular choice of the
observable f .
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1.3 Gallavotti–Cohen fluctuation relation

The entropy production functional for a general Markov family in H is defined
by (0.6), provided that the transition function P1(u, dv) possesses a density with
respect to a reference measure ℓ ∈ P(H),

P1(u, dv) = ρ(u, v)ℓ(dv), (1.10)

and that ρ(u, v) > 0 for ℓ ⊗ ℓ-almost every (u, v). If (uk,Pu) is the Markov
family associated with (0.1), then the existence of a density with respect to the
law of ηk follows from Conditions (A) and (C), while a sufficient condition for its
positivity on a set of full measure is given by Proposition 5.3. By the parameter
version of the Radon–Nikodym theorem (see [Nov05]), if (uk,Pu) possesses the
Feller property, then one can choose ρ to be a measurable function in (u, v).
Given a stationary distribution µ of (uk,Pu), we denote by µ the corresponding
path measure and note that µ is absolutely continuous with respect to ℓ, with
the corresponding density given by

ρ(v) =

∫

H

ρ(z, v)µ(dz). (1.11)

It is straightforward to check that ρ(v) > 0 for ℓ-almost every v ∈ H . We have
the following simple result.

Lemma 1.4. Let (uk,Pu) be a Feller family of discrete-time Markov processes
in H such that (1.10) holds for a reference measure ℓ ∈ P(H) and a measurable
function ρ(u, v) that is positive ℓ ⊗ ℓ-almost everywhere. Let µ be a stationary
measure of (uk,Pu) such that

∫

H

| log ρ(v)|µ(dv) < ∞. (1.12)

Then the negative part of σ is µ-integrable, and the mean value of σ with respect
to µ is non-negative.

Proof. We only need to prove the µ-integrability of the negative part of σ (which
implies, in particular, that the mean value of σ with respect to µ is well defined),
because the fact that 〈σ〉µ is non-negative follows immediately from (0.10) and
the calculation given in the Introduction. To this end, setting ρ01 = ρ(v0, v1)
and ρ10 = ρ(v1, v0) and defining ρ to be the density of µ against ℓ, we write

∫

H

σ− dµ =

∫

H2

I{ρ01≤ρ10}

∣

∣

∣
log

ρ01
ρ10

∣

∣

∣
P (dv0, dv1)

=

∫

H2

I{ρ01≤ρ10} log
ρ10
ρ01

P (dv0, dv1)

≤
∫

H2

I{ρ01≤ρ10}

(

log
ρ1ρ10
ρ0ρ01

− log
ρ1
ρ0

)

P (dv0, dv1),
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where ρi = ρ(vi) and P (dv0, dv1) = ρ0ρ01ℓ(dv0)ℓ(dv1). Using the inequality
log x ≤ x for x > 0, we see that the right-hand side of this inequality does not
exceed

∫

H2

ρ1ρ10ℓ(dv0)ℓ(dv1) +

∫

H2

(

| log ρ0|+ | log ρ1|
)

P (dv0, dv1).

The first term of this expression is equal to 1, while the second is finite in view
of (1.12).

We now go back to the Markov family (uk,Pu) associated with (0.1) and as-
sume that Conditions (A)–(C) are fulfilled. Furthermore, we make the following
hypothesis:

(D) Entropy production. The densities ρ(u, v) can be chosen so that the

entropy production functional σ(v0, v1) for (uk,Pu) is well defined and bounded

on any ball of H × H . Moreover, there is a uniformly stabilisable functional

p : H → [0,+∞] such that

|σ(v0, v1)|
p(v0) + p(v1)

→ 0 as ‖v0‖+ ‖v1‖ → +∞. (1.13)

The following theorem establishes the LDP for the entropy production functional
calculated on trajectories and the Gallavotti–Cohen fluctuation principle for the
corresponding rate function.

Theorem 1.5. Let us assume that Conditions (A)–(D) are fulfilled. Then,
for any initial measure λ ∈ P(H) satisfying (1.9), the LDP with a good rate
function I : R → [0,+∞], independent of λ, holds for the Pλ-laws of the real-
valued random variables (0.11). Moreover, if (1.9) is satisfied for λ = ℓ, then
the Gallavotti–Cohen fluctuation relation (0.13) holds for I.

A proof of Theorem 1.5 is presented in Section 4, and its applications are
discussed in Sections 2.3 and 2.4.

2 Applications

In this section, we discuss some applications of the results of the foregoing
section to various dissipative PDE’s perturbed by an unbounded kick force. We
first prove that the hypotheses of Theorems 1.2 and 1.3 are satisfied for the 2D
Navier–Stokes system and the complex Ginzburg–Landau equation. We next
show that, in the case of equations with strong damping (such as the Burgers
equation with periodic boundary conditions or a reaction-diffusion system with
superlinear interaction), Theorem 1.5 is also applicable.

2.1 Two-dimensional Navier–Stokes system

We consider the Navier–Stokes system on the torus T
2 ⊂ R

2. Let us denote
by L̇2 the space of square-integrable vector fields on T

2 with zero mean value,

12



introduce the space

H =
{

u ∈ L̇2 : div u = 0 on T
2
}

, (2.1)

and write Π for the orthogonal projection in L̇2 onto H . Restricting ourselves
to solutions and external forces with zero mean value with respect to the space
variables and projecting the Navier–Stokes system onto H , we obtain the non-
local evolution equation

∂tu+ νLu+B(u) = f(t). (2.2)

Here ν > 0 is a parameter, L = −∆, B(u) = Π(〈u,∇〉u) is the nonlinear term,
and f is an external force of the form

f(t) = h+

∞
∑

k=1

ηkδ(t− k), (2.3)

where h ∈ H is a deterministic function, δ(t) is the Dirac mass at zero, and {ηk}
is a sequence of i.i.d. random variables in H . Normalising solutions of (2.2),
(2.3) to be right-continuous and setting uk = u(k), we obtain relation (0.1), in
which S : H → H stands for the time-one shift along trajectories of Eq. (2.2)
with f = h. We recall that L is a positive self-adjoint operator in H with a
compact inverse and denote by {ej} an orthonormal basis in H composed of
the eigenfunctions of L, with the eigenvalues {αj} indexed in a non-decreasing
order. Let V s be the domain of the operator Ls/2, so that V s = Hs ∩ H ,
where Hs is the Sobolev space of order s on T

2.
The family of all trajectories for (0.1) form a discrete-time Markov process,

which will be denoted by (uk,Pu); see Section 2.3 in [KS12] for details. We now
make the following hypothesis on the stochastic part of the external force (2.3).

Condition 2.1. The i.i.d. random variables ηk have the form (cf. (5.2))

ηk =

∞
∑

j=1

bjξjkej , (2.4)

where {bj} is a sequence of positive numbers such that

∞
∑

j=1

b2j < ∞, (2.5)

and {ξjk} is a sequence of independent scalar random variables whose laws

possess densities ρ̃j ∈ C1 with respect to the Lebesgue measure, which are

positive everywhere and satisfy (5.6) and (5.10).

Let us note that if the laws of ξjk are centred Gaussian measures with
variances σ2

j belonging to a bounded interval separated from zero, then (5.6)
and (5.10) are satisfied. The following result establishes the LDP for the occu-
pation measures of (uk,Pu).
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Theorem 2.2. Let s ≥ 2 be an integer, let h ∈ V s, and let ηk be random
variables for which Condition 2.1 is fulfilled. Assume, in addition, that the
law ℓ of ηk satisfies (1.3) with Φ(u) = ‖u‖ and some δ > 0, and

∞
∑

j=1

b−2
j α−1−s

j < ∞. (2.6)

Then (uk,Pu) has a unique stationary measure µ ∈ P(H), which is exponentially
mixing in the sense that (1.5) holds. Moreover, for any c > 0 and any subset Λ ⊂
P(H) satisfying (1.6), the uniform LDP with λ ∈ Λ and a good rate function
I : P(H) → [0,+∞] holds for the sequence of Pλ-occupation measures (1.4).

Inequality (2.6) prevents the random kicks ηk to be very regular functions
of x. Indeed, it is well known that αj ∼ j as j → ∞; see [Mét78]. Hence, if
bj = j−r for j ≥ 1, then the above theorem is applicable for any r ∈ (1/2, s/2),

so that the regularity of ηk is at most V
s−1
2 . Furthermore, by the Cauchy-

Schwarz inequality, we have

+∞ =

∞
∑

j=1

α−1
j ≤

( ∞
∑

j=1

b2j

)1/2( ∞
∑

j=1

b−1
j α−2

j

)1/2

.

If s ≤ 1, then (2.5) and (2.6) imply that the right-hand side of this inequality
is finite. Since s is an integer, we see that it must satisfy the inequality s ≥ 2.
On the other hand, if s ≥ 2, then the hypotheses of Theorem 2.2 are fulfilled for
any Gaussian measure whose covariance operator is diagonal in the basis {ej}
and has eigenvalues {bj} satisfying (2.5) and (2.6).

Proof of Theorem 2.2. We shall prove that the hypotheses of Theorem 1.3 hold
for the Markov family in question. This will imply all the required results.

Step 1: Continuity and compactness . We claim that Condition (A) is sat-
isfied for the pair (H,U), where H is defined by (2.1) and U = V s+1. To
see this, we apply a standard regularisation property for the 2D Navier–Stokes
equations. Namely, as is proved in Chapter 17 of [Tay97], the time-1 shift
S : H → H along trajectories of the deterministic Navier–Stokes system (2.2)
(in which f(t) ≡ h ∈ V s) maps H to V s+2. Moreover, the image by S of any
ball in H is a bounded subset in V s+2. Since S : H → H is continuous and the
embedding V s+2 ⊂ V s+1 is compact, it follows that the mapping S : H → V s+1

is continuous and bounded on any ball.

Step 2: Dissipativity. We claim that inequality (1.2) holds with Φ(u) = ‖u‖,
q = e−να1 , and a sufficiently large C. Indeed, it is well known that (e.g., see
inequality (2.25) in [Tem88])

‖S(u)‖ ≤ q‖u‖+ C, u ∈ H,

where C ≥ 1 does not depend on u. It follows that

Φ(S(u) + v) ≤ q‖u‖+ C + ‖v‖ ≤ q Φ(u) + C
(

Φ(v) + 1
)

.
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Step 3: Structure of the noise. The fact that supp ℓ = H follows from (2.4)
and the positivity of the coefficients bj and densities ρ̃j . The validity of (1.3) is
required by the hypotheses of the theorem. It remains to prove that V s+1 ⊂ Hℓ

and the mapping θ : V s+1 → P(H) taking a vector a to the shifted measure ℓa
is continuous. To this end, we shall show that inequality (5.11) holds, which
implies that the hypotheses of Proposition 5.3 are satisfied. Denoting by Cs the
sum of the series in (2.6) and using the Cauchy–Schwarz inequality, we derive

∞
∑

j=1

b−1
j |(v, ej)| ≤

( ∞
∑

j=1

b−2
j α−1−s

j

)1/2( ∞
∑

j=1

|(v, ej)|2αs+1
j

)1/2

= C1/2
s ‖v‖V s+1 .

We have thus shown that Hypotheses (A)–(C) are satisfied with q = e−να1

and any sufficiently large C > 0. This completes the proof of the theorem.

Corollary 2.3. In addition to the hypotheses of Theorem 2.2, assume that the
law of ηk and the initial measure λ ∈ P(H) satisfy the conditions

∫

H

exp(α‖u‖2)ℓ(du) < ∞,

∫

H

exp(α‖u‖2)λ(du) < ∞ (2.7)

for some α > 0. Then, for any θ ∈ (0, 2), the Pλ-laws of the random variables

ξk =
1

k

k−1
∑

n=0

‖un‖θ

satisfy the LDP with a good rate function I : R → [0,+∞] not depending on λ.

Proof. As was shown above, the hypotheses of Theorem 1.2 are satisfied for the
Markov family (uk,Pu). Therefore, the required result will be established if we
prove that the conditions of Theorem 1.3 hold for some uniformly stabilisable
functional p.

Let us denote pε(u) = ε‖u‖2 and recall the following estimate established
in [KS12] (see there Step 2 of the proof of Proposition 2.3.8 and inequal-
ity (2.53)), provided that ℓ satisfies the first inequality in (2.7):

Eu exp
(

pε(u1) + · · ·+ pε(uk)
)

≤ exp(Cε‖u‖2 + Ck), k ≥ 1, (2.8)

where C > 0 is an absolute constant and ε > 0 is sufficiently small. Thus,
the functional pε is uniformly stabilisable and satisfies inequality (1.7) with
Q(r) = exp(Cεr2). It remains to note that convergence (1.8) holds for the
continuous function f(v) = ‖v‖θ, and condition (1.9) is fulfilled for ε ≪ 1
and any measure λ ∈ P(H) satisfying the second inequality in (2.7) with some
α > 0.
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2.2 Complex Ginzburg–Landau equation

We consider the following equation on the torus Td ⊂ R
d:

∂tu− (ν + i)(∆− 1)u+ ia|u|2u = f(t, x), x ∈ T
d. (2.9)

Here a > 0 is a parameter, u = u(t, x) is a complex-valued function, and f is a
random process. We assume that f has the form (2.3), where h ∈ L2(Td) is a
deterministic complex-valued function and {ηk} is a sequence of i.i.d. random
variables in the complex space H1(Td), where Hs(Td) =: V s is the Sobolev
space of order s. If d ≤ 4, then the Cauchy problem for (2.9) is well posed
in V 1 (e.g., see [KS04] or the book [Caz03] for the more complicated case of the
Schrödinger equation). This means that, for any u0 ∈ V 1, problem (2.9) has a
unique solution satisfying the initial condition

u(0, x) = u0(x). (2.10)

Under the above hypotheses, the restrictions of solutions to (2.9) form a discrete-
time Markov process (uk,Pu) in the space V 1, which is regarded as a real Hilbert
space with the scalar product

(u, v)1 = (u, v) +

d
∑

j=1

(∂ju, ∂jv), (u, v) = Re

∫

Td

uv̄ dx.

Let {ej} be the complete system of eigenfunctions of −∆+1, which are indexed
in an increasing order of the corresponding eigenvalues αj . We normalise ej to
be unit vectors in V := V 1. In what follows, we impose the following condition
on ηk.

Condition 2.4. The i.i.d. random variables η have the form (2.4), where {bj}
is a sequence of positive numbers satisfying (2.5), ξjk = ξ1jk + iξ2jk, and ξljk are

independent real-valued random variables. Moreover, the laws of ξljk possess

densities ρ̃lj ∈ C1 with respect to the Lebesgue measure, which are positive and
satisfy (5.6) and (5.10).

Let us define the functional

H(u) =

∫

Td

(1

2
|∇u(x)|2 + 1

2
|u(x)|2 + a

4
|u(x)|4

)

dx.

The following result is an analogue of Theorem 2.2 in the case of the Ginzburg–
Landau equation. Its proof is essentially the same, and we shall confine ourselves
to outlining it.

Theorem 2.5. Let s ≥ d be an integer, let h ∈ V s−1, and let {ηk} be a sequence
random variables for which Condition 2.4 is fulfilled. Assume, in addition, that
the law ℓ of ηk satisfies (1.3) with Φ(u) = (H(u))θ for some positive numbers δ
and θ, and inequality (2.6) holds. Then (uk,Pu) has a unique stationary mea-
sure µ ∈ P(V ), which is exponentially mixing in the sense that (1.5) holds with
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H = V . Moreover, for any c > 0 and any subset Λ ⊂ P(V ) satisfying con-
dition (1.6) in which H = V , the uniform LDP with λ ∈ Λ and a good rate
function4 I : P(V ) → [0,+∞] holds for the sequence of Pλ-occupation mea-
sures (1.4).

Outline of the proof. We need to check Hypotheses (A)–(C), in which Φ(u) is
defined in the statement of the theorem, and S : V → V stands for the time-1
shift along trajectories of problem (2.9) with f(t) ≡ h. The validity of (A) with
U = V s is a standard fact of the regularity theory for parabolic systems (e.g.,
see Chapter 15 in the book [Tay97] and the references therein), and we shall not
dwell on it. To check (B), let us note that if u(t, x) is a solution of (2.9), then

d

dt
H(u(t)) ≤ −ν

(

‖(∆−1)u‖2+a(|u|2, |∇u|2)+a‖u‖4L4

)

+
(

−(∆−1)u+a|u|2u, f
)

.

It follows that if f(t) ≡ h, then

d

dt
H(u(t)) ≤ −βH(u(t)) +M,

where M = C(‖h‖4L4 + 1) and β > 0. Applying the Gronwall inequality, we
derive

H(S(u)) ≤ e−βH(u) + β−1M. (2.11)

It is easy to see that H(z + v) ≤ (1 +α)H(z) +CαH(v) for any u, v ∈ V , where
α > 0 is arbitrary and Cα > 0 depends only on α. Combining this inequality
with (2.11), we obtain

H(S(u) + v) ≤ (1 + α)e−βH(u) + CαH(v) + (1 + α)β−1M.

Choosing α > 0 sufficiently small and raising the resulting inequality to power
θ > 0, we arrive at (1.2) with Φ(u) = (H(u))θ and H = V . Finally, the
verification of (C) is completely similar to that for the case of the Navier–Stokes
system, and we omit it.

As in the case of the Navier–Stokes system, we can derive from Theorem 2.5
some results on LDP for observables with moderate growth at infinity.

Corollary 2.6. In addition to the hypotheses of Theorem 2.5, assume that the
law ℓ of ηk and the initial measure λ ∈ P(V ) satisfy the conditions

∫

V

exp
(

α
√

H(u)
)

ℓ(du) < ∞,

∫

V

exp
(

α
√

H(u)
)

λ(du) < ∞, (2.12)

where α > 0. Then, for any measurable function f : V → R satisfying the

condition |f(u)|√
H(u)

→ 0 as ‖u‖V → ∞, the Pλ-laws of the random variables

ξk =
1

k

k−1
∑

n=0

f(uk)

satisfy the LDP with a good rate function not depending on λ.

4We define V = V Z+ .
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Proof. As for the proof of Corollary 2.3, it suffices to show that pε(u) = ε
√

H(u)
is a uniformly stabilisable functional. To this end, we use inequality (1.2) with
Φ(u) =

√

H(u). Setting u = un−1 and v = ηn with n = 1, . . . , k, we derive

Φ(un) ≤ q Φ(un−1) + C(Φ(ηn) + 1).

Summing up these inequalities, we obtain

k
∑

n=1

Φ(un) ≤ C1Φ(u) + C1

k
∑

n=1

Φ(ηn) + C1k.

The independence of ηk now implies that

Eu exp(pε(u1) + · · ·+ pε(uk)) ≤ eεC1(Φ(u)+k)

(
∫

V

eεC1Φ(z)ℓ(dz)

)k

.

Taking into account the first condition in (2.12), we see that pε is uniformly
stabilisable for ε ≪ 1. It remains to note that, in view of the second condition
in (2.12), inequality (1.9) is also satisfied for ε ≪ 1.

2.3 Burgers equation

Let us consider problem (0.3)–(0.5). Our aim is to establish Theorems A and B
stated in the Introduction. In view of Theorem 1.2, to prove Theorem A, it
suffices to check the validity of Hypotheses (A)–(C), in which U = V s+1. The
fact that S : H → V s+1 is continuous and bounded on any ball is a standard
regularity result, and we omit it. Inequality (1.2) with Φ(u) = ‖u‖ is also
well known, and the validity of (1.3) with any δ > 0 follows from the Fernique
theorem; e.g., see Theorem 2.6.4 in [Bog98]. To check the remaining hypotheses
in (C), recall that the subgroup of admissible shifts for a Gaussian measure
coincides with its Cameron–Martin space; see Theorem 2.3.5 in [Bog98]. Hence,
the continuous inclusion of U = V s+1 into Hℓ holds in view of the hypotheses
of Theorem A. Finally, to prove the continuity of θ : V s+1 → P(H), we use
the following estimate for the total variation norm between shifts of a Gaussian
measure (see Lemma 2.2.4 in [Bog98]):

‖ℓa − ℓa′‖var ≤ 2
(

1− exp
{

− 1
4‖a− a′‖2Hℓ

})1/2
. (2.13)

Here a, a′ ∈ Hℓ are arbitrary vectors, and ‖ · ‖Hℓ
denotes the norm in the

Cameron–Martin space of ℓ:

‖a‖2Hℓ
=

∞
∑

j=1

b−2
j a2j , a = (a1, a2, . . . ),

where a is expanded in the eigenbasis of the covariance operator for ℓ. Since V s+1

is continuously embedded in Hℓ, we see that the shift operator θ is continuous
from V s+1 to P(H). This completes the proof of Theorem A.

18



We now turn to Theorem B. In view of Theorem 1.5, to prove the LDP and
the Gallavotti–Cohen relation for the rate function, it suffices to find a uniformly
stabilisable function p : H → R+ such that (1.13) holds and to check (1.9) for
λ = ℓ. Exactly the same argument as for the 2D Navier–Stokes system or
Ginzburg–Landau equation shows that pε(u) = ε‖u‖2 with ε > 0 is a uniformly
stabilisable functional, and the corresponding function Q entering (1.7) can be
chosen to be Qε(r) = exp(Cεr2), where C > 0 does not depend on ε. By
Fernique theorem, it follows that condition (1.9) is satisfied for ℓ, provided
that ε > 0 is sufficiently small.

We now prove the boundedness of σ(v0, v1) on balls of H ×H and conver-
gence (1.13). By the hypotheses of Theorem B, the measure ℓ can be decom-
posed in the standard trigonometric basis in H and written in the form (5.1),
where µj denotes the centred normal law on R with variance b2j . It follows
from (5.4) that

ρ(u, v) = exp
(

− 1
2‖S(u)‖2b + (S(u), v)b

)

, (2.14)

where we set

(u, v)b =
∞
∑

j=1

b−2
j ujvj , ‖u‖b = (u, u)

1/2
b .

Combining (2.14) and (0.6), we see that

σ(v0, v1) =
1
2‖S(v0)‖2b − 1

2‖S(v1)‖2b − (S(v0), v1)b + (S(v1), v0)b. (2.15)

We now need the following lemma, which is a consequence of the Kruzhkov
maximum principle [Kru69]; its proof in the more difficult stochastic case can
be found in [Bor13, Section 3].

Lemma 2.7. Let h ∈ V m for some integer m ≥ 2. Then the image of S is
contained in V m+1, the mapping S : H → V m+1 is continuous, and there is
Km > 0 such that

‖S(u)‖m+1 ≤ Km for any u ∈ H. (2.16)

Now note that the continuity of the embedding V s+1 ⊂ Hℓ implies the
inequality

‖w‖2b2 :=

∞
∑

j=1

|wj |2b−4
j ≤ C

∞
∑

j=1

|wj |2(1 + |j|2)2(s+1) = C‖w‖22(s+1), (2.17)

where w ∈ V 2(s+1) and wj = (w, ej). Combining this with inequality (2.16) and
relation (2.15), we obtain

|σ(v0, v1)| ≤
1

2

(

‖S(v0)‖2b + ‖S(v1)‖2b
)

+ ‖v0‖ ‖S(v1)‖b2 + ‖v0‖ ‖S(v1)‖b2

≤ 1

2

(

‖S(v0)‖2s+1 + ‖S(v1)‖2s+1

)

+ ‖v0‖ ‖S(v1)‖2(s+1) + ‖v0‖ ‖S(v1)‖2(s+1)

≤ K2
s +K2s+1

(

‖v0‖+ ‖v1‖
)

. (2.18)
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We see that Condition (D) is fulfilled for the Burgers equation. Thus, the LDP
and the Gallavotti–Cohen symmetry hold for the entropy production and the
corresponding rate function.

It remains to prove the positivity and finiteness of the mean entropy produc-
tion 〈σ〉µ. As was explained in the introduction, we always have 〈σ〉µ ≥ 0, and
the equality holds if and only if the measures P and Q given by (0.8) and (0.9)
coincide. We claim that P 6= Q. Indeed, recalling (2.14), we see that P = Q if
and only if the following relation holds ℓ⊗ ℓ almost everywhere:

exp
(

− 1
2‖S(v1)‖

2
b + (S(v1), v0)b

)

∫

H

ρ(z, v1)µ(dz)

= exp
(

− 1
2‖S(v0)‖

2
b + (S(v0), v1)b

)

∫

H

ρ(z, v0)µ(dz). (2.19)

It follows from inequality (2.17) and Lemma 2.7 that the left- and right-hand
sides are continuous functions on H × H , and since supp ℓ ⊗ ℓ coincides with
the whole space, we see that relation (2.19) must hold for all (v0, v1) ∈ H ×H .
Taking the logarithm of both sides of (2.19), replacing v1 by λv1, and dividing
by λ, we derive

(S(v0), v1)b =
1

λ
log

∫

H

eλ(v1,S(z))b exp
(

− 1
2‖S(z)‖

2
b

)

µ(dz) + λ−1r(λ), (2.20)

where we set

r(λ) = 1
2

(

‖S(v0)‖2b − ‖S(λv1)‖2b
)

+ (S(λv1), v0) + log

∫

H

ρ(z, v0)µ(dz).

It follows from inequality (2.16) with m = 2s+ 1 that r is a bounded function
of λ ∈ R, so that the second term on the right-hand side of (2.20) goes to zero
as λ → +∞. Since the first term on the right-hand side does not depend on v0,
passing to the limit in (2.20) as λ → +∞, we conclude that

(

S(v0), v1
)

b
= C(v1) for all v0, v1 ∈ H,

where C(v1) depends only on v1. It follows that S(v) is a constant function
on H . This contradicts the backward uniqueness of solutions for the Burgers
equation.

To prove the finiteness of 〈σ〉µ, note that, in view of (2.18), we have

〈σ〉µ ≤
∫

H×H

|σ(v0, v1) |µ(dv0, dv1) ≤ C

(

1 +

∫

H

‖v‖µ(dv)
)

. (2.21)

The integral on the right-hand side of this inequality is equal to

Eµ‖u1‖ ≤ Eµ‖S(u0)‖+ E‖η1‖ < ∞,

where we used inequality (2.16). The proof of Theorem B is complete.
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2.4 Reaction-diffusion system

Let D ⊂ R
d be a bounded domain with C∞-smooth boundary ∂D. We consider

the problem

u̇− a∆u+ g(u) = f(t, x), (2.22)

u
∣

∣

∂D
= 0, (2.23)

u(0, x) = u0(x). (2.24)

Here u = (u1, . . . , ul)
t is an unknown vector function, a is an l × l matrix such

that
a+ at > 0, (2.25)

g ∈ C∞(Rl,Rl) is a given function, and f is a random process of the form (2.3).
We assume that g ∈ C1 satisfies the following growth and dissipativity condi-
tions:

〈g(u), u〉 ≥ −C + c|u|p+1, (2.26)

g′(u) + g′(u)t ≥ −CI, (2.27)

|g′(u)| ≤ C(1 + |u|)p−1, (2.28)

where 〈·, ·〉 stands for the scalar product in R
l, g′(u) is the Jacobi matrix for g,

I is the identity matrix, c and C are positive constants, and 1 < p ≤ d+2
d−2 . As

in the case of the 2D Navier–Stokes system, problem (2.22), (2.23) generates a
discrete-time Markov process denoted by (uk,Pu), and our aim is to study the
LDP for the occupation measures (1.4).

Let us denote by {ej} an orthonormal basis in H = L2(D,Rl) composed
of the eigenfunctions of the Dirichlet Laplacian −∆ and by V s the domain of
the operator (−∆)s/2. The following theorem can be established by a literal
repetition of the arguments used in the case of the Navier–Stokes system, and
therefore we omit its proof.

Theorem 2.8. In addition to the above hypotheses, assume that s ≥ d is an
integer, h ∈ V s, the function g(u) belongs to Cs and vanishes at u = 0 together
with its derivatives up to order s, and {ηk} is an i.i.d. sequence of random vari-
ables satisfying Condition 2.1 such that (2.6) and (1.3) hold with Φ(u) = ‖u‖.
Then (uk,Pu) has a unique stationary measure µ ∈ P(H), which is exponentially
mixing. Moreover, for any c > 0 and any subset Λ ⊂ P(H) satisfying (1.6) the
uniform LDP with λ ∈ Λ and a good rate function I : P(H) → [0,+∞] holds
for the sequence of Pλ-occupation measures (1.4).

We now turn to the Gallavotti–Cohen fluctuation principle. The following
result is an analogue of Theorem B for the reaction–diffusion system.

Theorem 2.9. In addition to the hypotheses of Theorem 2.8, let us assume
that h ∈ V 2s+1, the function g belongs to C2s+1 and vanishes at u = 0 together
with its derivatives up to order 2s+1, the orthonormal basis entering decompo-
sition (5.1) for the measure ℓ coincides with the eigenbasis {ej}, the measure ℓ
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satisfies the first condition in (2.7), and the second inequality in (5.10) holds for
any y ∈ R and A ∈ [0, A0], with an arbitrary A0 > 0 and constant C1 = C1(A0).
Then, for any initial point u0 ∈ H, the laws of the random variables (0.11), in
which σ(v0, v1) is the entropy production functional for (uk,Pu), satisfy the LDP
with a good rate function I : R → [0,+∞] not depending on u0. Moreover, the
Gallavotti–Cohen fluctuation relation (0.13) holds for I.

It is easy to check that the conditions imposed on ℓ are satisfied for any
Gaussian measure on H such that its Cameron–Martin space contains V s+1,
and the eiganvectors of its covariance operator coincide with the eigenbasis {ej}
of the Dirichlet Laplacian in L2(D,Rl).

Proof. We shall show that the hypotheses of Theorem 1.5 are fulfilled; this
will imply all required results. As was mentioned above, the verification of
Conditions (A) and (B), in which U = V 2(s+1) and Φ(u) = ‖u‖, is similar to
the case of the Navier–Stokes system, and therefore we do not dwell on it.

Let us check Condition (D). To prove the positivity of ρ and the continuity
of the shift operator θ : V s+1 → P(H), in view of Proposition 5.3, it suffices
to check inequality (5.12). To this end, we first note that (2.6) implies the
inequality

∞
∑

j=1

b−2
j |wj |2 ≤ sup

j≥1

(

|wj |2αs+1
j

)

∞
∑

j=1

b−2
j α−s−1

j ≤ C1‖w‖2V s+1 , (2.29)

where w ∈ V s+1 and wj = (w, ej). Setting wj = vjα
s+1
2

j in (2.29) and using
again (2.6), we obtain

∞
∑

j=1

b−2
j |vj | ≤

( ∞
∑

j=1

b−2
j α−s−1

j

)1/2( ∞
∑

j=1

b−2
j |vj |2α−s−1

j

)1/2

≤ C2‖v‖V 2(s+1) .

We now prove that σ(v0, v1) is bounded on balls of H×H and satisfies (1.13)
for some uniformly stabilisable functional p. Exactly the same argument as for
the Ginzburg–Landau equation shows that pε(u) = ε‖u‖2 is uniformly stabil-
isable, and one can take Q(r) = exp(Cεr2) in (1.7). For v0, v1 ∈ H , let us
write

vi =

∞
∑

j=1

vijej , S(vi) =

∞
∑

j=1

Sj(vi)ej , i = 0, 1.

Let ρj be the density of the law of bjξjk, so that ρj(r) = b−1
j ρ̃j(r/bj). Combining

this relation with (5.4) and (0.6), we obtain

σ(v0, v1) =

∞
∑

j=1

(

log
ρj
(

v0j − Sj(v1)
)

ρj(v0j)
− log

ρj
(

v1j − Sj(v0)
)

ρj(v1j)

)

=

∞
∑

j=1

(

Ξj(v0, v1)− Ξj(v1, v0)
)

, (2.30)
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where we set
Ξj(v0, v1) = log ρ̃j

( v0j−Sj(v1)
bj

)

− log ρ̃j
( v0j

bj

)

.

Let us define Aij = b−1
j |Sj(vi)| and A = supi,j Aij , where the supremum is

taken over i = 0, 1 and j ≥ 1. The second inequality in (5.10) implies that

|Ξj(v0, v1)| =
∣

∣

∣

∣

∫ 1

0

d

dθ
log ρ̃j

(

v0j − θSj(v1)

bj

)

dθ

∣

∣

∣

∣

≤
∫ A1j

−A1j

|ρ̃′j(b−1
j v0j − r)|

ρ̃j(b
−1
j v0j − r)

dr

≤ C3(A)
(

b−1
j |v0j |+ 1

)

A1j .

A similar estimate holds for Ξ(v1, v0). Substituting them into (2.30) and using
the Cauchy–Schwarz inequality and condition (2.5), we obtain

|σ(v0, v1)| ≤ C4

∞
∑

j=1

b−1
j

(

(

b−1
j |v0j |+ 1

)

|Sj(v1)|+
(

b−1
j |v1j |+ 1

)

|Sj(v0)|
)

≤ C5

(

‖v0‖+ 1
)

‖S(v1)‖b2 + C5

(

‖v1‖+ 1
)

‖S(v0)‖b2 , (2.31)

where the norm ‖ · ‖b2 is defined in (2.17). We now need the following lemma,
established at the end of this section.

Lemma 2.10. Let (2.25)–(2.28) be satisfied, let g ∈ Cm be a function vanishing
at u = 0 together with its derivative up to order m, and let h ∈ V m for some
integer m ≥ 0. Then the image of S is contained in V m+1, and there is Km > 0
such that

‖S(v)‖V m+1 ≤ Km for any v ∈ H. (2.32)

It follows from (2.29) and (2.32) with m = 2s+ 1 that

‖S(v)‖2b2 ≤ C6

∞
∑

j=1

α
2(s+1)
j |Sj(v)|2 = C6‖S(v)‖22(s+1) ≤ C6K

2
2s+1, v ∈ H.

Substituting this inequality into (2.31), we obtain

|σ(v0, v1)| ≤ C7

(

‖v0‖+ ‖v1‖
)

, v0, v1 ∈ H. (2.33)

This implies the required properties of σ.

It remains to show that (1.9) is also satisfied. To this end, we note that
the integrand in (1.9) does not exceed C8 exp(C8ε‖u‖2). In view of the first
inequality in (2.7), this function is integrable with respect to ℓ, provided that
ε > 0 is sufficiently small. The proof of Theorem 2.9 is complete.

Proof of Lemma 2.10. In view of the regularising property of the resolving op-
erator for the reaction-diffusion system, it suffices to prove that, if u(t, x) is the
solution of (2.22)–(2.24) with f(t, x) ≡ h(x) and u0 ∈ H , then

‖u(12 , ·)‖ ≤ K for any initial function u0 ∈ H, (2.34)
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where K > 0 does not depend on u0.
Taking the scalar product in L2 of Eq. (2.22) (in which f ≡ h) with u,

using (2.26), and carrying out some standard transformations, we derive

∂t‖u‖2 + δ‖∇u‖2 + 2c‖u‖p+1
Lp+1 ≤ C1 + ‖h‖2,

where δ and c are positive numbers. Since ‖u‖Lp+1 ≥ C2‖u‖, we see that the
function ϕ(t) = ‖u(t)‖2 satisfies the differential inequality

ϕ′ + 2c1ϕ
(p+1)/2 ≤ C1(1 + ‖h‖2),

where c1 > 0. It follows that, as long as ϕ(t) ≥ K1 := c−1
1

(

C1(1+‖h‖2)
)2/(p+1)

,
we have

ϕ′ + c1ϕ
(p+1)/2 ≤ 0.

Resolving this differential inequality, we obtain

ϕ(t) ≤
(

‖u0‖(1−p)/2 + C2t
)−2/(p−1) ≤

(

K
(1−p)/2
1 + C2t

)−2/(p−1)
, (2.35)

provided that ϕ(s) ≥ K1 for 0 ≤ s ≤ K1. Denoting by K2 the value of the
right-hand side of (2.35) with t = 1/2, we conclude that inequality (2.34) holds
with K = max(K1,K2).

Finally, we discuss briefly the question of strict positivity and finiteness of the
mean entropy production. If the measure ℓ is Gaussian, then exactly the same
argument as in the case of the Burgers equation shows that the mean entropy
production is strictly positive and finite in the stationary regime. However,
these two properties are not related to the Gaussian structure of the noise and
remain valid under more general hypotheses. Indeed, the finiteness of 〈σ〉µ
follows from inequality (2.33) and the fact the first moment of the stationary
measure µ is finite. On the other hand, the strict positivity of 〈σ〉µ holds under
some additional hypotheses. Since the corresponding argument is technically
rather complicated, we confine ourselves here to outlining the proof in the model
case when H = R. Namely, let us consider the Markov family associated with
Eq. (0.1) in which S : R → R is a non-constant continuous mapping with
bounded image and {ηk} is a sequence of i.i.d. random variables in R whose
law ℓ has a continuous density θ against the Lebesgue measure that has the
form

θ(y) = exp
(

−a|y|α + b(y)
)

, r ∈ R, (2.36)

where α ∈ (1, 2], a > 0, and b is a bounded continuous function. As was
explained in Section 2.3, the mean entropy production is zero if and only if
(cf. (2.19))

exp
(

−a|v1 − S(v0)|α + b(v1 − S(v0))
)

∫

H

ρ(z, v0)µ(dz)

= exp
(

−a|v0 − S(v1)|α + b(v0 − S(v1))
)

∫

H

ρ(z, v1)µ(dz).
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Taking the logarithm of both sides of this relation and carrying out some simple
transformations, we derive

− a|v1 − S(v0)|α = log

∫

R

exp
(

−a|v1 − S(z)|α + b(v1 − S(z))
)

µ(dz) + r1(v0, v1),

(2.37)
where we denote by ri bounded functions of their arguments. Now note that

|v1 − S(v0)|α = vα1 − αS(v0)v
α−1
1 + r2(v0, v1)v

α−2
1 as v1 → +∞.

Substituting this expression into (2.37) and dividing by aαvα−1, we obtain

S(v0) =
1

aαvα−1
1

(

log

∫

R

exp
(

aαS(z)vα−1
1 −ar2v

α−2
1 +b(v1−S(z))

)

µ(dz)+r1

)

.

Letting v1 → +∞, we obtain

S(v0) = C for all v0 ∈ R.

This contradicts the condition that S is non-constant and proves the strict
positivity of the mean entropy production.

3 Exponential mixing and LDP

In this section, we prove Theorems 1.2 and 1.3. To this end, we show that the
Markov family in question satisfies the four hypotheses of Proposition 5.4, so
that the LDP holds in the space of trajectories. We next use an approximation
argument to establish the LDP for functionals with moderate growth at infinity.

3.1 Proof of Theorem 1.2

Lyapunov function

Let us show that Φ(u) satisfies (5.17). Indeed, in view of (1.2), we have

∫

H

Φ(v)P1(u, dv) = EΦ(S(u) + η1) ≤ q Φ(u) + C E
(

Φ(η1) + 1).

This inequality coincides with (5.17) in which M = EΦ(η1) +C, and the finite-
ness of M follows from (1.3).

Uniform strong Feller

We first note that P1(u, ·) = ℓS(u). By Condition (A), the mapping S is con-
tinuous from H to U , and by Condition (C), the mapping θ : U → P(H) is
continuous from U to P(H). We see that the mapping u 7→ P1(u, ·) is continu-
ous as the composition of two continuous mappings.
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Irreducibility

By condition (C), the support of ℓ coincides with H . Since the measure P1(u, ·)
is a translation of ℓ, the same property holds for it, and we see that P1(u,G) > 0
for any open set G ⊂ H .

Super-exponential recurrence

Given ε > 0, let us denote by Kε a compact subset in H such that ℓ(Kε) > 1−ε.
We claim that (5.18) and (5.19) hold for C = BU (R)+Kε with R ≫ 1 and ε ≪ 1.
The proof of this fact is divided into three steps.

Step 1. Let σρ be the first hitting time of the set {u ∈ H : Φ(u) ≤ ρ},
which is denoted by {Φ ≤ ρ} in what follows. Suppose that, for any β > 0 and
sufficiently large ρ = ρ(β) > 0, we have proved the inequality

Eue
βσρ ≤ C1e

αΦ(u)−αρ+β for any u ∈ H, (3.1)

where α = qδ/C, the numbers q, C, and δ are defined in Conditions (B) and (C),
and C1 > 0 is an absolute constant. In this case, the validity of (5.18) with the
above choice of C can be derived by a standard argument (e.g., see Section 3.3.2
of [KS12]). Indeed, choosing R so large that S({Φ ≤ ρ}) ⊂ BU (R), we see that

inf
u∈{Φ≤ρ}

P1(u, C) ≥ 1− ε. (3.2)

Let us introduce an increasing sequence of stopping times by the relations

σ′
0 = σρ, σ′

n = min{k ≥ σ′
n−1 + 1 : Φ(uk) ≤ ρ}.

Setting σn = σ′
n + 1, we conclude from (3.2) and the strong Markov property

that

Pu(m) := P

( m
⋂

n=1

{uσn
/∈ C}

)

≤ εm. (3.3)

We shall show in Step 2 that

Eue
βσm ≤ Qm

β eαΦ(u)−αρ for m ≥ 0, u ∈ H, (3.4)

where Qβ > 1 depends only on β. Using (3.3), (3.4), and the Chebyshev
inequality, for any positive integers m and M we write

Pu{τC ≥ M} = Pu{τC ≥ M,σm < M}+ Pu{τC ≥ M,σm ≥ M}
≤ Pu{τC > σm}+ Pu{σm ≥ M} ≤ Pu(m) + e−βM

Eue
βσm

≤ εm +Qm
β e−βM+αΦ(u)−αρ.

Choosing m ∼ M
logQβ

and ε ∼ Q1−β
β , we derive

Pu{τC ≥ M} ≤ C2

(

1 + eαΦ(u)−αρ
)

e−(β−1)M ,
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whence, for any A < β − 1, it follows that

Eue
AτC ≤ C3

(

1 + eαΦ(u)−αρ
)

. (3.5)

Since β > 0 was arbitrary, we see that (5.18) holds with any A > 0 and a suitable
compact set C(A) ⊂ H . Moreover, taking if necessary a larger constant C > 0
in inequality (1.2), we can make α smaller than the number c > 0 entering (1.6).
Then, integrating (3.5) with respect to λ(du), we conclude that (5.19) is also
satisfied.

Step 2. We now prove (3.4). To this end, we introduce the stopping time
σ′
ρ = min{k ≥ 1 : Φ(uk) ≤ ρ}. In view of (3.1) and the Markov property, we

have
Eue

βσ′

ρ ≤ C4e
αΦ(u)−αρ+2β .

Combining this inequality with the strong Markov property and the fact that
uσ′

n
∈ {Φ ≤ ρ}, we derive

Eue
βσ′

m = Eu

(

Eu

{

eβσ
′

m | Fσ′

m−1

})

= Eu

(

eβσ
′

m−1Eu(σ′

m−1)
eβσ

′

ρ

)

≤ C5(β)Eue
βσ′

m−1 ,

where Fσ denotes the σ-algebra associated with the stopping time σ, and we
write u(σ′

n) for uσ′
n
. Iterating the above inequality and using the definition

of σm, we obtain the required estimate (3.4).

Step 3. It remains to prove (3.1). First note that, in view of the inequality
I{σρ>1} ≤ exp(δ′Φ(u1) − δ′ρ), where δ′ > 0, and relations (1.2) and (1.3), we
have

Eu

(

eαΦ(u1)I{σρ>1}

)

≤ e−δ′ρ
Eue

(α+δ′)Φ(u1)

≤ e−δ′ρ+(α+δ′)(qΦ(u)+C)mC(α+δ′)(ℓ).

Choosing δ′ = (1 − q)δ/C and recalling that α = qδ/C, we obtain

Eu

(

eαΦ(u1)I{σρ>1}

)

≤ C2mδ(ℓ) e
αΦ(u)−δ′ρ. (3.6)

We now introduce the quantities pk(u) = Eu(e
αΦ(uk)I{σρ>k}). Combining (3.6)

with the Markov property, we obtain

pk+1(u) = Eu

(

eαΦ(uk+1)I{σρ>k+1}

)

= Eu

{

I{σρ>k} Euk

(

eαΦ(u1)I{σρ>1}

)}

≤ C2mδ(ℓ)Eu

(

eαΦ(uk)−δ′ρI{σρ>k}

)

≤ C2mδ(ℓ)e
−δ′ρpk(u).

Iterating this inequality and using (3.6), we get

Eu

(

eαΦ(uk)I{σρ>k}

)

≤ eαΦ(u)−(δ′ρ−C3)k ≤ eαΦ(u)−(β+1)k,

where C3 = log(C2mδ(ℓ)) and ρ > 0 is so large that δ′ρ−C3 ≥ β+1. It follows
that

Pu{σρ > k} ≤ e−αρ
Eu

(

eαΦ(uk)I{σρ>k}

)

≤ eαΦ(u)−αρ−(β+1)k. (3.7)

Inequality (3.1) with an arbitrary β > 0 and a sufficiently large ρ = ρ(β) > 0 is
a simple consequence of (3.7).
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3.2 Proof of Theorem 1.3

Step 1: Scheme of the proof of LDP. We shall derive the LDP for the laws
of ξk as a consequence of Theorem 1.2. To this end, we essentially repeat the
argument used by Gourcy [Gou07b, Gou07a] in the case of the Navier–Stokes
and Burgers equations. It is based on Lemma 2.1.4 of [DS89], which implies
that the LDP with the rate function5

If (r) := inf{I(ν) : 〈f,ν〉 = r} (3.8)

will be established for the Pλ-laws of ξk if we prove the following two properties:

(a) Let fj = (f ∧ j) ∨ (−j) and let Im : P(Hm+1) → [0,+∞] be defined by

Im(ν) = inf{I(ν) : ν ∈ P(H),Πmν = ν},

where Πm : H → Hm+1 denotes the natural projection sending the vector
v = (vn, n ≥ 0) to (v0, . . . , vm) and I is the rate function constructed in
Theorem 1.2. Then, for any L > 0, we have

sup
ν

|〈fj − f, ν〉| → 0 as j → ∞, (3.9)

where the supremum is taken over all ν ∈ P(Hm+1) such that Im(ν) ≤ L.

(b) For any δ > 0, we have

lim sup
k→+∞

1

k
logPλ

{∣

∣

〈

fj − f, ζ
(m)
k

〉∣

∣ > δ
}

→ −∞ as j → ∞, (3.10)

where ζ
(m)
k denote the occupation measures

ζ
(m)
k =

1

k

k−1
∑

n=0

δun(m), un(m) = (un, . . . , un+m). (3.11)

To prove (a), we shall need the following lemma, which gives a lower bound
for Im in terms of the stabilisable functional p. Its proof is given at the end of
this section.

Lemma 3.1. Let the hypotheses of Theorem 1.2 be fulfilled and let p(u) be a
stabilisable functional for (uk,Pu). Then

Im(ν) ≥ 1

m+ 1

∫

Hm+1

m
∑

n=0

p(vn) ν(dv0, . . . , dvm)− γ for any ν ∈ P(Hm+1).

(3.12)

5We may consider f as a measurable function on H depending only on the first m + 1
components of the argument v = (vn, n ≥ 0), so that the integral 〈f, ν〉 makes sense.
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Step 2: Proof of (a). We first note that, in view of (3.12), if Im(ν) ≤ L,
then

∫

Hm+1

m
∑

n=0

p(vn) ν(dv0, . . . , dvm) ≤ (m+ 1)(L+ γ). (3.13)

Furthermore, since f is bounded on the balls of Hm+1, we have

Aj :=
{

(v0, . . . , vm) ∈ Hm+1 : |f(v0, . . . , vm)| ≥ j
}

⊂ Bm(rj)
c, j ≥ 1, (3.14)

where Bm(r) denotes the ball inHm+1 of radius r centred at zero and {rj} ⊂ R+

is a sequence going to +∞ with j. It follows from (1.8) that

|f(v0, . . . , vm)|
p(v0) + · · ·+ p(vm)

≤ εj for (v0, . . . , vm) ∈ Bm(rj)
c, (3.15)

where εj → 0 as j → ∞. Combining (3.13)–(3.15), we write

∫

Hm+1

|fj − f | dν ≤
∫

Aj

|f | dν ≤
∫

Bm(rj)c
|f | dν

≤ εj

∫

Hm+1

m
∑

n=0

p(vn) ν(dv0, . . . , dvm)

≤ εj(m+ 1)(L+ γ).

This implies the required convergence (3.9).

Step 3: Proof of (b). Using (3.15), (1.7), and the Chebyshev inequality, we
write

Pλ

{
∣

∣

〈

fj − f, ζ
(m)
k

〉
∣

∣ > δ
}

= Pλ

{∣

∣

∣

∣

1

k

k−1
∑

n=0

(f − fj)(un, . . . , un+m)

∣

∣

∣

∣

> δ

}

≤ Pλ

{k−1
∑

n=0

|f(un, . . . , un+m)| IAj
(un, . . . , un+m) > δk

}

≤ Pλ

{k+m−1
∑

n=0

p(un) >
δ

(m+ 1)εj
k

}

≤ Cm,γ exp
{

−k
(

δ
(m+1)εj

− γ
)}

∫

H

ep(u)Q(‖u‖)λ(du).

Since εj → 0 as j → ∞, this implies the required convergence (3.10). This
completes the proof of Theorem 1.3.

Proof of Lemma 3.1. Let pj : H → R+ be an increasing sequence of bounded
continuous functions such that pj(u) → p(u) for any u ∈ H . For instance, we
can take

pj(u) = j ∧ inf
v∈H

(p(v) + j ‖u− v‖).
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By the Varadhan lemma (see [DZ00, Section 4.3]),

lim
k→∞

1

k
logEu exp

(

k
m+1 〈pj(v0) + · · ·+ pj(vm), ζ

(m)
k 〉

)

= sup
ν∈P(Hm+1)

(

1

m+ 1

∫

Hm+1

m
∑

n=0

pj(vn) ν(dv0, . . . , dvm)− Im(ν)

)

. (3.16)

On the other hand, since pj ≤ p and p is a stabilisable functional, in view
of (1.7) we have

Eu exp
(

k
m+1

〈

pj(v0) + · · ·+ pj(vm), ζ
(m)
k

〉)

≤ Eu exp

( k+m−1
∑

n=0

p(un)

)

≤ Q(‖u‖)eγ(k+m−1)+p(u).

Substituting this inequality into (3.16), for any ν ∈ P(Hm+1) we obtain

1

m+ 1

∫

Hm+1

m
∑

n=0

pj(vn) ν(dv0, . . . , dvm)− Im(ν) ≤ γ.

The required inequality (3.12) follows now from the Fatou lemma.

4 Gallavotti–Cohen fluctuation theorem for the

entropy production functional

In this section, we prove Theorem 1.5. To this end, we first note that, by
Theorem 1.3, the Pλ-laws of the random variables (0.11) satisfy the LDP with
the good rate function (cf. (3.8))

I(r) := inf{I(ν) : 〈σ,ν〉 = r}. (4.1)

We shall use the Varadhan lemma and a symmetry property of the Feynman–
Kac semigroup to prove the Gallavotti–Cohen fluctuation principle.

For any α ∈ R we define (formally) a family of linear mappings by the
relation

(Pασ
k f)(u) = Eu

{

exp

(

−α

k−1
∑

n=0

σ(un, un+1)

)

f(uk)

}

, k ≥ 0,

where f ∈ C(H). In view of Condition (D) and inequality (1.7), the function
Pασ

k f is continuous on H for any f ∈ Cb(H). We claim that 6

(Pασ
k f, g)ℓ = (f,P

(1−α)σ
k g)ℓ for all k ≥ 0, (4.2)

6The right- and left-hand sides of (4.2) are well defined as integrals of positive functions.
Relation (4.2) means, in particular, that if one of them is infinite, then so is the other.
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where f, g ∈ C(H) are arbitrary non-negative functions, and we set

(f, g)ℓ =

∫

H

f(u)g(u) ℓ(du).

Indeed, the Markov property for (uk,Pu) implies that, for any continuous func-
tion f ≥ 0, we have

Pασ
k+lf = Pασ

k (Pασ
l f), k, l ≥ 0.

Therefore it suffices to prove (4.2) for k = 1. Using the definitions of σ and Pασ
1

and the Fubini theorem, we write

(Pασ
1 f, g)ℓ =

∫

H

Eu

{

e−ασ(u0,u1)f(u1)
}

g(u) ℓ(du)

=

∫

H

(
∫

H

eα(log ρ(v,u)−log ρ(u,v))f(v)ρ(u, v)ℓ(dv)

)

g(u)ℓ(du)

=

∫

H

f(v)

(
∫

H

e(1−α)(log ρ(u,v)−log ρ(v,u))g(u)ρ(v, u)ℓ(du)

)

ℓ(dv)

=

∫

H

f(v)Ev

{

e−(1−α)σ(u0,u1)g(u1)
}

ℓ(dv) = (f,P
(1−α)σ
1 g)ℓ.

We can now derive (0.13). Since the measure ℓ satisfies (1.9), the LDP with
the good rate function (4.1) holds for the Pℓ-laws of the sequence of random
variables (0.11). Therefore, by the Varadhan lemma, we have

lim
k→∞

1

k
logEℓ exp(−αkξk) = sup

r∈R

(

−αr − I(r)
)

=: I∗(−α), (4.3)

where α ∈ R is arbitrary, and I∗ stands for the Legendre transform of I. Now
note that

Eℓ exp(−αkξk) =
(

Pασ
k 1,1

)

ℓ
,

where 1 : H → R stands for the function identically equal to 1. Substituting
this relation into (4.3) and using (4.2), for any α ∈ R we derive

I∗(−α) = lim
k→∞

1

k
log

(

Pασ
k 1,1

)

ℓ
= lim

k→∞

1

k
log

(

P
(1−α)σ
k 1,1

)

ℓ
= I∗(α− 1).

Combining this with the well-known relation I(r) = supα∈R
(αr − I∗(α)), we

obtain (0.13). This completes the proof of Theorem 1.5.

5 Appendix

5.1 Admissible shifts of decomposable measures

Let H be a separable Hilbert space endowed with its Borel σ-algebra BH .
Given µ ∈ P(H) and a ∈ H , we denote by θa : H → H the shift operator
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by the vector a (that is, θau = u + a) and by µa = µ ◦ θ−1
a the image of µ

under θa. Recall that a ∈ H is called an admissible shift for µ if µa is absolutely
continuous with respect to µ. We denote by Hµ the set of all admissible shifts

for µ and by ρµ(a;u) =
dµa

dµ the corresponding densities. It is straightforward
to check that Hµ is an additive subgroup in H .

We shall say that µ is a decomposable measure if there is an orthonormal
basis {ej} in H such that

µ =

∞
⊗

j=1

µj , (5.1)

where µj = µ◦P−1
j , and Pj : H → H is the orthogonal projection to the straight

line spanned by ej . It is clear that if µ is a decomposable measure, then it is
the law of a random variable of the form 7

η =

∞
∑

j=1

ξjej , (5.2)

where {ξj} is a sequence of independent scalar random variables such that
D(ξj) = µj . A proof of the following result can be found in [GS80] (see Theo-
rem 5 in Section VII.2).

Proposition 5.1. Let µ be a decomposable measure such that µj possesses a
density ρj with respect to the Lebesgue measure on R for any j ≥ 1. Then
a ∈ Hµ if and only if the series

∞
∑

j=1

(

log ρj
(

ξj − (a, ej)H
)

− log ρj(ξj)
)

(5.3)

converges almost surely. In this case, the corresponding density is given by

ρµ(a;u) = exp

( ∞
∑

j=1

log
ρj(uj − aj)

ρj(uj)

)

, u ∈ H, (5.4)

where we set uj = (u, ej)H and aj = (a, ej)H .

Let us note that, in view of the Kolmogorov zero-one law, series (5.3) either
converges a.s. or diverges a.s. In the latter case, the measures µa and µ are
mutually singular. Furthermore, if a ∈ Hµ, then µ ≪ µa. What has been said
implies that, under the hypotheses of the proposition, the subset Hµ ⊂ H is a
group, and the measures µa and µa′ with a, a′ ∈ Hµ are absolutely continuous
with respect to each other, with the corresponding density given by

ρµ(a, a
′;u) =

dµa

dµa′

(u) = exp

( ∞
∑

j=1

log
ρj(uj − aj)

ρj(uj − a′j)

)

, u ∈ H. (5.5)

7For instance, one can take the random variables ξj = (u, ej)H on the probability space
(H,BH , µ).
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We now wish to estimate the total variation distance between two admissible
shifts of a decomposable measure. To this end, we assume that µj is the law of

a random variable of the form ξj = bj ξ̃j , where {bj} is a sequence of positive

numbers and ξ̃j is a random variable whose law is absolutely continuos with
respect to the Lebesgue measure, and the corresponding density ρ̃j ∈ C1 is
positive everywhere and satisfies the inequality

Var(ρ̃j) ≤ C for all j ≥ 1, (5.6)

where Var(·) denotes the total variation of a function and C > 0 does not depend
on j.

Proposition 5.2. Let µ be a decomposable measure satisfying the above hy-
potheses. Then for any a, a′ ∈ Hµ we have

‖µa − µa′‖var ≤
C

2

∞
∑

j=1

|aj − a′j |
bj

, (5.7)

where C is the same constant as in (5.6).

Proof. Let us recall that

‖µa − µa′‖var =
1

2

∫

H

|ρµ(a;u)− ρµ(a
′;u)|µ(du). (5.8)

In view of (5.4), we have

ρµ(a;u)− ρµ(a
′;u) =

∞
∑

k=1

Dk(a, a
′;u)

ρk(uk − ak)− ρk(uk − a′k)

ρk(uk)
,

where

Dk(a, a
′;u) = exp

(k−1
∑

j=1

log
ρj(uj − aj)

ρj(uj)
+

∞
∑

j=k+1

log
ρj(uj − a′j)

ρj(uj)

)

.

Substituting the above relation into (5.8), using decomposition (5.1), and re-
calling that µj(duj) = ρj(uj) duj , we obtain

‖µa − µa′‖var ≤
1

2

∞
∑

k=1

∫

R

|ρk(uk − ak)− ρk(uk − a′k)|duk. (5.9)

The mean value theorem implies that

ρk(uk − ak)− ρk(uk − a′k) =

∫ 1

0

ρ′k
(

uk − θak − (1− θ)a′k
)

dθ (ak − a′k).

Combining this with (5.9) and the relation ρk(r) = b−1
k ρ̃k(b

−1
k r), we obtain (5.7).
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Finally, we need some sufficient conditions ensuring the continuity of the
shift operator and the positivity of density for shifted measures.

Proposition 5.3. Let µ be the same as in Proposition 5.2 and let the densi-
ties ρ̃j satisfy the inequalities

∫

R

|r|ρ̃j(r) dr ≤ C1,

∫ A

−A

|ρ̃′j(y − r)|
ρ̃j(y − r)

dr ≤ C1(|y|+ 1)A (5.10)

for j ≥ 1, y ∈ R, and A ∈ [0, 1]. Let U ⊂ H be a Banach space such that

∞
∑

j=1

b−1
j |(v, ej)| ≤ C2‖v‖U for any v ∈ U, (5.11)

where {ej} is the orthonormal basis entering (5.1). Then the inclusion U ⊂ Hµ

holds, and the density ρµ(a;u) is positive for (a, u) ∈ U × U . Moreover, the
function θ : U → P(H) taking a ∈ U to µa is Lipschitz continuous, provided
that P(H) is endowed with the total variation norm. Finally, if there is C3 > 0
such that

∞
∑

j=1

b−2
j |(v, ej)| ≤ C3‖v‖U for any v ∈ U, (5.12)

then the density ρµ(a;u) is positive on U ×H.

Proof. If we know that a, a′ ∈ Hµ, then combining (5.7) and (5.11), we obtain
immediately the Lipschitz continuity of the mapping θ. Thus, we need to show
the inclusion U ⊂ Hµ and the positivity of ρµ on U × U (and on U ×H under
the additional condition (5.12)).

In view of Proposition 5.1, the required inclusion will be established if we
prove that

∞
∑

j=1

∫

H

∣

∣log ρj(uj − aj)− log ρj(uj)
∣

∣µ(du) < ∞ for any a ∈ U. (5.13)

To prove this, note that, in view of the second inequality in (5.10), we have

∣

∣log ρj(uj − aj)− log ρj(uj)
∣

∣ ≤
∫ θj

−θj

|ρ̃′j(b−1
j uj − r)|

ρ̃j(b
−1
j uj − r)

dr

≤ C1(b
−1
j |uj |+ 1)θj for j ≥ N, (5.14)

where θj = b−1
j |aj | and N ≥ 1 is the least integer such that θj ≤ 1. Using the

Fubini theorem and decomposition (5.1), we obtain

∞
∑

j=N

∫

H

∣

∣log ρj(uj − aj)− log ρj(uj)
∣

∣µ(du) ≤ C1

∞
∑

j=N

θj

∫

R

(b−1
j |uj |+ 1)ρj(uj) duj

= C1

∞
∑

j=N

θj

∫

R

(|vj |+ 1)ρ̃j(vj) dvj .
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The first inequality in (5.10) and inequality (5.11) with v = a now imply
that (5.13) holds.

To establish the positivity of the density ρµ(a;u) on U × U , recall that it is
given by (5.4). Therefore it suffices to show that

∆N (a;u) :=

∞
∑

j=N

∣

∣log ρj(uj − aj)− log ρj(uj)
∣

∣ < ∞ (5.15)

for a, u ∈ U . To this end, note that, by (5.14) and (5.11), we have

∆N (a;u) ≤ C1

∞
∑

j=N

(

b−2
j |uj| |aj |+ b−1

j |aj|
)

≤ C1C2‖a‖U
(

‖u‖U + 1
)

. (5.16)

Finally, to establish the positivity of ρµ(a;u) on U ×H under the additional
condition (5.12), it suffices to prove that (5.15) holds for a ∈ U and u ∈ H .
This follows immediately from the first inequality in (5.16).

5.2 Exponential mixing and LDP for Markov chains

Let X be a separable Banach space with a norm ‖·‖ and let (uk,Pu) be a family
of Markov chains in X . Given λ ∈ P(X), we define the probability measure
Pλ(·) =

∫

X
Pu(·)λ(du) and denote by Eλ the corresponding mean value. Recall

that we denote by Pk(u,Γ) the transition function for (uk,Pu) and byPk andP∗
k

the corresponding Markov semigroups. Given a closed subset K ⊂ X , let τK be
the first positive hitting time of K:

τK = min{k ≥ 1 : uk ∈ K}.

The following proposition is a consequence of general results on mixing and LDP
established in [MT93, Chapters 15 and 16] and [Wu01] (see Theorem 2.1 and
Proposition A.2).

Proposition 5.4. Let a Markov process (uk,Pu) and a subset Λ ⊂ P(X) be
such that the following hypotheses hold.

Lyapunov function. There is a continuous function Φ : X → R+ which is
bounded on any ball of X and goes to +∞ as ‖u‖ → ∞ such that

∫

X

Φ(v)P1(u, dv) ≤ q Φ(u) +M for all u ∈ X, (5.17)

where q < 1 and M are some positive constants.

Uniform strong Feller. The mapping u 7→ P1(u, ·) is continuous from X to
the space P(X) endowed with the total variation norm.

Irreducibility. We have P1(u,G) > 0 for any u ∈ X and any open set G ⊂ X.
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Hyper-exponential recurrence. For any A > 0 there is a compact subset
C = C(A) ⊂ X such that

sup
u∈B

Eu exp(AτC) < ∞, (5.18)

sup
λ∈Λ

Eλ exp
(

AτC
)

< ∞, (5.19)

where B ⊂ X is an arbitrary ball in X. Then (uk,Pu) possesses a unique
stationary measure µ ∈ P(X), which is exponentially mixing in the sense that

‖Pk(u, ·)− µ‖var ≤ Ce−γk
(

1 + Φ(u)
)

for all u ∈ X and k ≥ 0, (5.20)

where C and γ are positive constants. Moreover, the LDP in the τp-topology
holds for the Pλ-occupation measures (1.4), uniformly with respect to λ ∈ Λ.

This result implies, in particular, that for any ball B ⊂ X the LDP holds
for the Pu-occupation measures (1.4) uniformly with respect to u ∈ B.

5.3 Analogy with heat conduction networks

In this section, we follow essentially the Baiesi–Maes analysis [BM05] to draw
some analogies of our model with heat conduction networks. We shall confine
ourselves to the case of the Burgers equation driven by a Gaussian noise. As
shown in Section 2.3, the transition probability P1(u, dv) has a density with
respect to ℓ(dv), which is given by (2.14). It follows that for any initial point
u0 ∈ H the law of the corresponding trajectory restricted to [[1, n]] has a density
against the product measure ℓ(dv1) · · · ℓ(dvn), which given by

n
∏

l=1

ρ(vl−1, vl) =

n
∏

l=1

exp
(

− 1
2‖S(vl−1)‖2b + (S(vl−1), vl)b

)

.

Defining µ as the path measure corresponding to the unique stationary distri-
bution µ and denoting by µn its restriction to [[0, n]], we see that

dµn

d(µn ◦ π−1
n )

= ρ(v0)e
Rn(v0,...,vn)ρ(vn), (5.21)

where ρ stands for the density of µ with respect to ℓ, and we set

Rn(v0, . . . , vn) =

n
∑

l=1

σ(vl−1, vl)

= 1
2

(

‖S(vn)‖2b − ‖S(v0)‖2b
)

+
n
∑

l=1

(

(S(vl−1), vl)b − (S(vl), vl−1)b
)

.

The energy flux at jth mode is defined as

Φj(v0, v1) = Sj(v0)v
j
1 − Sj(v1)v

j
0,
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and the energy change at jth mode over the time interval [[0, n]] is given by

Jj,n(v0, · · · , vn) =
n
∑

l=1

Φj(vl−1, vl).

Let us define the entropy production over the time interval [[0, n]] by

S(n) =
∑

j∈Z∗

1

Tj
Jj,n =

n
∑

l=1

(

(S(vl−1), vl)b − (S(vl), vl−1)b
)

,

where Tj = b2j are the effective local temperatures. Obviously,

1

n
EµS(n) = 〈σ〉µ,

and, by the law of large numbers,

lim
n→∞

1

n
S(n) = 〈σ〉µ µ-almost surely.

Our main results stated in the Introduction assert that the sequence of random
variables S(n) satisfies LDP and that the Gallavotti–Cohen fluctuation relation
holds for the corresponding rate function I(r).
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