Foreword

This report explains how to upgrade an Ar.Drone 2 [1] for swarming and services hosting. In other words, it gives the technical information required to easily create a swarm of Ar.Drone 2 sharing a Wi-Fi network. Moreover, it describes the process to install new services and applications on the drone.

To achieve this process, it is necessary to perform several core modifications inside the Ar.Drone 2 operating system.

The authors decline all responsibility in case of any damage or any problem on any device used in the process, and on the usage of the resulting systems.

1 Requirements

Hardware requirements

To put in practice the operations described in this document, several pieces of hardware are required:

• an Ar.Drone 2 [1];

• a Linux base station [2];

• a USB flash drive with at least 8 GB of memory;

• a IEEE 802.11 chip with g/n Wi-Fi and ad-hoc mode support [3].

The specific items used throughout this report are:

• an Ar.Drone 2;

• a computer with a Debian Wheezy Linux distribution [4];

• a Kingston DataTraveler G3 USB key with 8GB of memory [START_REF]DataTraveler G[END_REF];

• an Asus WL-167G Wi-Fi key [6].

Software requirements

Several third-party software packages need to be installed:

• a partition manager like Parted [START_REF] Gnu | [END_REF] that will be used to create a suitable partitions table;

• the partition formatting tools contained in E2fsprogs [START_REF] Ts | E2fsprogs[END_REF] and Dosfstools [START_REF] Baumann | Dosfstools[END_REF];

• the Debootstrap tool [10] that will enable to create a Linux root file system;

• a local DHCP/DNS server/relay like Dnsmasq [START_REF] Kelley | Dnsmasq[END_REF];

• a telnet client that will be used to communicate with the drones;

• the wireless-tools software suite [START_REF] Hp | Linux Wireless Tools[END_REF] to manage the Wi-Fi settings.

Ar.Drone Base System to ArDroneXT

In order to enable an Ar.Drone 2 to be part of a swarm, it is necessary to modify its operating system. To prevent any damage or alteration of the original drone operating system, we will setup the new one on a dedicated USB flash drive. We call ArDroneBS, the original Ar.Drone 2 operating system, and ArDroneXT the version that will be installed on the USB flah drive.

Ar.Drone 2 operating system

The original operating system of the Ar.Drone 2 is a Parrot home-made Linux [2] running on an ARM EABI architecture. This Linux lays on a writable disk partition and it is thus possible to modify it. Nevertheless, modifying the root file system directly could be very damageable in case of mistakes. We will thus install another customized Linux system on a USB flash drive which will be plugged into the drone. The process described below requires root privileges on the computer Linux distribution.

USB flash drive partitions setup

We first create three partitions on the USB flash drive:

• one for the new operating system;

• one for the ARM EBAI cross-compiler (which makes development easier);

• one for users files, scripts, photos and videos.

We setup these partitions as follows:

1. ARDSYS: ext2 file system with 5GB; 2. ARDDEV: ext2 file system with 1GB; 3. ARDUSR: fat32 file system with 2GB.

Usually, USB flash drives are fat32 formatted. However the two first partitions cannot be setup with this kind of file system since it is not compliant with the symbolic links used by Linux (ARDSYS partition) and the ARM cross-compiler (ARDDEV partition). Besides, the drone can only take pictures and record videos on a fat32 file system. Therefore, the third partition (ARDUSR) has to be setup as a fat32 partition.

Please note that the second partition (ARDDEV) is optional and designed for cross-compilation from a x86-64 system to the ARM EABI architecture. We choose to install it directly on the USB flash drive in order to get a device ready to use for both end users and developers. Also, note that several Linux distributions provide such a compiler directly in their packages repository.

In the following commands the USB flash drive is identified as sdb. We first check the original content of the USB flash drive. l i n u x $ p a r t e d / dev / sdb p r i n t Disk / dev / sdb : 7747MB P a r t i t i o n Finally, we format the partitions and label them. l i n u x $ mkfs . e x t 2 -L "ARDSYS" / dev / sdb1 l i n u x $ mkfs . e x t 2 -L "ARDDEV" / dev / sdb2 l i n u x $ mkdosfs -F32 -n "ARDUSR" / dev / sdb3

The USB flash drive is now ready. l i n u x $ p a r t e d / dev / sdb p r i n t . . . Number S t a r t End S i z e Type F i l e system 1 1049kB 5663MB 5662MB primary e x t 2 2 5663MB 6737MB 1074MB primary e x t 2 3 6737MB 7747MB 1010MB primary f a t 3 2

After creating these 3 partitions, we have to mount them (in case the system did not perform this task automatically). l i n u x $ mkdir /mnt/ARDSYS l i n u x $ mkdir /mnt/ARDDEV l i n u x $ mkdir /mnt/ARDUSR l i n u x $ mount -t e x t 2 / dev / sdb1 /mnt/ARDSYS l i n u x $ mount -t e x t 2 / dev / sdb2 /mnt/ARDDEV l i n u x $ mount -t v f a t / dev / sdb3 /mnt/ARDUSR

Installing the ARM EABI compiler (ARDDEV partition)

In order to compile new programs for the drone, we have to get a cross-compiler which runs on a x86-64 architecture and produces an ARM EABI binary code. We can find a light one on the Mentor Graphics website [START_REF]GCC/G++ ARM EABI[END_REF]. This one is used by the Debian community members to compile their own ARM EABI Linux distribution [START_REF]Debian ARM EABI Port[END_REF]. After downloading it, we extract the archive in the ARDDEV partition. l i n u x $ t a r -C /mnt/ARDDEV -x v j f \ arm -2012.09 -64.arm-none-l i n u x -gnueabi-i 6 8 6 -pc-l i n u x -gnu . t a r . bz2

Then, we test the compiler as follows.

l i n u x $ export PATH=$PATH: / mnt/ARDDEV/arm-2012/ b i n / l i n u x $ cd /tmp l i n u x $ echo ' i n t main () { return 0 ; } ' > n o t h i n g . c l i n u x $ arm-none-l i n u x -gnueabi-g c c n o t h i n g . c -o n o t h i n g . e l f l i n u x $ f i l e n o t h i n g . e l f n o t h i n g . e l f : ELF 32-b i t LSB e x e c u t a b l e , ARM, EABI5 v e r s i o n 1 (SYSV) d y n a m i c a l l y l i n k e d (u s e s s h a r e d l i b s) fo r GNU/ Linux 2 . 6 . 1 6 , not s t r i p p e d

The ARDDEV partition is now ready.

2.4 Installing the operating system (ARDSYS partition)

Setting up the root file system

First of all, we have to create a Linux root file system compliant with the ARM EABI processor architecture. We have chosen to install a stable Debian [4] system which provides an ARM compliant architecture called armel. We use the Debootstrap [10] tool to create the root file system. l i n u x $ cd /mnt/ARDSYS l i n u x $ d e b o o t s t r a p --a r c h=armel --f o r e i g n s q u e e z e /mnt/ARDSYS \ h t t p : / / f t p . d e b i a n . o r g / d e b i a n /

Connecting to the drone

The last part of the Deboostrap process has to be done from inside the drone. We thus plug the USB flash drive into the drone and turn the drone on.

Then, we have to connect our Linux station to the drone. The drone provides a Wi-Fi access point with no encryption and a DHCP server. Its network interface uses the IP address 192.168.1.1, therefore we can use the 192.168.1.2 for the Wi-Fi chip of the Linux station (or another one in the sub-network 192.168.1.0/24) or even call the DHCP server of the drone to automatically get an IP address. We have also to turn off the power management mode of our Wi-Fi chip in order to increase the quality of the connectivity.

Note that the hardware address (MAC), the channel number and the ESSID of the network can vary. In addition, we have to turn off the network daemon manager on our Linux computer (e.g. NetworkManager [START_REF] Gnome | NetworkManager[END_REF] on Debian) in order to manually configure our device as explained above. Most of Linux distributions have a network daemon program in order to manage network connections (e.g. Ethernet and Wi-Fi). Please refer to your Linux distribution documentation in order to know how to turn the relative network daemon off.

The corresponding commands are listed hereafter. l i n u x $ i f c o n f i g wlan0 down l i n u x $ i f c o n f i g wlan0 mode managed l i n u x $ i f c o n f i g wlan0 up l i n u x $ i w l i s t wlan0 s c an wlan0 Scan completed : . . . C e l l xx -Address : 9 0 : 0 3 : B0 : 4 0 :

. . . l i n u x $ i w c o n f i g wlan0 power o f f l i n u x $ i w c o n f i g
wlan0 c h a n n e l 1 l i n u x $ i w c o n f i g wlan0 e s s i d ardrone_000 ap 9 0 : 0 3 : B0 : 4 0 : 9 9 :AB l i n u x $ i w c o n f i g wlan0 wlan0 IEEE 8 0 2 . 1 1 bg ESSID : " ardrone_000 " Mode : Managed Frequency : x GHz A c c e s s Point : 9 0 : 0 3 : B0 : 4 0 : 9 9 :AB . . . l i n u x $ d h c l i e n t wlan0 # or l i n u x $ i f c o n f i g wlan0 1 9 2 . 1 6 8 . 1 . 2 l i n u x $ i f c o n f i g wlan0 wlan0 Link encap : E t h e r n e t HWaddr 0 0 : 1 1 : f 0 : 7 c : f e : 7 7 i n e t adr : 1 9 2 . 1 6 8 . 1 . 2 Bcast : 1 9 2 . 1 6 8 . 1 . 2 5 5

Masque : 2 5 5 . 2 5 5 . 2 5 5 . 0 . . . We can now check the connectivity from the base station to the drone with a ping. l i n u x $ p i n g -c1 1 9 2 . 1 6 8 . 1 . 1 PING 1 9 2 . 1 6 8 . 1 . 1 (1 9 2 . 1 6 8 . 1 . 1) 5 6 (8 4) b y t e s o f data . 64 b y t e s from 1 9 2 . 1 6 8 . 1 . 1 : icmp_req=1 t t l =64 time =2.07 ms ---1 9 2 . 1 6 8 . 1 . 1 p i n g s t a t i s t i c s ---1 p a c k e t s t r a n s m i t t e d , 1 r e c e i v e d , 0% p a c k e t l o s s , time 0ms r t t min/ avg /max/mdev = 2 . 0 7 6 / 2 . 0 7 6 / 2 . 0 7 6 / 0 . 0 0 0 ms Then, we have to get a root shell on the drone; we connect by using the telnet server which it runs natively. l i n u x $ t e l n e t 1 9 2 . 1 6 8 .

Finishing the ARDSYS debootstrap process

From the drone root shell, we have to switch to our ARDSYS partition system in order to finish the debootstrap process. The USB flash drive is identified by the drone as sda. The new Linux operating system is now fully installed and ready to run.

ARDSYS auto-boot

We are now going to modify the core init scripts of the drone and ARDSYS partition in order to switch automatically from the drone operating system to ARDSYS if the USB flash drive is plugged at drone startup time. The startup process is summarized in Figure 1. Then, we create the init script which mounts devices into the ARDSYS partition and chroots to it. Finally, the script calls the init script of the ARDUSR partition. This last script will be developed in the next section. a r d r o n e $ touch /mnt/ i n i t a r d r o n e $ chmod 777 /mnt/ i n i t

The content of the file /mnt/init has to be as follows.

#! / b i n / sh

s l e e p 3 ; IRD=$ (dirname $ (r e a d l i n k -f $0)) ; mount -t tmpfs -o s i z e =8M tmpfs $IRD/tmp ; mount --bind / dev $IRD/ dev ; mount --bind / p r o c $IRD/ p r o c ; mount --bind / s y s $IRD/ s y s ; mount --bind / dev / p t s $IRD/ dev / p t s ; mount / dev / sda3 $IRD/mnt ; c h r o o t $IRD /mnt/ i n i t ;

Then, we test the init script process by rebooting the drone and checking if ARDSYS directories are well mounted after drone startup.

a r d r o n e $ r e b o o t

Once the drone has started, we reconnect the Linux base station to the drone as explained in paragraph 2.4.2. Then, we get a telnet shell on the drone. l i n u x $ t e l n e t 1 9 2 . 1 6 8 . 1 . 1

We can check that all the directories are properly mounted. a r d r o n e $ mount / dev / sda1 on /mnt type e x t 2 tmpfs on /mnt/tmp type tmpfs dev on /mnt/ dev type tmpfs p r o c on /mnt/ p r o c type p r o c s y s on /mnt/ s y s type s y s f s d e v p t s on /mnt/ dev / p t s type d e v p t s / dev / sda3 on /mnt/mnt type v f a t

The ARDSYS auto-boot process is now complete.

ArDroneXT customization

ARDSYS configuration

There are some modifications that can be applied to the ARDSYS partition.

Upgrading packages repository

f i l e / e t c / a p t / s o u r c e s . l i s t deb h t t p : / / f t p . f r . d e b i a n . o r g / d e b i a n / s q u e e z e main c o n t r i b non-f r e e deb-s r c h t t p : / / f t p . f r . d e b i a n . o r g / d e b i a n / s q u e e z e main c o n t r i b non-f r e e deb h t t p : / / s e c u r i t y . d e b i a n . o r g / s q u e e z e / u p d a t e s main c o n t r i b non-f r e e deb-s r c h t t p : / / s e c u r i t y . d e b i an . o r g / s q u e e z e / u p d at e s main c o n t r i b non-f r e e

Changing host name

f i l e / e t c / hostname ArDroneXT

Customizing telnet connection message

f i l e / e t c / i s s u e |----------------------| |-My Wonderful ArDrone -| |----------------------|

Defining shell init

f i l e / r o o t / . b a s h r c # c o n f i g u r e as you w i s h

We also need to create a script in order to directly launch a root shell. It will be used in the next section. This script is called sroot and has to be installed in the /bin of the ARDSYS partition. We also need to create scripts in order to halt and reboot the drone. Indeed, the operating system in the ARDSYS partition (i.e. ArDroneXT) cannot perform these tasks directly, their use is reserved to the core drone operating system. Calling halt or reboot from the ARDSYS partition will not have any effect. Therefore, we use the local telnet server to send instructions to the original base system of the drone. The script will be called sreturn and will be placed in the /bin of the ARDSYS partition. The content of the file /mnt/bin/sreturn has to be as follows.

#! / b i n / sh i f [$# -eq 0] then
/ b i n / busybox t e l n e t 1 2 7 . 0 . 0 . 1 ; e l s e echo "$ * ; e x i t " | n e t c a t 1 2 7 . 0 . 0 . 1 2 3 ; f i

ARDUSR init script

We now have to create a user init script in the ARDUSR partition that will be launched by ArDroneXT just after executing the chroot. This script will enable to launch services at the drone startup time. It is suitable for instance to:

1. set the drone hostname; 2. launch a telnet server inside the ARDSYS partition (port 2323 for instance); 3. enable the drone to communicate with internet to perform some packages installation.

The telnet server will make it possible to run a root shell directly on ArDroneXT without passing by the original drone base system (i.e. ArDroneBS).

Here is an example of such a script which is installed in ARDUSR/init. #! / b i n / b a s h TELNET_PORT=2323; GATEWAY_IP= 1 9 2 . 1 6 8 . 1 . 2 ; hostname $ (cat / e t c / hostname) ; / b i n / busybox t e l n e t d -p ${TELNET_PORT} -l ' / b i n / s r o o t ' ; r o u t e add d e f a u l t gw ${GATEWAY_IP} ; echo " nameserver ␣${GATEWAY_IP}" > / e t c / r e s o l v . c o n f ;

We can also install new packages. For instance, we can install Python [START_REF]Python[END_REF].

ArDroneXT$ apt-g e t i n s t a l l python

It is of course possible to install more packages if needed.

Ad-hoc networking

In this section we modify the ARDUSR init script in order to force the drone to join a specific ad-hoc network. This feature enables to create a swarm of several Ar.Drone 2 which shares the same Wi-Fi network.

We first have to install wireless-tools [START_REF] Hp | Linux Wireless Tools[END_REF] in order to configure the Wi-Fi connection.

ArDroneXT$ apt-g e t i n s t a l l w i r e l e s s -t o o l s

ARDUSR init script upgrade

We now upgrade the ARDUSR init script in order to force the drone to join a pre-existing ad-hoc network with a predefined IP address. We also need to enable the broadcast ICMP reply (i.e. ping reply) on the drone in order to check ad-hoc network peers status. By default, the drone ignores ICMP requests sent in broadcast. The resulting script is detailed hereafter. We can create a DHCP server on our Linux base station and force the drone to use it in order to get its network configuration automatically at startup. However we will first have to bypass the original drone DHCP server. The resulting script is given bellow. We can setup the DHCP server on the Linux base station with dnsmasq [START_REF] Kelley | Dnsmasq[END_REF]. In the following example, our Linux base station has a wireless interface called wlan0 which IP address is set to 192.168.1.254. l i n u x $ / u s r / s b i n / dnsmasq --i n t e r f a c e=wlan0 \ --s t r i c t -o r d e r \ --expand-h o s t s \ --domain="ArDroneXT" \ --dhcp-r a n g e = 1 9 2 . 1 6 8 . 1 . 1 0 , 1 9 2 . 1 6 8 . 1 . 1 0 0 , 2 h \ --dhcp-o p t i o n=" o p t i o n : r o u t e r , 1 9 2 . 1 6 8 . 1 . 2 5 4 "

Ad-Hoc network creation

Then, we just have to turn the drone on and to configure the Wi-Fi chip of the base station to join the ad-hoc network. Please note that it is recommended that the Linux base station initiates the ad-hoc network to prevent any drone join problem. Indeed, we have noticed that the drone sometimes encounters some problems to init a new ad-hoc network. This problem stills unresolved for the moment. l i n u x $ i f c o n f i g wlan0 down l i n u x $ i w c o n f i g wlan0 mode ad-hoc l i n u x $ i w c o n f i g wlan0 e s s i d ArDroneXT l i n u x $ i f c o n f i g wlan0 up l i n u x $ i f c o n f i g wlan0 1 9 2 . 1 6 8 . 1 . 2 5 4 6 Supporting ARM EABI (using ARDSYS partition without drone)

This section enables to run programs directly inside the ARDSYS partition without using a drone.

The cross-execution problem

As explained above, the architecture of programs in ARDSYS is ARM EABI compliant. There is a strong probability that our Linux base station lays on a different processor architecture like x86_64 for instance. Consequently, it is theoretically impossible to launch ARDSYS programs directly on our Linux base station.

However, it is possible to use an emulator in order to solve the problem. A well known solution is QEMU [START_REF] Bellard | QEMU[END_REF]. It can emulate a lot of architectures including ARM EABI. After installing QEMU on our Linux base station, we will then be able to run ARM EABI programs directly.

For example, we create a simple ARM EABI executable thanks to our ARDDEV partition as follows. l i n u x $ export PATH=$PATH: / mnt/ARDDEV/arm-2012/ b i n / l i n u x $ cd /tmp l i n u x $ echo "#i n c l u d e ␣<s t d i o . h>" > h e l l o . c l i n u x $ echo ' i n t main () { p r i n t f (" I t ␣ works \n") ; return 0 ; } ' >> h e l l o . c l i n u x $ arm-none-l i n u x -gnueabi-g c c h e l l o . c -o h e l l o . e l f l i n u x $ f i l e h e l l o . e l f h e l l o . e l f : ELF 32-b i t LSB e x e c u t a b l e , ARM, EABI5 v e r s i o n 1 (SYSV) d y n a m i c a l l y l i n k e d (u s e s s h a r e d l i b s) l i n u x $. / h e l l o . e l f . / h e l l o . e l f : cannot e x e c u t e b i n a r y f i l e : i n v a l i d a r c h i t e c t u r e fo r exec () As we can see, we cannot run the hello.elf executable because of its ARM EABI architecture. We use QEMU to bypass the problem. l i n u x $ qemu-arm . / h e l l o . e l f / l i b / ld-l i n u x . s o . 3 : No such f i l e o r d i r e c t o r y

The error we get is due to the fact that the hello.elf program uses shared libraries which are not installed on our Linux base station. We thus have to compile our program in static mode to solve this issue. l i n u x $ arm-none-l i n u x -gnueabi-g c c h e l l o . c --s t a t i c -o h e l l o . e l f l i n u x $ f i l e h e l l o . e l f h e l l o . e l f : ELF 32-b i t LSB e x e c u t a b l e , ARM, EABI5 v e r s i o n 1 (SYSV) s t a t i c a l l y l i n k e d l i n u x $ qemu-arm . / h e l l o . e l f I t works

Applying cross-execution to ARDSYS

It is possible to adapt the previous solution to the whole ARDSYS partition in order to support the ARM EABI architecture directly on our Linux base station. The trick is to indicate to our system that it has to use QEMU for all ARM EABI programs. Most Linux distributions enable this binding when QEMU is installed. If your Linux distribution does not perform this action, please refer to Linux kernel module binfmt_misc [START_REF]Binary Formats Kernel Support[END_REF].

Then, we have just to perform a chroot inside ARDSYS. Please note that a chroot implies a file system isolation, thus we have to copy the QEMU executable inside the ARDSYS partition. We also have to use the static version of QEMU as explained in section 6.1. l i n u x $ f i l e $ (which qemu-arm) qemu-arm : ELF 64-b i t LSB e x e c u t a b l e , x86 -64 , v e r s i o n 1 (GNU/ Linux) d y n a m i c a l l y l i n k e d (u s e s s h a r e d l i b s) l i n u x $ f i l e $ (which qemu-arm-s t a t i c) qemu-arm-s t a t i c : ELF 64-b i t LSB e x e c u t a b l e , x86 -64 , v e r s i o n 1 (GNU/ Linux) s t a t i c a l l y l i n k e d

We copy the static version of the executable inside the ARDSYS partition. l i n u x $ cp $ (which qemu-arm-s t a t i c) /mnt/ARDSYS/ u s r / b i n / Now we can mount sub-directories and chroot in the same way we would have done if using a drone. l i n u x $ mount --bind / dev /mnt/ARDSYS/ dev l i n u x $ mount --bind / p r o c /mnt/ARDSYS/ p r o c l i n u x $ mount --bind / s y s /mnt/ARDSYS/ s y s l i n u x $ mount --bind / dev / p t s /mnt/ARDSYS/ dev / p t s l i n u x $ c h r o o t /mnt/ARDSYS ArDroneXT$ Then we can run any ARM EABI application. Please not that we first have to call the DHCP server because the network configuration (DNS server, default gateway, etc.) is not inherited when chrooting.

ArDroneXT$ d h c l i e n t e t h 0 # run any commands

1 . 1

 11 Trying 1 9 2 . 1 6 8 . 1 . 1 . . . Connected t o 1 9 2 . 1 6 8 . 1 . 1 . Escape C h a r a c t e r i s ' ^] ' . BusyBox v1 . 1 4 . 0 () b u i l t -i n s h e l l (ash) Enter ' help ' fo r a l i s t o f b u i l t -i n commands . a r d r o n e $

 a r d r o n e $ mount / dev / sda1 /mnt a r d r o n e $ mount --bind / dev /mnt/ dev a r d r o n e $ mount --bind / p r o c /mnt/ p r o c a r d r o n e $ mount --bind / s y s /mnt/ s y s a r d r o n e $ mount --bind / dev / p t s /mnt/ dev / p t s a r d r o n e $ c h r o o t /mnt We finish the debootstrap process from within the ARDSYS partition. a r d s y s $ cd d e b o o t s t r a p a r d s y s $. / d e b o o t s t r a p --second-s t a g e a r d s y s $ exi t We also copy the BusyBox [16] program of the original Linux to our new one. BusyBox provides light versions of several standard Linux tools. a r d r o n e $ cp / b i n / busybox /mnt/ b i n /

Figure 1 :

 1 Figure 1: ArDroneXT startup

 a r d r o n e $ touch /mnt/ b i n / s r o o t a r d r o n e $ chmod 777 /mnt/ b i n / s r o o t The content of the file /mnt/bin/sroot has to be as follows. #! / b i n / sh i f [$# -eq 0] then su r o o t -c / b i n / bash ; e l s e su r o o t -c "$ * " ; f i

 a r d r o n e $ touch /mnt/ b i n / s r e t u r n a r d r o n e $ chmod 777 /mnt/ b i n / s r e t u r n

 cat / e t c / hostname) ; i f c o n f i g ath0 down ; i w c o n f i g ath0 mode ad-hoc ; i w c o n f i g ath0 e s s i d ${ESSID } ; i w c o n f i g ath0 commit ; i f c o n f i g ath0 up ; i f c o n f i g ath0 $IP ; echo 0 > / p r o c / s y s / n e t / i p v 4 / icmp_echo_ignore_broadcasts ; / b i n / busybox t e l n e t d -p ${TELNET_PORT} -l ' / b i n / s r o o t ' ; r o u t e add d e f a u l t gw ${GATEWAY_IP} ; echo " nameserver ␣${GATEWAY_IP}" > / e t c / r e s o l v . c o n f ;

 cat / e t c / hostname) ; i p t a b l e s -t f i l t e r -A OUTPUT -p udp --s p o r t 67 -j DROP; i p t a b l e s -t f i l t e r -A INPUT -p udp --d p o r t 67 -j DROP; i f c o n f i g ath0 down ; i w c o n f i g ath0 mode ad-hoc ; i w c o n f i g ath0 e s s i d ${ESSID } ; i w c o n f i g ath0 commit ; i f c o n f i g ath0 up ; d h c l i e n t ath0 ; echo 0 > / p r o c / s y s / n e t / i p v 4 / icmp_echo_ignore_broadcasts ; / b i n / busybox t e l n e t d -p ${TELNET_PORT} -l ' / b i n / s r o o t ' ;

Table :

 : Unless enough free and un-partitioned space is available on the USB flash drive, it is necessary to erase all previous data before creating the new partitions.

	l i n u x $ p a r t e d / dev / sdb rm 1	
	l i n u x $ p a r t e d / dev / sdb p r i n t	
	. . .				
	Number S t a r t	End	S i z e	Type	F i l e system
	Then, we create the partitions table.	
	l i n u x $ p a r t e d / dev / sdb mkpart primary 1 5663
	l i n u x $ p a r t e d / dev / sdb mkpart primary 5663 6737
	l i n u x $ p a r t e d / dev / sdb mkpart primary 6737 7747
			msdos		
	Number S t a r t	End	S i z e	Type	F i l e system
	1	1049kB 7747MB 7746MB primary f a t 3 2

 / i n i t . d/ x t S t a r t a r d r o n e $ chmod 777 / e t c / i n i t . d/ x t S t a r t a r d r o n e $ cp / e t c / i n i t . d/ r c S / e t c / i n i t . d/ r c S . back a r d r o n e $ echo ' / e t c / i n i t . d/ x t S t a r t &' >> / e t c / i n i t . d/ r c S The content of the file /etc/init.d/xtStart has to be as follows.

	#! / b i n / sh
	s l e e p 4 ;
	i f [-e / dev / sda]
	then
	mount / dev / sda1 /mnt ;
	/mnt/ i n i t ;
	f i

ARDSYS upgrade

Now we plug the USB flash drive and start the drone. After enabling the Wi-Fi connection, we have to contact our new telnet server.

$ t e l n e t 1 9 2 . 1 6 8 . 1 . 1 2323 |----------------------- ----------------------| ArDroneXT$

We have to enable the drone to communicate with internet in order to install new packages. To achieve this task, we need (on the Linux base station):

• to enable IP forwarding;

• to start a DNS server relay;

• to set a NAT masquerading.

The require commands are listed bellow. l i n u x $ echo 1 > / p r o c / s y s / n e t / i p v 4 / ip_forward l i n u x $ dnsmasq l i n u x $ i p t a b l e s -t nat -A POSTROUTING --s o u r c e 1 9 2 . 1 6 8 . 1 . 0 / 2 4 \ -o e t h 0 -j MASQUERADE;

Now the drone can communicate with internet.

ArDroneXT$ p i n g -c1 www. l a b r i . f r PING www3 . l a b r i . f r (1 4 7 . 2 1 0 . 8 . 5 9) 5 6 (8 4) b y t e s o f data . 64 b y t e s from www3 . l a b r i . f r (1 4 7 . 2 1 0 . 8 . 5 9) : icmp_req=1 t t l =61 time =3.84 ms ---www3 . l a b r i . f r p i n g s t a t i s t i c s ---1 p a c k e t s t r a n s m i t t e d , 1 r e c e i v e d , 0% p a c k e t l o s s , time 0ms r t t min/ avg /max/mdev = 3 . 8 4 5 / 3 . 8 4 5 / 3 . 8 4 5 / 0 . 0 0 0 ms We can now perform a Debian update/upgrade. ArDroneXT$ apt-g e t update ArDroneXT$ apt-g e t upgrade ArDroneXT$ apt-g e t d i s t -upgrade ArDroneXT$ apt-g e t a u t o c l e a n ArDroneXT$ apt-g e t autoremove

If we choose the DHCP configuration to set the drone IP address automatically, we have to launch the dnsmasq tool as explained in the previous section.

Finally, we can test if several drones are part of the swarm by using a broadcast ping. Each drone that is part of the ad-hoc network should reply and thus be visible. In the following example, 2 drones are part of the network (192.168. 1.10 and 192.168

Swarm of several Ar.Drone 2

In order to configure other drones, we have, for each one:

• to clone the USB flash drive;

• to create the /etc/init.d/xtStart script in the drone root file system as explained in section 2.5;

• to upgrade the /etc/init.d/rcS script in the drone root file system as explained in section 2.5;

• optionally:

to change the drone IP in ARDUSR/init if it is set in this file; -to customize the hostname of the drone.

To clone a USB flash drive we can use the dd [START_REF]Coreutils[END_REF] software. In the following example, the original USB flash drive is sdb and the new one is sdc.