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THE DETERMINACY OF CONTEXT-FREE GAMES

OLIVIER FINKEL

Abstract. We prove that the determinacy of Gale-Stewart games whose winning sets are accepted by real-time

1-counter Büchi automata is equivalent to the determinacy of (effective) analytic Gale-Stewart games which is

known to be a large cardinal assumption. We show also that the determinacy of Wadge games between two

players in charge of ω-languages accepted by 1-counter Büchi automata is equivalent to the (effective) analytic

Wadge determinacy. Using some results of set theory we prove that one can effectively construct a 1-counter

Büchi automaton A and a Büchi automaton B such that: (1) There exists a model of ZFC in which Player 2

has a winning strategy in the Wadge game W (L(A), L(B)); (2) There exists a model of ZFC in which the

Wadge game W (L(A), L(B)) is not determined. Moreover these are the only two possibilities, i.e. there are

no models of ZFC in which Player 1 has a winning strategy in the Wadge game W (L(A), L(B)).

§1. Introduction. Two-players infinite games have been much studied in Set Theory

and in Descriptive Set Theory, see [14, 13, 18]. In particular, if X is a (countable)

alphabet having at least two letters and A ⊆ Xω, then the Gale-Stewart game G(A) is

an infinite game with perfect information between two players. Player 1 first writes a

letter a1 ∈ X , then Player 2 writes a letter b1 ∈ X , then Player 1 writes a2 ∈ X , and so

on . . . After ω steps, the two players have composed an infinite word x = a1b1a2b2 . . .
of Xω. Player 1 wins the play iff x ∈ A, otherwise Player 2 wins the play. The game

G(A) is said to be determined iff one of the two players has a winning strategy. A

fundamental result of Descriptive Set Theory is Martin’s Theorem which states that

every Gale-Stewart game G(A), where A is a Borel set, is determined [14].

On the other hand, in Computer Science, the conditions of a Gale Stewart game may

be seen as a specification of a reactive system, where the two players are respectively

a non terminating reactive program and the “environment”. Then the problem of the

synthesis of winning strategies is of great practical interest for the problem of program

synthesis in reactive systems. In particular, if A ⊆ Xω, where X is here a finite alpha-

bet, and A is effectively presented, i.e. accepted by a given finite machine or defined

by a given logical formula, the following questions naturally arise, see [23, 15]: (1) Is

the game G(A) determined ? (2) If Player 1 has a winning strategy, is it effective, i.e.

computable ? (3) What are the amounts of space and time necessary to compute such a

winning strategy ? Büchi and Landweber gave a solution to the famous Church’s Prob-

lem, posed in 1957, by stating that in a Gale Stewart game G(A), where A is a regular
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ω-language, one can decide who the winner is and compute a winning strategy given

by a finite state transducer, see [24] for more information on this subject. In [23, 15]

Thomas and Lescow asked for an extension of this result where A is no longer regular

but deterministic context-free, i.e. accepted by some deterministic pushdown automa-

ton. Walukiewicz extended Büchi and Landweber’s Theorem to this case by showing

first in [26] that that one can effectively construct winning strategies in parity games

played on pushdown graphs and that these strategies can be computed by pushdown

transducers. Notice that later some extensions to the case of higher-order pushdown

automata have been established [1, 2].

In this paper, we first address the question (1) of the determinacy of Gale-Stewart

games G(A), where A is a context-free ω-language accepted by a (non-deterministic)

pushdown automaton, or even by a 1-counter automaton. Notice that there are some

context-free ω-languages which are (effective) analytic but non-Borel [6], and thus the

determinacy of these games can not be deduced from Martin’s Theorem of Borel de-

terminacy. On the other hand, Martin’s Theorem is provable in ZFC, the commonly

accepted axiomatic framework for Set Theory in which all usual mathematics can be

developed. But the determinacy of Gale-Stewart games G(A), where A is an (effective)

analytic set, is not provable in ZFC; Martin and Harrington have proved that it is a large

cardinal assumption equivalent to the existence of a particular real, called the real 0♯,
see [13, page 637]. We prove here that the determinacy of Gale-Stewart games G(A),
whose winning sets A are accepted by real-time 1-counter Büchi automata, is equivalent

to the determinacy of (effective) analytic Gale-Stewart games and thus also equivalent

to the existence of the real 0♯.
Next we consider Wadge games which were firstly studied by Wadge in [25] where he

determined a great refinement of the Borel hierarchy defined via the notion of reduction

by continuous functions, see Definition 4.1 below for a precise definition. These games

are closely related to the notion of reducibility by continuous functions. For L ⊆ Xω

and L′ ⊆ Y ω, L is said to be Wadge reducible to L′ iff there exists a continuous

function f : Xω → Y ω , such that L = f−1(L′); this is then denoted by L ≤W

L′. On the other hand, the Wadge game W (L,L′) is an infinite game with perfect

information between two players, Player 1 who is in charge of L and Player 2 who is in

charge of L′. And it turned out that Player 2 has a winning strategy in the Wadge game

W (L,L′) iff L ≤W L′. It is easy to see that the determinacy of Borel Gale-Stewart

games implies the determinacy of Borel Wadge games. On the other hand, Louveau

and Saint-Raymond have proved that this latter one is weaker than the first one, since

it is already provable in second-order arithmetic, while the first one is not. It is also

known that the determinacy of (effective) analytic Gale-Stewart games is equivalent to

the determinacy of (effective) analytic Wadge games, see [16]. We prove in this paper

that the determinacy of Wadge games between two players in charge of ω-languages

accepted by 1-counter Büchi automata is equivalent to the (effective) analytic Wadge

determinacy, and thus also equivalent to the existence of the real 0♯.
Then, using some recent results from [8] and some results of Set Theory, we prove

that, (assuming ZFC is consistent), one can effectively construct a 1-counter Büchi au-

tomaton A and a Büchi automaton B such that: (1) There exists a model of ZFC in

which Player 2 has a winning strategy in the Wadge game W (L(A), L(B)); (2) There

exists a model of ZFC in which the Wadge game W (L(A), L(B)) is not determined.
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Moreover these are the only two possibilities, i.e. there are no models of ZFC in which

Player 1 has a winning strategy in the Wadge game W (L(A), L(B)).
This paper is an extended version of a conference paper which appeared in the Pro-

ceedings of the 29 th International Symposium on Theoretical Aspects of Computer

Science, STACS 2012, [10]. It contains the full proofs which could not be included in

the conference paper due to lack of space.

Notice that as the results presented in this paper might be of interest to both set

theorists and theoretical computer scientists, we shall recall in detail some notions of

automata theory which are well known to computer scientists but not to set theorists. In

a similar way we give a presentation of some results of set theory which are well known

to set theorists but not to computer scientists.

The paper is organized as follows. We recall some known notions in Section 2. We

study context-free Gale-Stewart games in Section 3 and context-free Wadge games in

Section 4. Some concluding remarks are given in Section 5.

§2. Recall of some known notions. We assume the reader to be familiar with the

theory of formal (ω-)languages [22, 20]. We recall the usual notations of formal lan-

guage theory.

If Σ is a finite alphabet, a non-empty finite word overΣ is any sequence x = a1 . . . ak,

where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length of x is k, denoted

by |x|. The empty word is denoted by λ; its length is 0. Σ⋆ is the set of finite words

(including the empty word) over Σ. A (finitary) language V over an alphabet Σ is a

subset of Σ⋆.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . . ,

where for all integers i ≥ 1, ai ∈ Σ. When σ = a1 . . . an . . . is an ω-word over Σ, we

write σ(n) = an, σ[n] = σ(1)σ(2) . . . σ(n) for all n ≥ 1 and σ[0] = λ.

The usual concatenation product of two finite words u and v is denoted u.v (and

sometimes just uv). This product is extended to the product of a finite word u and an

ω-word v: the infinite word u.v is then the ω-word such that:

(u.v)(k) = u(k) if k ≤ |u| , and (u.v)(k) = v(k − |u|) if k > |u|.
The set of ω-words over the alphabet Σ is denoted by Σω. An ω-language V over an

alphabet Σ is a subset of Σω, and its complement (in Σω) is Σω − V , denoted V −.

The prefix relation is denoted ⊑: a finite word u is a prefix of a finite word v (respec-

tively, an infinite word v), denoted u ⊑ v, if and only if there exists a finite word w
(respectively, an infinite word w), such that v = u.w.

If L is a finitary language (respectively, an ω-language) over the alphabet Σ then the

set Pref(L) of prefixes of elements of L is defined by Pref(L) = {u ∈ Σ⋆ | ∃v ∈
L u ⊑ v}.

We now recall the definition of k-counter Büchi automata which will be useful in the

sequel.

Let k be an integer ≥ 1. A k-counter machine has k counters, each of which contain-

ing a non-negative integer. The machine can test whether the content of a given counter

is zero or not. And transitions depend on the letter read by the machine, the current state

of the finite control, and the tests about the values of the counters. Notice that in this

model transitions are allowed where the reading head of the machine does not move to

the right. In other words, λ-transitions are allowed here.
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Formally a k-counter machine is a 4-tuple M=(K,Σ, ∆, q0), where K is a finite set

of states, Σ is a finite input alphabet, q0 ∈ K is the initial state, and ∆ ⊆ K × (Σ ∪
{λ})×{0, 1}k ×K ×{0, 1,−1}k is the transition relation. The k-counter machine M
is said to be real time iff: ∆ ⊆ K × Σ × {0, 1}k ×K × {0, 1,−1}k, i.e. iff there are

no λ-transitions.

If the machine M is in state q and ci ∈ N is the content of the ith counter Ci then

the configuration (or global state) of M is the (k + 1)-tuple (q, c1, . . . , ck).
For a ∈ Σ ∪ {λ}, q, q′ ∈ K and (c1, . . . , ck) ∈ N

k such that cj = 0 for j ∈ E ⊆
{1, . . . , k} and cj > 0 for j /∈ E, if (q, a, i1, . . . , ik, q

′, j1, . . . , jk) ∈ ∆ where ij = 0
for j ∈ E and ij = 1 for j /∈ E, then we write:

a : (q, c1, . . . , ck) 7→M (q′, c1 + j1, . . . , ck + jk).
Thus the transition relation must obviously satisfy:

if (q, a, i1, . . . , ik, q
′, j1, . . . , jk) ∈ ∆ and im = 0 for some m ∈ {1, . . . , k} then

jm = 0 or jm = 1 (but jm may not be equal to −1).

Let σ = a1a2 . . . an . . . be an ω-word over Σ. An ω-sequence of configurations

r = (qi, c
i
1, . . . c

i
k)i≥1 is called a run of M on σ iff:

(1) (q1, c
1
1, . . . c

1
k) = (q0, 0, . . . , 0)

(2) for each i ≥ 1, there exists bi ∈ Σ ∪ {λ} such that bi : (qi, c
i
1, . . . c

i
k) 7→M

(qi+1, c
i+1
1 , . . . ci+1

k ) and such that a1a2 . . . an . . . = b1b2 . . . bn . . .
For every such run r, In(r) is the set of all states entered infinitely often during r.

DEFINITION 2.1. A Büchi k-counter automaton is a 5-tuple M=(K,Σ, ∆, q0, F ),
where M′=(K,Σ, ∆, q0) is a k-counter machine and F ⊆ K is the set of accepting

states. The ω-language accepted by M is:

L(M)= {σ ∈ Σω | there exists a run r of M on σ such that In(r) ∩ F 6= ∅}

The class ofω-languages accepted by Büchi k-counter automata is denotedBCL(k)ω.

The class of ω-languages accepted by real time Büchi k-counter automata will be de-

noted r-BCL(k)ω. The class BCL(1)ω is a strict subclass of the class CFLω of

context free ω-languages accepted by Büchi pushdown automata.

We assume the reader to be familiar with basic notions of topology which may be

found in [14, 15, 22, 20]. There is a natural metric on the set Σω of infinite words over

a finite alphabet Σ containing at least two letters which is called the prefix metric and is

defined as follows. For u, v ∈ Σω and u 6= v let δ(u, v) = 2−lpref(u,v) where lpref(u,v) is

the first integer n such that the (n+1)st letter of u is different from the (n+1)st letter

of v. This metric induces on Σω the usual Cantor topology in which the open subsets of

Σω are of the form W.Σω, for W ⊆ Σ⋆. A set L ⊆ Σω is a closed set iff its complement

Σω − L is an open set.

For V ⊆ Σ⋆ we denote Lim(V ) = {x ∈ Σω | ∃∞n ≥ 1 x[n] ∈ V } the set

of infinite words over Σ having infinitely many prefixes in V . Then the topological

closure Cl(L) of a set L ⊆ Σω is equal to Lim(Pref(L)). Thus we have also the

following characterization of closed subsets of Σω: a set L ⊆ Σω is a closed subset of

the Cantor space Σω iff L = Lim(Pref(L)).
We now recall the definition of the Borel Hierarchy of subsets of Xω.

DEFINITION 2.2. For a non-null countable ordinal α, the classes Σ0
α and Π0

α of the

Borel Hierarchy on the topological space Xω are defined as follows: Σ0
1 is the class

of open subsets of Xω, Π0
1 is the class of closed subsets of Xω, and for any countable
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ordinal α ≥ 2:

Σ0
α is the class of countable unions of subsets of Xω in

⋃
γ<α Π0

γ .

Π0
α is the class of countable intersections of subsets of Xω in

⋃
γ<αΣ0

γ .

A set L ⊆ Xω is Borel iff it is in the union
⋃

α<ω1
Σ0

α =
⋃

α<ω1
Π0

α, where ω1 is the

first uncountable ordinal.

There are also some subsets of Xω which are not Borel. In particular the class of Borel

subsets of Xω is strictly included into the class Σ1
1 of analytic sets which are obtained

by projection of Borel sets. The co-analytic sets are the complements of analytic sets.

DEFINITION 2.3. A subset A of Xω is in the class Σ1
1 of analytic sets iff there exist

a finite alphabet Y and a Borel subset B of (X × Y )ω such that x ∈ A ↔ ∃y ∈ Y ω

such that (x, y) ∈ B, where (x, y) is the infinite word over the alphabet X × Y such

that (x, y)(i) = (x(i), y(i)) for each integer i ≥ 1.

We now recall the notion of completeness with regard to reduction by continuous

functions. For a countable ordinal α ≥ 1, a set F ⊆ Xω is said to be a Σ0
α (respectively,

Π0
α, Σ1

1)-complete set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ0
α

(respectively, E ∈ Π0
α, E ∈ Σ1

1) iff there exists a continuous function f : Y ω → Xω

such that E = f−1(F ).
We now recall the definition of classes of the arithmetical hierarchy of ω-languages,

see [22]. Let X be a finite alphabet. An ω-language L ⊆ Xω belongs to the class Σn if

and only if there exists a recursive relation RL ⊆ (N)n−1 ×X⋆ such that:

L = {σ ∈ Xω | ∃a1 . . .Qnan (a1, . . . , an−1, σ[an + 1]) ∈ RL},
where Qi is one of the quantifiers ∀ or ∃ (not necessarily in an alternating order). An

ω-language L ⊆ Xω belongs to the class Πn if and only if its complement Xω − L
belongs to the class Σn. The class Σ1

1 is the class of effective analytic sets which are

obtained by projection of arithmetical sets. An ω-language L ⊆ Xω belongs to the

class Σ1
1 if and only if there exists a recursive relation RL ⊆ N × {0, 1}⋆ × X⋆ such

that:

L = {σ ∈ Xω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ[m]) ∈ RL))}.

Then an ω-language L ⊆ Xω is in the class Σ1
1 iff it is the projection of an ω-

language over the alphabetX×{0, 1}which is in the class Π2. The class Π1
1 of effective

co-analytic sets is simply the class of complements of effective analytic sets.

Recall that the (lightface) class Σ1
1 of effective analytic sets is strictly included into

the (boldface) class Σ1
1 of analytic sets.

Recall that a Büchi Turing machine is just a Turing machine working on infinite in-

puts with a Büchi-like acceptance condition, and that the class of ω-languages accepted

by Büchi Turing machines is the class Σ1
1 of effective analytic sets [4, 22]. On the

other hand, one can construct, using a classical construction (see for instance [12]),

from a Büchi Turing machine T , a 2-counter Büchi automaton A accepting the same

ω-language. Thus one can state the following proposition.

PROPOSITION 2.4. An ω-language L ⊆ Xω is in the class Σ1
1 iff it is accepted by a

non deterministic Büchi Turing machine, hence iff it is in the class BCL(2)ω.

§3. Context-free Gale-Stewart games. We first recall the definition of Gale-Stewart

games.
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DEFINITION 3.1 ([13]). Let A ⊆ Xω, where X is a finite alphabet. The Gale-

Stewart game G(A) is a game with perfect information between two players. Player

1 first writes a letter a1 ∈ X , then Player 2 writes a letter b1 ∈ X , then Player 1

writes a2 ∈ X , and so on . . . After ω steps, the two players have composed a word

x = a1b1a2b2 . . . of Xω. Player 1 wins the play iff x ∈ A, otherwise Player 2 wins the

play.

Let A ⊆ Xω and G(A) be the associated Gale-Stewart game. A strategy for Player

1 is a function F1 : (X2)⋆ → X and a strategy for Player 2 is a function F2 :
(X2)⋆X → X . Player 1 follows the strategy F1 in a play if for each integer n ≥
1 an = F1(a1b1a2b2 · · · an−1bn−1). If Player 1 wins every play in which she has fol-

lowed the strategy F1, then we say that the strategy F1 is a winning strategy (w.s.) for

Player 1. The notion of winning strategy for Player 2 is defined in a similar manner.

The game G(A) is said to be determined if one of the two players has a winning

strategy.

We shall denote Det(C), where C is a class of ω-languages, the sentence : “Every

Gale-Stewart game G(A), where A ⊆ Xω is an ω-language in the class C, is deter-

mined”.

Notice that, in the whole paper, we assume that ZFC is consistent, and all results,

lemmas, propositions, theorems, are stated in ZFC unless we explicitely give another

axiomatic framework.

We can now state our first result.

PROPOSITION 3.2. Det(Σ1
1) ⇐⇒ Det(r-BCL(8)ω).

Proof. The implication Det(Σ1
1) =⇒ Det(r-BCL(8)ω) is obvious since r-BCL(8)ω

⊆ Σ1
1.

To prove the reverse implication, we assume that Det(r-BCL(8)ω) holds and we

show that every Gale-Stewart game G(A), where A ⊆ Xω is an ω-language in the class

Σ1
1, or equivalently in the class BCL(2)ω by Proposition 2.4, is determined.

Let then L ⊆ Σω, where Σ is a finite alphabet, be an ω-language in the class

BCL(2)ω.

Let E be a new letter not in Σ, S be an integer ≥ 1, and θS : Σω → (Σ ∪ {E})ω be

the function defined, for all x ∈ Σω, by:

θS(x) = x(1).ES .x(2).ES2

.x(3).ES3

.x(4) . . . x(n).ESn

.x(n+ 1).ESn+1

. . .

We proved in [7] that if k = cardinal(Σ) + 2, S ≥ (3k)3 is an integer, then one

can effectively construct from a Büchi 2-counter automaton A1 accepting L a real time

Büchi 8-counter automaton A2 such that L(A2) = θS(L). In the sequel we assume that

we have fixed an integer S ≥ (3k)3 which is even.

Notice that the set θS(Σ
ω) is a closed subset of the Cantor space (Σ∪ {E})ω. An ω-

word x ∈ (Σ∪{E})ω is in θS(Σ
ω)− iff it has one prefix which is not in Pref(θS(Σ

ω)).
Let L′ ⊆ (Σ ∪ {E})ω be the set of ω-words y ∈ (Σ ∪ {E})ω for which there is an

integer n ≥ 1 such that y[2n − 1] ∈ Pref(θS(Σ
ω)) and y[2n] /∈ Pref(θS(Σ

ω)). So

if two players have alternatively written letters from the alphabet Σ ∪ {E} and have

composed an infinite word in L′, then it is Player 2 who has left the closed set θS(Σ
ω).

It is easy to see that L′ is accepted by a real time Büchi 2-counter automaton.
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The class r-BCL(8)ω ⊇ r-BCL(2)ω is closed under finite union in an effective way,

so θS(L) ∪ L′ is accepted by a real time Büchi 8-counter automaton A3 which can be

effectively constructed from A2.

As we have assumed that Det(r-BCL(8)ω) holds, the game G(θS(L) ∪L′) is deter-

mined, i.e. one of the two players has a w.s. in the game G(θS(L)∪L′). We now show

that the game G(L) is itself determined.

We shall say that, during an infinite play, Player 1 “goes out” of the closed set θS(Σ
ω)

if the final play y composed by the two players has a prefix y[2n] ∈ Pref(θS(Σ
ω)) such

that y[2n+1] /∈ Pref(θS(Σ
ω)). We define in a similar way the sentence “Player 2 goes

out of the closed set θS(Σ
ω)”.

Assume first that Player 1 has a w.s. F1 in the game G(θS(L) ∪ L′). Then Player 1

never “goes out” of the set θS(Σ
ω) when she follows this w.s. because otherwise the

final play y composed by the two players has a prefix y[2n] ∈ Pref(θS(Σ
ω)) such that

y[2n + 1] /∈ Pref(θS(Σ
ω)) and thus y /∈ θS(L) ∪ L′. Consider now a play in which

Player 2 does not go out of θS(Σ
ω). If player 1 follows her w.s. F1 then the two players

remain in the set θS(Σ
ω). But we have fixed S to be an even integer. So the two players

compose an ω-word

θS(x) = x(1).ES .x(2).ES2

.x(3).ES3

.x(4) . . . x(n).ESn

.x(n+ 1).ESn+1

. . .

and the letters x(k) are written by player 1 for k an odd integer and by Player 2 for

k an even integer because S is even. Moreover Player 1 wins the play iff the ω-word

x(1)x(2)x(3) . . . x(n) . . . is in L. This implies that Player 1 has also a w.s. in the game

G(L).
Assume now that Player 2 has a w.s. F2 in the game G(θS(L) ∪ L′). Then Player

2 never “goes out” of the set θS(Σ
ω) when he follows this w.s. because otherwise the

final play y composed by the two players has a prefix y[2n− 1] ∈ Pref(θS(Σ
ω)) such

that y[2n] /∈ Pref(θS(Σ
ω)) and thus y ∈ L′ hence also y ∈ θS(L) ∪ L′. Consider now

a play in which Player 1 does not go out of θS(Σ
ω). If player 2 follows his w.s. F2 then

the two players remain in the set θS(Σ
ω). So the two players compose an ω-word

θS(x) = x(1).ES .x(2).ES2

.x(3).ES3

.x(4) . . . x(n).ESn

.x(n+ 1).ESn+1

. . .

where the letters x(k) are written by player 1 for k an odd integer and by Player 2 for k
an even integer. Moreover Player 2 wins the play iff theω-word x(1)x(2)x(3) . . . x(n) . . .
is not in L. This implies that Player 2 has also a w.s. in the game G(L). �

THEOREM 3.3. Det(Σ1
1) ⇐⇒ Det(CFLω) ⇐⇒ Det(BCL(1)ω).

Proof. The implications Det(Σ1
1) =⇒ Det(CFLω) =⇒ Det(BCL(1)ω) are obvious

since BCL(1)ω ⊆CFLω ⊆ Σ1
1.

To prove the reverse implication Det(BCL(1)ω) =⇒ Det(Σ1
1), we assume that

Det(BCL(1)ω) holds and we show that every Gale-Stewart game G(L), where L ⊆
Xω is an ω-language in the class r-BCL(8)ω is determined. Then Proposition 3.2 will

imply that Det(Σ1
1) also holds.

Let thenL(A) ⊆ Γω, whereΓ is a finite alphabet andA is a real time Büchi 8-counter

automaton.

We now recall the following coding which was used in the paper [7].

Let K be the product of the eight first prime numbers. An ω-word x ∈ Γω was coded

by the ω-word
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hK(x) = A.CK .x(1).B.CK2

.A.CK2

.x(2).B.CK3

.A.CK3

.x(3).B . . .

. . . B.CKn

.A.CKn

.x(n).B . . .

over the alphabet Γ1 = Γ ∪ {A,B,C}, where A,B,C are new letters not in Γ. We

are going to use here a slightly different coding which we now define. Let then

h(x) = CK .C.A.x(1).CK2

.A.CK2

.C.x(2).B.CK3

.A.CK3

.C.A.x(3) . . .

. . . CK2n

.A.CK2n

.C.x(2n).B.CK2n+1

.A.CK2n+1

.C.A.x(2n + 1) . . .

We now explain the rules used to obtain the ω-word h(x) from the ω-word hK(x).
(1) The first letter A of the word hK(x) has been suppressed.

(2) The letters B following a letter x(2n+ 1), for n ≥ 1, have been suppressed.

(3) A letter C has been added before each letter x(2n), for n ≥ 1.

(4) A block of two letters C.A has been added before each letter x(2n+1), for n ≥ 1.

The reasons behind this changes are the following ones. Assume that two players al-

ternatively write letters from the alphabet Γ1 = Γ ∪ {A,B,C} and that they finally

produce an ω-word in the form h(x). Due to the above changes we have now the two

following properties which will be useful in the sequel.

(1) The letters x(2n + 1), for n ≥ 0, have been written by Player 1, and the letters

x(2n), for n ≥ 1, have been written by Player 2.

(2) After a sequence of consecutive letters C, the first letter which is not a C has

always been written by Player 2.

We proved in [7] that, from a real time Büchi 8-counter automaton A accepting L(A) ⊆
Γω, one can effectively construct a Büchi 1-counter automaton A1 accepting the ω-

language hK(L(A))∪hK(Γω)−. We can easily check that the changes in hK(x) lead-

ing to the coding h(x) have no influence with regard to the proof of this result in [7]

and thus one can also effectively construct a Büchi 1-counter automaton A2 accepting

the ω-language h(L(A))∪h(Γω)−.

On the other hand we can remark that all ω-words in the form h(x) belong to the

ω-language H ⊆ (Γ1)
ω of ω-words y of the following form:

y = Cn1 .C.A.x(1).Cn2 .A.Cn′

2 .C.x(2).B.Cn3 .A.Cn′

3 .C.A.x(3) . . .

. . . Cn2n .A.Cn′

2n .C.x(2n).B.Cn2n+1 .A.Cn′

2n+1 .C.A.x(2n+ 1) . . .

where for all integers i ≥ 1 the letters x(i) belong to Γ and the ni, n
′
i, are even

non-null integers. Notice that it is crucial to allow here for arbitrary ni, n
′
i and not just

ni = n′
i = Ki because we obtain this way a regular ω-language H .

An important fact is the following property of H which extends the same property

of the set h(Γω). Assume that two players alternatively write letters from the alphabet

Γ1 = Γ∪ {A,B,C} and that they finally produce an ω-word y in H in the above form.

Then we have the two following facts:
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(1) The letters x(2n + 1), for n ≥ 0, have been written by Player 1, and the letters

x(2n), for n ≥ 1, have been written by Player 2.

(2) After a sequence of consecutive letters C, the first letter which is not a C has

always been written by Player 2.

Let now V = Pref(H) ∩ (Γ1)
⋆.C. So a finite word over the alphabet Γ1 is in V

iff it is a prefix of some word in H and its last letter is a C. It is easy to see that the

topological closure of H is

Cl(H) = H ∪ V.Cω.

Notice that an ω-word in Cl(H) is not in h(Γω) iff a sequence of consecutive letters C
has not the good length. Thus if two players alternatively write letters from the alphabet

Γ1 and produce an ω-word y ∈ Cl(H)− h(Γω) then it is Player 2 who has gone out of

the set h(Γω) at some step of the play. This will be important in the sequel.

It is very easy to see that the ω-language H is regular and to construct a Büchi au-

tomaton H accepting it. Moreover it is known that the class BCL(1)ω is effectively

closed under intersection with regular ω-languages (this can be seen using a classical

construction of a product automaton, see [3, 20]). Thus one can also construct a Büchi

1-counter automaton A3 accepting the ω-language h(L(A))∪[h(Γω)− ∩H ].
We denote also U the set of finite words u over Γ1 such that |u| = 2n for some

integer n ≥ 1 and u[2n− 1] ∈ Pref(H) and u = u[2n] /∈ Pref(H).
Now we set:

L = h(L(A)) ∪ [h(Γω)− ∩H ] ∪ V.Cω ∪ U.(Γ1)
ω

Notice that L is obtained as the union of the image of L(A) by h and of three sets which

are at the end only accessible through Player 2.

We have already seen that the ω-language h(L(A))∪[h(Γω)− ∩H ] is accepted by a

Büchi 1-counter automaton A3. On the other hand the ω-language H is regular and it is

accepted by a Büchi automaton H. Thus the finitary language Pref(H) is also regular,

the languages U and V are also regular, and the ω-languages V.Cω and U.(Γ1)
ω are

regular. This implies that one can construct a Büchi 1-counter automaton A4 accepting

the language L.

By hypothesis we assume that Det(BCL(1)ω) holds and thus the game G(L) is de-

termined. We are going to show that this implies that the game G(L(A)) itself is deter-

mined.

Assume firstly that Player 1 has a winning strategy F1 in the game G(L).
If during an infinite play, the two players compose an infinite word z, and Player

2 “does not go out of the set h(Γω)” then we claim that also Player 1, following her

strategy F1, “does not go out of the set h(Γω)”. Indeed if Player 1 goes out of the set

h(Γω) then due to the above remark this would imply that Player 1 also goes out of

the set Cl(H): there is an integer n ≥ 0 such that z[2n] ∈ Pref(H) but z[2n + 1] /∈
Pref(H). So z /∈ h(L(A)) ∪ [h(Γω)− ∩ H ] ∪ V.Cω. Moreover it follows from the

definition of U that z /∈ U.(Γ1)
ω . Thus If Player 1 goes out of the set h(Γω) then she

looses the game.

Consider now an infinite play in which Player 2 “does not go out of the set h(Γω)”.

Then Player 1, following her strategy F1, “does not go out of the set h(Γω)”. Thus the
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two players write an infinite word z = h(x) for some infinite word x ∈ Γω. But the

letters x(2n + 1), for n ≥ 0, have been written by Player 1, and the letters x(2n), for

n ≥ 1, have been written by Player 2. Player 1 wins the play iff x ∈ L(A) and Player 1

wins always the play when she uses her strategy F1. This implies that Player 1 has also

a w.s. in the game G(L(A)).

Assume now that Player 2 has a winning strategy F2 in the game G(L).
If during an infinite play, the two players compose an infinite word z, and Player

1 “does not go out of the set h(Γω)” then we claim that also Player 2, following his

strategy F2, “does not go out of the set h(Γω)”. Indeed if Player 2 goes out of the set

h(Γω) and the final play z remains in Cl(H) then z ∈ [h(Γω)− ∩ H ] ∪ V.Cω ⊆ L
and Player 2 looses. If Player 1 does not go out of the set Cl(H) and at some step

of the play, Player 2 goes out of Pref(H), i.e. there is an integer n ≥ 1 such that

z[2n − 1] ∈ Pref(H) and z[2n] /∈ Pref(H), then z ∈ U.(Γ1)
ω ⊆ L and Player 2

looses.

Assume now that Player 1 “does not go out of the set h(Γω)”. Then Player 2 follows

his w. s. F2, and then “never goes out of the set h(Γω)”. Thus the two players write

an infinite word z = h(x) for some infinite word x ∈ Γω. But the letters x(2n + 1),
for n ≥ 0, have been written by Player 1, and the letters x(2n), for n ≥ 1, have been

written by Player 2. Player 2 wins the play iff x /∈ L(A) and Player 2 wins always the

play when he uses his strategy F2. This implies that Player 2 has also a w.s. in the game

G(L(A)). �

Looking carefully at the above proof, we can obtain the following stronger result:

THEOREM 3.4. Det(Σ1
1) ⇐⇒ Det(CFLω) ⇐⇒ Det(r-BCL(1)ω).

Proof. We return to the above proof of Theorem 3.3, with the same notations.

We proved in [7] that, from a real time Büchi 8-counter automaton A accepting

L(A) ⊆ Γω, one can effectively construct a Büchi 1-counter automaton A1 accept-

ing the ω-language hK(L(A))∪hK(Γω)− having the additional property: during any

run of A1 there are at most K consecutive λ-transitions, where K is the product of the

eight first prime numbers.

Then the Büchi 1-counter automaton A3, accepting the ω-language

h(L(A)) ∪ [h(Γω)− ∩H ],

has the same property because the ω-language H is regular and any regular ω-language

is accepted by a real-time Büchi or Muller automaton, so the result follows from a

classical construction of a product automaton, see [20]. Finally the Büchi 1-counter

automaton A4 accepting the language

L = h(L(A)) ∪ [h(Γω)− ∩H ] ∪ V.Cω ∪ U.(Γ1)
ω

has also the same property.

Thus we have actually proved that Det(Σ1
1) is equivalent to the determinacy of all

games G(L(B)), where B is a Büchi 1-counter automaton having also this property:

during any run at most K consecutive λ-transitions may occur.

We now prove that Det(r-BCL(1)ω) implies the determinacy of such games.
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We now assume that Det(r-BCL(1)ω) holds and we consider a Büchi 1-counter

automaton B reading words over an alphabet Γ having the property: during any run at

most K consecutive λ-transitions may occur.

Consider now the mapping φK : Γω → (Γ ∪ {F})ω which is simply defined by: for

all x ∈ Γω,

φK(x) = FK .x(1).FK .x(2) . . . FK .x(n).FK .x(n+ 1).FK . . .

Then the ω-language φK(L(B) is accepted by a real time Büchi 1-counter automaton

B′ which can be effectively constructed from the Büchi 1-counter automaton B, see [5].

Notice that the set φK(Γω) is a regular closed subset of (Γ ∪ {F})ω. Let now L′′ be

the set of ω-words y ∈ (Γ ∪ {F})ω such that there is an integer n ≥ 0 with y[2n −
1] ∈ Pref(φK(Γω)) and y[2n] /∈ Pref(φK(Γω)). The ω-language L′′ is regular since

φK(Γω) is regular and so Pref(φK(Γω)) is regular. Thus the ω-language φK(L(B)) ∪
L′′ is accepted by a real time Büchi 1-counter automaton B′′. Therefore the game

G(φK(L(B)) ∪ L′′) is determined.

It is now easy to prove that the game G(L(B)) itself is determined, reasoning as in

the proof of Proposition 3.2. Details are here left to the reader. �

REMARK 3.5. The proofs of Proposition 3.2 and Theorems 3.3 and 3.4 provide ac-

tually the following effective result. Let L ⊆ Xω be an ω-language in the class Σ1
1, or

equivalently in the class BCL(2)ω, which is accepted by a Büchi 2-counter automaton

A. Then one can effectively construct from A a real time Büchi 1-counter automaton B
such that the game G(L) is determined if and only if the game G(L(B)) is determined.

Moreover Player 1 (respectively, Player 2) has a w.s. in the game G(L) iff Player 1

(respectively, Player 2) has a w.s. in the game G(L(B)).

§4. Context-free Wadge games. We first recall the notion of Wadge games.

DEFINITION 4.1 (Wadge [25]). Let L ⊆ Xω and L′ ⊆ Y ω. The Wadge game

W (L,L′) is a game with perfect information between two players, Player 1 who is in

charge of L and Player 2 who is in charge of L′. Player 1 first writes a letter a1 ∈ X ,

then Player 2 writes a letter b1 ∈ Y , then Player 1 writes a letter a2 ∈ X , and so

on. The two players alternatively write letters an of X for Player 1 and bn of Y for

Player 2. After ω steps, Player 1 has written an ω-word a ∈ Xω and Player 2 has

written an ω-word b ∈ Y ω. Player 2 is allowed to skip, even infinitely often, provided

he really writes an ω-word in ω steps. Player 2 wins the play iff [a ∈ L ↔ b ∈ L′], i.e.

iff: [(a ∈ L and b ∈ L′) or (a /∈ L and b /∈ L′ and b is infinite)].

Recall that a strategy for Player 1 is a function σ : (Y ∪ {s})⋆ → X . And a strategy

for Player 2 is a function f : X+ → Y ∪ {s}. The strategy σ is a winning strategy for

Player 1 iff she always wins a play when she uses the strategy σ, i.e. when the nth letter

she writes is given by an = σ(b1 . . . bn−1), where bi is the letter written by Player 2 at

step i and bi = s if Player 2 skips at step i. A winning strategy for Player 2 is defined

in a similar manner.

The game W (L,L′) is said to be determined if one of the two players has a winning

strategy. In the sequel we shall denote W-Det(C), where C is a class of ω-languages, the

sentence: “All Wadge games W (L,L′), where L ⊆ Xω and L′ ⊆ Y ω are ω-languages

in the class C, are determined”.
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There is a close relationship between Wadge reducibility and games.

DEFINITION 4.2 (Wadge [25]). Let X , Y be two finite alphabets. For L ⊆ Xω and

L′ ⊆ Y ω, L is said to be Wadge reducible to L′ (L ≤W L′) iff there exists a continuous

function f : Xω → Y ω, such that L = f−1(L′). L and L′ are Wadge equivalent iff

L ≤W L′ and L′ ≤W L. This will be denoted by L ≡W L′. And we shall say that

L <W L′ iff L ≤W L′ but not L′ ≤W L.

The relation ≤W is reflexive and transitive, and ≡W is an equivalence relation.

The equivalence classes of ≡W are called Wadge degrees.

THEOREM 4.3 (Wadge). Let L ⊆ Xω and L′ ⊆ Y ω where X and Y are finite

alphabets. Then L ≤W L′ if and only if Player 2 has a winning strategy in the Wadge

game W (L,L′).

The Wadge hierarchy WH is the class of Borel subsets of a set Xω, where X is a

finite set, equipped with ≤W and with ≡W . Using Wadge games, Wadge proved that,

up to the complement and ≡W , it is a well ordered hierarchy which provides a great

refinement of the Borel hierarchy.

THEOREM 4.4 (Wadge). The class of Borel subsets of Xω, for a finite alphabet X ,

equipped with ≤W , is a well ordered hierarchy. There is an ordinal |WH |, called the

length of the hierarchy, and a map d0W from WH onto |WH | − {0}, such that for all

L,L′ ⊆ Xω:

d0WL < d0WL′ ↔ L <W L′ and

d0WL = d0WL′ ↔ [L ≡W L′ or L ≡W L
′−].

We can now state the following result on determinacy of context-free Wadge games.

THEOREM 4.5.

Det(Σ1
1) ⇐⇒ W-Det(CFLω) ⇐⇒ W-Det(BCL(1)ω) ⇐⇒ W-Det(r-BCL(1)ω).

In order to prove this theorem, we first recall the notion of operation of sum of sets

of infinite words which has as counterpart the ordinal addition over Wadge degrees, and

which will be used later.

DEFINITION 4.6 (Wadge). Assume that X ⊆ Y are two finite alphabets, Y − X
containing at least two elements, and that {X+, X−} is a partition of Y − X in two

non empty sets. Let L ⊆ Xω and L′ ⊆ Y ω, then

L′+L =df L∪{u.a.β | u ∈ X⋆, (a ∈ X+ and β ∈ L′) or (a ∈ X− and β ∈ L
′−)}

Notice that a player in charge of a set L′ + L in a Wadge game is like a player in

charge of the set L but who can, at any step of the play, erase his previous play and

choose to be this time in charge of L′ or of L
′−. Notice that he can do this only one

time during a play. We shall use this property below.

We now prove the following lemmas.

LEMMA 4.7. Let L ⊆ Σω be an analytic but non Borel set. Then it holds that L ≡W

∅+ L.

Notice that in the above lemma, ∅ is viewed as the empty set over an alphabet Γ such

that Σ ⊆ Γ and cardinal (Γ − Σ) ≥ 2. Recall also that the emptyset and the whole set

Γω are located at the first level of the Wadge hierarchy and that their Wadge degree is

equal to 1.
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Proof. Firstly, it is easy to see that L ≤W ∅+L: Player 2 has clearly a winning strategy

in the Wadge game W (L, ∅+ L) which consists in copying the play of Player 1.

Secondly, we now assume that L ⊆ Σω is an analytic but non Borel set and we show

that Player 2 has a winning strategy in the Wadge game W (∅ + L,L). Recall that we

can infer from Hurewicz’s Theorem, see [14, page 160], that an analytic subset of Σω is

either Π0
2-hard or a Σ0

2-set. Consider now the Wadge gameW (∅+L,L). The successive

letters written by Player 1 will be denoted x(1), x(2), . . . x(n), . . . We now describe a

winning strategy for Player 2.

We first assume that Player 1 remains in charge of the set L. As long as [x[n].Σω∩L]
is Π0

2-hard, Player 2 copies the letters written by Player 1. If for some integer n ≥ 1,

[x[n− 1].Σω ∩ L] is Π0
2-hard but [x[n].Σω ∩ L] is not Π0

2-hard then [x[n].Σω ∩ L] is a

Σ0
2-set. If [x[n].Σω ∩ L] is Σ0

2-complete then Player 2 writes the same letter x(n) and

as long as [x[k].Σω ∩ L] is Σ0
2-complete, for k ≥ n, Player 2 continues to copy the

letters written by Player 1. If for some integer k ≥ n, [x[k].Σω ∩L] is not Σ0
2-complete,

then it is a Σ0
2-set which is not complete and it follows from the study of the Wadge

hierarchy that [x[k].Σω ∩ L] is a ∆0
2-set. Let p be the first such integer k ≥ n. Player

2 may skip at step p of the play. And now the Wadge game is reduced to the Wadge

game W (∅+ [x[p].Σω ∩L], [x[p− 1].Σω ∩L]). Player 2 has a winning strategy in this

game because ∅ + [x[p].Σω ∩ L] is still a ∆0
2-set while [x[p − 1].Σω ∩ L] is Π0

2-hard

or Σ0
2-hard. Thus Player 2 follows the winning strategy in this game and he wins the

Wadge game W (∅+ L,L).
If at some step of a play as described above there is an integer k ≥ n such that

[x[k].Σω ∩L] is Π0
2-hard or Σ0

2-hard and x(k+1) ∈ Γ−Σ, then this means that Player

1 is now like a player in charge of the empty set or of the whole set Γω which are located

at the first level of the Wadge hierarchy. But after the k first steps of the play, Player

2 has also written x[k] and he is like a player in charge of a set which is Π0
2-hard or

Σ0
2-hard. Thus Player 2 has a w.s. to win the play from this step. �

LEMMA 4.8. W-Det(Σ1
1) ⇐⇒ W-Det(r-BCL(8)ω).

Proof. The implication W-Det(Σ1
1)=⇒W-Det(r-BCL(8)ω) is obvious since r-BCL(8)ω

⊆ Σ1
1.

To prove the reverse implication, we assume that W-Det(r-BCL(8)ω) holds and we

are going to show that every Wadge gameW (L,L′), whereL ⊆ (Σ1)
ω andL′ ⊆ (Σ2)

ω

are ω-languages in the class Σ1
1, or equivalently in the class BCL(2)ω by Proposition

2.4, is determined. Notice that if the two ω-languages are Borel we already know that

the game W (L,L′) is determined; thus we have only to consider the case where at

least one of these languages is non-Borel. Let then k1 = cardinal(Σ1) + 2, k2 =
cardinal(Σ2)+2, and S ≥ max[(3k1)

3, (3k2)
3] be an integer. We now use the mapping

θS : (Σ1)
ω → (Σ1 ∪ {E})ω, defined in [7] and recalled in the proof of Proposition

3.2, and the similar one θ′S : (Σ2)
ω → (Σ2 ∪ {E})ω. It is proved in [7] that one

can effectively construct, from Büchi 2-counter automata A1 and A2 accepting L and

L′, some real time Büchi 8-counter automata accepting the ω-lannguages θS(L) and

θ′S(L
′). Then the Wadge game W (θS(L), θ

′
S(L

′)) is determined. We consider now the

two following cases:

First case. Player 2 has a w.s. in the game W (θS(L), θ
′
S(L

′)).
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If L′ is Borel then θ′S(L
′) is easily seen to be Borel (see [7]) and then θS(L) is

also Borel because θS(L) ≤W θ′S(L
′) and thus L is also Borel and thus the game

W (L,L′) is determined. Assume now that L′ is not Borel. Consider the Wadge game

W (L, ∅ + L′). We claim that Player 2 has a w.s. in that game which is easily deduced

from a w.s. of Player 2 in the Wadge game W (θS(L), θ
′
S(L

′)). Consider a play in this

latter game where Player 1 remains in the closed set θS((Σ1)
ω): she writes a beginning

of a word in the form

x(1).ES .x(2).ES2

.x(3) . . . x(n).ESn

. . .

Then player 2 writes a beginning of a word in the form

x′(1).ES .x′(2).ES2

.x′(3) . . . x′(p).ESp

. . .

where p ≤ n. Then the strategy for Player 2 in W (L, ∅ + L′) consists to write

x′(1).x′(2) . . . x′(p). when Player 1 writes x(1).x(2) . . . x(n).. If the strategy for Player

2 in W (θS(L), θ
′
S(L

′)) was at some step to go out of the set θ′S((Σ2)
ω) then this means

that his final word is surely outside θ′S((Σ2)
ω), and that the final word of Player 1 is

also surely outside θS(L), because Player 2 wins the play. Then Player 2 in the Wadge

game W (L, ∅+L′) can make as he is now in charge of the emptyset and play anything

(without skipping anymore) so that his final ω-word is also outside ∅+ L′. So we have

proved that Player 2 has a w.s. in the Wadge game W (L, ∅ + L′) or equivalently that

L ≤W ∅ + L′. But by Lemma 4.7 we know that L′ ≡W ∅ + L′ and thus L ≤W L′

which means that Player 2 has a w.s. in the Wadge game W (L,L′).
Second case. Player 1 has a w.s. in the game W (θS(L), θ

′
S(L

′)).
Notice that this implies that θ′S(L

′) ≤W θS(L)
−. Thus if L is Borel then θS(L) is

Borel (see [7]), θS(L)
− is also Borel, and θ′S(L

′) is Borel as the inverse image of a

Borel set by a continuous function, and L′ is also Borel, so the Wadge game W (L,L′)
is determined. We assume now that L is not Borel and we consider the Wadge game

W (∅ + L,L′). Player 1 has a w.s. in this game which is easily constructed from a w.s.

of the same player in the game W (θS(L), θ
′
S(L

′)) as follows. For this consider a play

in this latter game where Player 2 does not go out of the closed set θS((Σ2)
ω). Then

player 2 writes a beginning of a word in the form

x′(1).ES .x′(2).ES2

.x′(3) . . . x′(p).ESp

. . .

Player 1, following her w.s. composes a beginning of a word in the form

x(1).ES .x(2).ES2

.x(3) . . . x(n).ESn

. . .

where p ≤ n. Then the strategy for Player 1 in W (∅ + L,L′) consists to write

x(1).x(2) . . . x(n) when Player 2 writes x′(1).x′(2) . . . x′(p). If the strategy for Player

1 in W (θS(L), θ
′
S(L

′)) was at some step to go out of the set θS((Σ1)
ω) then this means

that her final word is surely outside θS((Σ1)
ω), and that the final word of Player 2 is

also surely in the set θ′S(L
′) (at least if he produces really an infinite word in ω steps).

In that case Player 1 in the game W (∅ + L,L′) can decide to be now in charge of the

emptyset and play anything so that her final ω-word is outside ∅+L. So we have proved

that Player 1 has a w.s. in the Wadge game W (∅+ L,L′). Using a very similar reason-

ing as in Lemma 4.7 where it is proved that L ≡W ∅ + L we can see that Player 1 has

also a w.s. in the Wadge game W (L,L′). �

LEMMA 4.9. W-Det(BCL(1)ω) =⇒ W-Det(r-BCL(8)ω).
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Proof. We assume that W-Det(BCL(1)ω) holds. Let then L ⊆ (Σ1)
ω and L′ ⊆

(Σ2)
ω be ω-languages in the class r-BCL(8)ω. We are going to show that the Wadge

game W (L,L′) is determined. We now use the mapping hK : (Σ1)
ω → (Σ1 ∪

{A,B,C})ω defined in [7] and recalled in the proof of the above Theorem 3.3. Sim-

ilarly we have the mapping h′
K : (Σ2)

ω → (Σ2 ∪ {A,B,C})ω where we replace the

alphabet Σ1 by the alphabet Σ2. It is proved in [7] that, from a real time Büchi 8-

counter automaton A accepting L ⊆ (Σ1)
ω , (respectively, A′ accepting L′ ⊆ (Σ2)

ω)

one can effectively construct a Büchi 1-counter automatonA1 accepting the ω-language

hK(L)∪hK((Σ1)
ω)− (respectively, A′

1 accepting h′
K(L′)∪h′

K((Σ2)
ω)−). Thus the

Wadge game W (hK(L)∪hK((Σ1)
ω)−, h′

K(L′) ∪ h′
K((Σ2)

ω)−) is determined.

Assuming again that L or L′ is non-Borel, we can now easily show that the Wadge

game W (L,L′) is determined: Player 1 (resp., Player 2) has a w.s. in the Wadge game

W (L,L′) iff she (resp., he) has a w.s in the Wadge game

W (hK(L) ∪ hK((Σ1)
ω)−, h′

K(L′) ∪ h′
K((Σ2)

ω)−).

We can use a very similar reasoning as in the proof of the preceding lemma. A key

argument is that if Player 1, who is in charge of the set hK(L)∪hK((Σ1)
ω)− in the

Wadge game W (hK(L)∪hK((Σ1)
ω)−, h′

K(L′)∪h′
K((Σ2)

ω)−), goes out of the closed

set hK((Σ1)
ω), then at the end of the play she has written an ω-word which is surely in

her set. A similar argument holds for Player 2. Details are here left to the reader. �

LEMMA 4.10. W-Det(r-BCL(1)ω) =⇒ W-Det(r-BCL(8)ω).

Proof. We return to the proof of the preceding lemma. Notice that we needed only the

determinacy of Wadge games of the form

W (hK(L) ∪ hK((Σ1)
ω)−, h′

K(L′) ∪ h′
K((Σ2)

ω)−),

where L ⊆ (Σ1)
ω and L′ ⊆ (Σ2)

ω are ω-languages in the class r-BCL(8)ω, to prove

that W-Det(r-BCL(8)ω holds. On the other hand, as noticed in the proof of Theo-

rem 3.4, the ω-languages hK(L)∪hK((Σ1)
ω)− and h′

K(L′)∪h′
K((Σ2)

ω)− are actu-

ally accepted by Büchi 1-counter automata A1 and A′
1 having the following additional

property: during any run of A1 (respectively, A′
1) there are at most K consecutive

λ-transitions. Thus it suffices now to show that W-Det(r-BCL(1)ω) implies the de-

terminacy of Wadge games W (L(A1), L(A′
1)), where A1 and A′

1 are Büchi 1-counter

automata having this additional property.

We now assume that W-Det(r-BCL(1)ω) holds and we consider such a Wadge game

W (L(A1), L(A′
1)). where L(A1) ⊆ (Σ1)

ω and L(A′
1) ⊆ (Σ2)

ω. Consider the map-

ping φK : (Σ1)
ω → (Σ1 ∪ {F})ω which is simply defined by: for all x ∈ (Σ1)

ω,

φK(x) = FK .x(1).FK .x(2) . . . FK .x(n).FK .x(n+ 1).FK . . .

and the mapping φ′
K : (Σ2)

ω → (Σ2 ∪ {F})ω which is defined in the same way.

Then the ω-languages φK(L(A1)) and φ′
K(L(A′

1)) are accepted by real time Büchi

1-counter automata. Thus the Wadge game W (φK(L(A1)), φ
′
K(L(A′

1))) is deter-

mined.

Assuming again that at least L(A1) or L(A′
1) is non-Borel, it is now easy to show

that the Wadge game W (L(A1), L(A′
1)) is determined: Player 1 (respectively, Player

2) has a w.s. in the Wadge game W (L(A1), L(A
′
1)) iff she (respectively, he) has a w.s

in the Wadge game W (φK(L(A1)), φ
′
K(L(A′

1))). We can use a very similar reasoning

as in the proof of the Lemma 4.8. A key argument is that if Player 1,who is in charge of



16 OLIVIER FINKEL

the set φK(L(A1)) in the Wadge game W (φK(L(A1)), φ
′
K(L(A′

1))), goes out of the

closed set φK((Σ1)
ω), then at the end of the play she has written an ω-word which is

surely out of her set. A similar argument holds for Player 2. Details are here left to the

reader. �

Finally Theorem 4.5 follows from Lemmas 4.7, 4.8, 4.9, 4.10, and from the known

equivalence Det(Σ1
1) ⇐⇒ W-Det(Σ1

1). �

Recall that, assuming that ZFC is consistent, there are some models of ZFC in which

Det(Σ1
1) does not hold. Therefore there are some models of ZFC in which some Wadge

games W (L(A), L(B)), where A and B are Büchi 1-counter automata, are not deter-

mined. We are going to prove that this may be also the case when B is a Büchi automa-

ton (without counter). To prove this, we use a recent result of [8] and some results of

set theory, so we now briefly recall some notions of set theory and refer the reader to

[8] and to a textbook like [13] for more background on set theory.

The usual axiomatic system ZFC is Zermelo-Fraenkel system ZF plus the axiom of

choice AC. The axioms of ZFC express some natural facts that we consider to hold in

the universe of sets. A model (V, ∈) of an arbitrary set of axioms A is a collection V of

sets, equipped with the membership relation ∈, where “x ∈ y” means that the set x is

an element of the set y, which satisfies the axioms of A. We often say “ the model V”

instead of ”the model (V, ∈)”.

We say that two sets A and B have same cardinality iff there is a bijection from A
onto B and we denote this by A ≈ B. The relation ≈ is an equivalence relation. Using

the axiom of choice AC, one can prove that any set A can be well-ordered so there is

an ordinal γ such that A ≈ γ. In set theory the cardinal of the set A is then formally

defined as the smallest such ordinal γ. The infinite cardinals are usually denoted by

ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . . The continuum hypothesis CH says that the first uncountable

cardinal ℵ1 is equal to 2ℵ0 which is the cardinal of the continuum.

If V is a model of ZF and L is the class of constructible sets of V, then the class

L is a model of ZFC + CH. Notice that the axiom V=L, which means “every set is

constructible”, is consistent with ZFC because L is a model of ZFC + V=L.

Consider now a model V of ZFC and the class of its constructible sets L ⊆ V which

is another model of ZFC. It is known that the ordinals of L are also the ordinals of

V, but the cardinals in V may be different from the cardinals in L. In particular, the

first uncountable cardinal in L is denoted ℵL

1 , and it is in fact an ordinal of V which

is denoted ωL

1 . It is well-known that in general this ordinal satisfies the inequality

ωL

1 ≤ ω1. In a model V of the axiomatic system ZFC + V=L the equality ωL

1 = ω1

holds, but in some other models of ZFC the inequality may be strict and then ωL

1 < ω1.

The following result was proved in [8].

THEOREM 4.11. There exists a real-time 1-counter Büchi automaton A, which can

be effectively constructed, such that the topological complexity of the ω-languageL(A)
is not determined by the axiomatic system ZFC. Indeed it holds that :

(1) (ZFC + V=L). The ω-language L(A) is an analytic but non-Borel set.

(2) (ZFC + ωL

1 < ω1). The ω-language L(A) is a Π0
2-set.
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We now state the following new result. To prove it we use in particular the above The-

orem 4.11, the link between Wadge games and Wadge reducibility, the Π0
2-completeness

of the regular ω-language (0⋆.1)ω ⊆ {0, 1}ω, the Shoenfield’s Absoluteness Theorem,

and the notion of extensions of a model of ZFC.

THEOREM 4.12. Let B be a Büchi automaton accepting the regular ω-language

(0⋆.1)ω ⊆ {0, 1}ω. Then one can effectively construct a real-time 1-counter Büchi

automaton A such that:

(1) (ZFC + ωL

1 < ω1). Player 2 has a winning strategy F in the Wadge game

W (L(A), L(B)). But F cannot be recursive and not even hyperarithmetical.

(2) (ZFC + ωL

1 = ω1). The Wadge game W (L(A), L(B)) is not determined.

Proof. Let A be a real-time 1-counter Büchi automaton, which can be effectively con-

structed by Theorem 4.11 and satisfying the properties given by this theorem. The

automaton A reads ω-words over a finite alphabet Σ and we can assume, without loss

of generality, that Σ = {0, 1}. On the other hand the ω-language (0⋆.1)ω ⊆ {0, 1}ω

is regular and there is a (deterministic) Büchi automaton B accepting it. Moreover it

is well known that this language L(B) is Π0
2-complete (in every model of ZFC), see

[20, 22].

Consider now a model V1 of (ZFC + ωL

1 < ω1). By Theorem 4.11, in this model

the ω-language L(A) is a Π0
2-set. Thus L(A) ≤W L(B) because the ω-language L(B)

is Π0
2-complete. This implies that Player 2 has a winning strategy F in the Wadge

game W (L(A), L(B)). This strategy is a mapping F : {0, 1}+ → {0, 1} ∪ {s} hence

it can be coded in a recursive manner by an infinite word XF ∈ {0, 1}ω which may

be identified with a subset of the set N of natural numbers. We now claim that this

strategy is not constructible, or equivalently that the set XF ⊆ N does not belong to the

class LV1 of constructible sets in the model V1. Recall that a real-time 1-counter Büchi

automaton A has a finite description to which can be associated, in an effective way,

a unique natural number called its index, so we have a Gödel numbering of real-time

1-counter Büchi automata, see [12, page 369] for such a coding of Turing machines, and

[13, page 162] about Gödel numberings of formulae. We denote Az the real time Büchi

1-counter automaton of index z reading words over {0, 1}. In a similar way we denote

Bz the Büchi automaton of index z reading words over {0, 1}. Then there exist integers

z0 and z′0 such that A = Az0 and B = Bz′

0
. If x ∈ {0, 1}ω is the ω-word written

by Player 1 during a play of a Wadge game W (L(Az), L(Bz′)) and Player 2 follows a

strategy G, the ω-word (x ⋆ G) ∈ ({0, 1, s})ω is defined by (x ⋆ G)(n) = G(x[n]) for

all integers n ≥ 1 and (x ⋆ G)(/s) is obtained from (x ⋆ G) by deleting the letters s,

so that (x ⋆ G)(/s) is the word written by Player 2 at the end of the play. We can now

easily see that the sentence: “G is a winning strategy for Player 2 in the Wadge game

W (L(Az), L(Bz′))” can be expressed by a Π1
2-formula P (z, z′, G) (we assume here

that the reader has some familiarity with this notion which can be found in [19]):

∀x ∈ Σω[ (x ∈ L(Az) and (x ⋆ G)(/s) ∈ L(Bz′)) or

(x /∈ L(Az) ∧ (x ⋆ G)(/s) is infinite ∧ (x ⋆ G)(/s) /∈ L(Bz′))]

Recall that x ∈ L(Az) can be expressed by a Σ1
1-formula (see [9]). And (x ⋆ G)(/s) ∈

L(Bz′) can be expressed by ∃y ∈ Σω(y = (x⋆G)(/s) and y ∈ L(Bz′)), which is also a
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Σ1
1-formula since (x⋆G)(/s) is recursive in x andG. Moreover “(x⋆G)(/s) is infinite ”

means that (x ⋆ G) contains infinitely many letters in {0, 1}; this is an arithmetical

statement in x and G. Finally the formula P (z, z′, G) is a Π1
2-formula.

Towards a contradiction, assume now that the winning strategy F for Player 2 in the

Wadge gameW (L(A), L(B)) belongs to the class LV1 of constructible sets in the model

V1. The relation PF ⊆ N× N defined by PF (z, z
′) iff P (z, z′, F ) is a Π1

2(F )-relation,

i.e. a relation with is Π1
2 with parameter F . By Shoenfield’s Absoluteness Theorem (see

[13, page 490]), the relation PF ⊆ N×N would be absolute for the models LV1 and V1

of ZFC. This means that the set {(z, z′) ∈ N×N | PF (z, z
′)} would be the same set in

the two models LV1 and V1. In particular, the pair (z0, z
′
0) belongs to PF in the model

V1 since F is a w.s. for Player 2 in the Wadge game W (L(A), L(B)). This would imply

that F is also a w.s. for Player 2 in the Wadge game W (L(A), L(B)) in the model LV1 .

But LV1 is a model of ZFC + V=L so in this model the ω-language L(A) is an analytic

but non-Borel set and L(A) ≤W L(B) does not hold. This contradiction shows that the

w.s. F is not constructible in V1. On the other hand every set A ⊆ N which is Π1
2 or

Σ1
2 is constructible, see [13, page 491]. Thus XF is neither a Π1

2-set nor a Σ1
2-set; in

particular, the strategy F is not recursive and not even hyperarithmetical, i.e. not ∆1
1.

Consider now a model V2 of (ZFC + ωL

1 = ω1).

Notice first that Theorem 4.11 (1) is easily extended to models of ( ZFC + ωL

1 = ω1)

since [8, Corollary 4.8] is easily seen to be true if we replace ( ZFC + V=L) by (ZFC +

ωL

1 = ω1): in a model of ( ZFC + ωL

1 = ω1) the largest thin Π1
1-set in Σω is uncountable

and has no perfect subset hence it can not be a Borel set because the class of Borel sets

has the perfect set property. And thus [8, Theorem 5.1] is also true if we replace ( ZFC

+ V=L) by (ZFC + ωL

1 = ω1), because this follows from the fact that the largest thin

Π1
1-set in Σω is not Borel.

Then in the model V2 the ω-language L(A) is an analytic but non-Borel set. Thus

L(A) ≤W L(B) does not hold because the ω-language L(B) is Π0
2-complete. This

implies that Player 2 has no winning strategy in the Wadge game W (L(A), L(B)). We

now claim that Player 1 too has no winning strategy in this Wadge game. Towards a

contradiction assume that Player 1 has a w.s. F ′ in the Wadge game W (L(A), L(B)).
Using Cohen’s method of forcing developed in 1963, we can show that there exists an

extension V3 ⊃ V2 such that V3 is a model of (ZFC + ωL

1 < ω1). The construction of

such a model is due to Levy and presented in [13, page 202]: one can start from the

model V2 of ( ZFC + ωL

1 = ω1) and construct by forcing a generic extension V3 ⊃
V2 in which ωV2

1 is collapsed to ω; in this extension the inequality ωL

1 < ω1 holds.

We can show, as above, that the sentence “G is a winning strategy for Player 1 in the

Wadge game W (L(Az), L(Bz′))” can be expressed by a Π1
2-formula Q(z, z′, G). We

denote QF ′(z, z′) ↔ Q(z, z′, F ′). By Shoenfield’s Absoluteness Theorem, the relation

QF ′ ⊆ N×N would be absolute for the models V2 and V3 of ZFC. Thus (z0, z
′
0) would

belong to QF ′ in V3 and this means that Player 1 would have a w.s. in the Wadge game

W (L(A), L(B)) in the model V3. But V3 is a model of (ZFC + ωL

1 < ω1). Thus in this

model the ω-language L(A) is a Π0
2-set, the relation L(A) ≤W L(B) holds, and Player

2 has a w.s. in the W (L(A), L(B)). This is a contradiction because it is impossible that

both players have a w.s. in the same Wadge game. Finally we have proved that in V2

none of the players has a winning strategy and thus the Wadge game W (L(A), L(B))
is not determined. �
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REMARK 4.13. Every model of ZFC is either a model of (ZFC + ωL

1 < ω1) or a

model of (ZFC + ωL

1 = ω1). Thus there are no models of ZFC in which Player 1 has a

winning strategy in the Wadge game W (L(A), L(B)).

REMARK 4.14. In order to prove Theorem 4.12 we do not need to use any large

cardinal axiom or even the consistency of such an axiom, like the axiom of analytic

determinacy.

§5. Concluding remarks. We have proved that the determinacy of Gale-Stewart

games whose winning sets are accepted by (real-time) 1-counter Büchi automata is

equivalent to the determinacy of (effective) analytic Gale-Stewart games which is known

to be a large cardinal assumption.

On the other hand we have proved a similar result about the determinacy of Wadge

games. We have also obtained an amazing result, proving that one can effectively con-

struct a real-time 1-counter Büchi automaton A and a Büchi automaton B such that

the sentence “the Wadge game W (L(A), L(B)) is determined” is actually independent

from ZFC.

Notice that it is still unknown whether the determinacy of Wadge gamesW (L(A), L(B)),
where A and B are Muller tree automata (reading infinite labelled trees), is provable

within ZFC or needs some large cardinal assumptions to be proved.
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