
HAL Id: hal-00916815
https://hal.science/hal-00916815v3

Submitted on 9 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ArDroneXT - Ar.Drone 2 eXTension for swarming and
service hosting

Vincent Autefage, Serge Chaumette

To cite this version:
Vincent Autefage, Serge Chaumette. ArDroneXT - Ar.Drone 2 eXTension for swarming and service
hosting. [Research Report] LaBRI - Laboratoire Bordelais de Recherche en Informatique. 2013. �hal-
00916815v3�

https://hal.science/hal-00916815v3
https://hal.archives-ouvertes.fr

ArDroneXT

Ar.Drone 2 eXTension for swarming and service hosting

Operating System Setup Guide - Release 3

Vincent Autefage

vincent.autefage@labri.fr

Serge Chaumette

serge.chaumette@labri.fr

LaBRI - Univ.Bordeaux

This background image is the property of

vincent.autefage@labri.fr
serge.chaumette@labri.fr

ArDroneXT - Swarming V. Autefage & S. Chaumette

Contents

Foreword 3

1 Requirements 3
1.1 Hardware requirements . 3
1.2 Software requirements . 3

2 Ar.Drone Base System to ArDroneXT 4
2.1 Ar.Drone 2 operating system . 4
2.2 USB flash drive partitions setup . 4
2.3 Installing the ARM EABI compiler (ARDDEV partition) 5
2.4 Installing the operating system (ARDSYS partition) 6

2.4.1 Setting up the root file system . 6
2.4.2 Connecting to the drone . 6
2.4.3 Finishing the ARDSYS debootstrap process . 8

2.5 ARDSYS auto-boot . 8

3 ArDroneXT customization 11
3.1 ARDSYS configuration . 11
3.2 ARDUSR init script . 12
3.3 ARDSYS upgrade . 13

4 Ad-hoc networking 14
4.1 ARDUSR init script upgrade . 14
4.2 Ad-Hoc network creation . 15

5 Swarm of several Ar.Drone 2 16

6 Supporting ARM EABI (using ARDSYS partition without drone) 17
6.1 The cross-execution problem . 17
6.2 Applying cross-execution to ARDSYS . 18

References 19

2/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

Foreword

This report explains how to upgrade an Ar.Drone 2 [1] for swarming and services hosting. In other
words, it gives the technical information required to easily create a swarm of Ar.Drone 2 sharing a
Wi-Fi network. Moreover, it describes the process to install new services and applications on the drone.

To achieve this process, it is necessary to perform several core modifications inside the Ar.Drone 2
operating system.

The authors decline all responsibility in case of any damage or any problem on any
device used in the process, and on the usage of the resulting systems.

1 Requirements

1.1 Hardware requirements

To put in practice the operations described in this document, several pieces of hardware are required:

• an Ar.Drone 2 [1];

• a Linux base station [2];

• a USB flash drive with at least 8 GB of memory;

• a IEEE 802.11 chip with g/n Wi-Fi and ad-hoc mode support [3].

The specific items used throughout this report are:

• an Ar.Drone 2;

• a computer with a Debian Wheezy Linux distribution [4];

• a Kingston DataTraveler G3 USB key with 8GB of memory [5];

• an Asus WL-167G Wi-Fi key [6].

1.2 Software requirements

Several third-party software packages need to be installed:

• a partition manager like Parted [7] that will be used to create a suitable partitions table;

• the partition formatting tools contained in E2fsprogs [8] and Dosfstools [9];

• the Debootstrap tool [10] that will enable to create a Linux root file system;

• a local DHCP/DNS server/relay like Dnsmasq [11];

• a telnet client that will be used to communicate with the drones;

• the wireless-tools software suite [12] to manage the Wi-Fi settings.

3/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

2 Ar.Drone Base System to ArDroneXT

In order to enable an Ar.Drone 2 to be part of a swarm, it is necessary to modify its operating
system. To prevent any damage or alteration of the original drone operating system, we will setup
the new one on a dedicated USB flash drive. We call ArDroneBS, the original Ar.Drone 2 operating
system, and ArDroneXT the version that will be installed on the USB flah drive.

2.1 Ar.Drone 2 operating system

The original operating system of the Ar.Drone 2 is a Parrot home-made Linux [2] running on an
ARM EABI architecture. This Linux lays on a writable disk partition and it is thus possible to modify
it. Nevertheless, modifying the root file system directly could be very damageable in case of mistakes.
We will thus install another customized Linux system on a USB flash drive which will be plugged into
the drone. The process described below requires root privileges on the computer Linux distribution.

2.2 USB flash drive partitions setup

We first create three partitions on the USB flash drive:

• one for the new operating system;

• one for the ARM EBAI cross-compiler (which makes development easier);

• one for users files, scripts, photos and videos.

We setup these partitions as follows:

1. ARDSYS: ext2 file system with 5GB;

2. ARDDEV: ext2 file system with 1GB;

3. ARDUSR: fat32 file system with 2GB.

Usually, USB flash drives are fat32 formatted. However the two first partitions cannot be setup
with this kind of file system since it is not compliant with the symbolic links used by Linux (ARDSYS
partition) and the ARM cross-compiler (ARDDEV partition). Besides, the drone can only take pictures
and record videos on a fat32 file system. Therefore, the third partition (ARDUSR) has to be setup as
a fat32 partition.

Please note that the second partition (ARDDEV) is optional and designed for cross-compilation
from a x86-64 system to the ARM EABI architecture. We choose to install it directly on the USB flash
drive in order to get a device ready to use for both end users and developers. Also, note that several
Linux distributions provide such a compiler directly in their packages repository.

In the following commands the USB flash drive is identified as sdb. We first check the original
content of the USB flash drive.

l i nux$ parted /dev/sdb pr in t
Disk /dev/sdb : 7747MB
Par t i t i on Table : msdos
Number Sta r t End S i z e Type F i l e system
1 1049kB 7747MB 7746MB primary fa t32

4/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

Unless enough free and un-partitioned space is available on the USB flash drive, it is necessary to
erase all previous data before creating the new partitions.

l i nux$ parted /dev/sdb rm 1
l inux$ parted /dev/sdb pr in t
. . .
Number Sta r t End S i z e Type F i l e system

Then, we create the partitions table.

l i nux$ parted /dev/sdb mkpart primary 1 5663
l inux$ parted /dev/sdb mkpart primary 5663 6737
l inux$ parted /dev/sdb mkpart primary 6737 7747

Finally, we format the partitions and label them.

l inux$ mkfs . ext2 −L "ARDSYS" /dev/sdb1
l inux$ mkfs . ext2 −L "ARDDEV" /dev/sdb2
l inux$ mkdosfs −F32 −n "ARDUSR" /dev/sdb3

The USB flash drive is now ready.

l inux$ parted /dev/sdb pr in t
. . .
Number Sta r t End S i z e Type F i l e system
1 1049kB 5663MB 5662MB primary ext2
2 5663MB 6737MB 1074MB primary ext2
3 6737MB 7747MB 1010MB primary fa t32

After creating these 3 partitions, we have to mount them (in case the system did not perform this
task automatically).

l i nux$ mkdir /mnt/ARDSYS
l inux$ mkdir /mnt/ARDDEV
l inux$ mkdir /mnt/ARDUSR
l inux$ mount −t ext2 /dev/sdb1 /mnt/ARDSYS
l inux$ mount −t ext2 /dev/sdb2 /mnt/ARDDEV
l inux$ mount −t v f a t /dev/sdb3 /mnt/ARDUSR

2.3 Installing the ARM EABI compiler (ARDDEV partition)

In order to compile new programs for the drone, we have to get a cross-compiler which runs on a
x86-64 architecture and produces an ARM EABI binary code. We can find a light one on the Mentor

5/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

Graphics website [13]. This one is used by the Debian community members to compile their own ARM
EABI Linux distribution [14]. After downloading it, we extract the archive in the ARDDEV partition.

l inux$ ta r −C /mnt/ARDDEV −xv j f \
arm−2012.09−64.arm−none−l inux−gnueabi−i686−pc−l inux−gnu . ta r . bz2

Then, we test the compiler as follows.

l i nux$ export PATH=$PATH:/mnt/ARDDEV/arm−2012/bin /
l inux$ cd /tmp
l inux$ echo ’ i n t main (){ return 0 ; } ’ > nothing . c
l inux$ arm−none−l inux−gnueabi−gcc nothing . c −o nothing . e l f
l i nux$ f i l e nothing . e l f
nothing . e l f : ELF 32−b i t LSB executable , ARM, EABI5 ve r s i on 1 (SYSV)
dynamical ly l i nked (uses shared l i b s)
for GNU/Linux 2 . 6 . 1 6 , not s t r i pped

The ARDDEV partition is now ready.

2.4 Installing the operating system (ARDSYS partition)

2.4.1 Setting up the root file system

First of all, we have to create a Linux root file system compliant with the ARM EABI processor
architecture. We have chosen to install a stable Debian [4] system which provides an ARM compliant
architecture called armel. We use the Debootstrap [10] tool to create the root file system.

l inux$ cd /mnt/ARDSYS
l inux$ debootstrap −−arch=armel −−f o r e i g n squeeze /mnt/ARDSYS \

http :// f tp . debian . org /debian /

2.4.2 Connecting to the drone

The last part of the Deboostrap process has to be done from inside the drone. We thus plug the
USB flash drive into the drone and turn the drone on.

Then, we have to connect our Linux station to the drone. The drone provides a Wi-Fi access point
with no encryption and a DHCP server. Its network interface uses the IP address 192.168.1.1, therefore
we can use the 192.168.1.2 for the Wi-Fi chip of the Linux station (or another one in the sub-network
192.168.1.0/24) or even call the DHCP server of the drone to automatically get an IP address. We
have also to turn off the power management mode of our Wi-Fi chip in order to increase the quality
of the connectivity.

Note that the hardware address (MAC), the channel number and the ESSID of the network can
vary. In addition, we have to turn off the network daemon manager on our Linux computer (e.g.
NetworkManager [15] on Debian) in order to manually configure our device as explained above. Most
of Linux distributions have a network daemon program in order to manage network connections (e.g.

6/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

Ethernet and Wi-Fi). Please refer to your Linux distribution documentation in order to know how to
turn the relative network daemon off.

The corresponding commands are listed hereafter.

l i nux$ i f c o n f i g wlan0 down
l inux$ i f c o n f i g wlan0 mode managed
l inux$ i f c o n f i g wlan0 up
l inux$ i w l i s t wlan0 scan
wlan0 Scan completed :
. . .

Ce l l xx − Address : 9 0 : 0 3 :B0 : 4 0 : 9 9 :AB
Channel : 1
Frequency : x GHz (Channel x)
Qual i ty=xx/xx S igna l l e v e l=x dBm
Encryption key : o f f
ESSID : "ardrone_000"
Bit Rates : 1 Mb/ s ; 2 Mb/ s ; 5 ,5Mb/ s ;

6 Mb/ s ; 9 Mb/ s ; 11 Mb/ s ;
12 Mb/ s ; 18 Mb/ s ; 24Mb/ s ;
36 Mb/ s ; 48 Mb/ s ; 54 Mb/ s

Mode : Master
. . .
l i nux$ iwcon f i g wlan0 power o f f
l i nux$ iwcon f i g wlan0 channel 1
l inux$ iwcon f i g wlan0 e s s i d ardrone_000 ap 90 : 0 3 :B0 : 4 0 : 9 9 :AB
l inux$ iwcon f i g wlan0
wlan0 IEEE 802.11 bg ESSID : "ardrone_000"

Mode :Managed Frequency : x GHz Access Point : 9 0 : 0 3 :B0 : 4 0 : 9 9 :AB
. . .
l i nux$ dhc l i e n t wlan0
or
l i nux$ i f c o n f i g wlan0 192 . 1 6 8 . 1 . 2

l inux$ i f c o n f i g wlan0
wlan0 Link encap : Ethernet HWaddr 0 0 : 1 1 : f 0 : 7 c : f e : 77

i n e t adr : 1 9 2 . 1 6 8 . 1 . 2 Bcast : 1 9 2 . 1 6 8 . 1 . 2 5 5 Masque : 2 5 5 . 2 5 5 . 2 5 5 . 0
. . .

We can now check the connectivity from the base station to the drone with a ping.

l inux$ ping −c1 192 . 1 6 8 . 1 . 1
PING 192 . 1 6 8 . 1 . 1 (1 9 2 . 1 6 8 . 1 . 1) 56(84) bytes o f data .
64 bytes from 19 2 . 1 6 8 . 1 . 1 : icmp_req=1 t t l =64 time=2.07 ms

−−− 192 . 1 6 8 . 1 . 1 ping s t a t i s t i c s −−−

1 packets transmitted , 1 rece ived , 0% packet l o s s , time 0ms
r t t min/avg/max/mdev = 2 .076/2 .076/2 .076/0 .000 ms

7/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

Then, we have to get a root shell on the drone; we connect by using the telnet server which it runs
natively.

l i nux$ t e l n e t 1 9 2 . 1 6 8 . 1 . 1
Trying 1 9 2 . 1 6 8 . 1 . 1 . . .
Connected to 1 9 2 . 1 6 8 . 1 . 1 .
Escape Character i s ’ ^] ’ .

BusyBox v1 . 1 4 . 0 () bu i l t−in s h e l l (ash)
Enter ’ help ’ for a l i s t o f bu i l t−in commands .

ardrone$

2.4.3 Finishing the ARDSYS debootstrap process

From the drone root shell, we have to switch to our ARDSYS partition system in order to finish the
debootstrap process. The USB flash drive is identified by the drone as sda.

ardrone$ mount /dev/ sda1 /mnt
ardrone$ mount −−bind /dev /mnt/dev
ardrone$ mount −−bind /proc /mnt/proc
ardrone$ mount −−bind / sys /mnt/ sys
ardrone$ mount −−bind /dev/ pts /mnt/dev/ pts
ardrone$ chroot /mnt

We finish the debootstrap process from within the ARDSYS partition.

ardsys$ cd debootstrap
ardsys$. / debootstrap −−second−s tage
ardsys$ exit

We also copy the BusyBox [16] program of the original Linux to our new one. BusyBox provides
light versions of several standard Linux tools.

ardrone$ cp /bin /busybox /mnt/bin /

The new Linux operating system is now fully installed and ready to run.

2.5 ARDSYS auto-boot

We are now going to modify the core init scripts of the drone and ARDSYS partition in order to
switch automatically from the drone operating system to ARDSYS if the USB flash drive is plugged
at drone startup time. The startup process is summarized in Figure 1.

8/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

- inits drone

- mounts ARDSYS on /mnt

- calls ARDSYS init script

- mounts core system dirs

- mounts ARDUSR on /mnt/mnt

- chroots to ARDSYS

- calls ARDUSR init script

- applies user routines

/etc/init.d/ rcS

/etc/init.d/xtStart

/mnt/init

/mnt/mnt/init

Drone

Startup

Figure 1: ArDroneXT startup

We create an init script which mounts the ARDSYS partition (xtStart); then we insert a call to it
in the main init process of the drone (rcS). We also save a backup version of the drone init script.

ardrone$ touch / etc / i n i t . d/ xtSta r t
ardrone$ chmod 777 / e tc / i n i t . d/ xtSta r t
ardrone$ cp / e tc / i n i t . d/ rcS / e tc / i n i t . d/ rcS . back
ardrone$ echo ’/ e t c / i n i t . d/ xtSta r t&’ >> / etc / i n i t . d/ rcS

The content of the file /etc/init.d/xtStart has to be as follows.

#!/ bin / sh

s l e e p 4 ;
i f [−e /dev/ sda]
then

mount /dev/ sda1 /mnt ;
/mnt/ i n i t ;

f i

9/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

Then, we create the init script which mounts devices into the ARDSYS partition and chroots to it.
Finally, the script calls the init script of the ARDUSR partition. This last script will be developed in
the next section.

ardrone$ touch /mnt/ i n i t
ardrone$ chmod 777 /mnt/ i n i t

The content of the file /mnt/init has to be as follows.

#!/ bin / sh

s l e e p 3 ;
IRD=$ (dirname $ (r e ad l i nk −f $0)) ;
mount −t tmpfs −o s i z e=8M tmpfs $IRD/tmp ;
mount −−bind /dev $IRD/dev ;
mount −−bind /proc $IRD/proc ;
mount −−bind / sys $IRD/ sys ;
mount −−bind /dev/ pts $IRD/dev/ pts ;
mount /dev/ sda3 $IRD/mnt ;
chroot $IRD /mnt/ i n i t ;

Then, we test the init script process by rebooting the drone and checking if ARDSYS directories are
well mounted after drone startup.

ardrone$ reboot

Once the drone has started, we reconnect the Linux base station to the drone as explained in para-
graph 2.4.2. Then, we get a telnet shell on the drone.

l i nux$ t e l n e t 1 9 2 . 1 6 8 . 1 . 1

We can check that all the directories are properly mounted.

ardrone$ mount
/dev/ sda1 on /mnt type ext2
tmpfs on /mnt/tmp type tmpfs
dev on /mnt/dev type tmpfs
proc on /mnt/proc type proc
sys on /mnt/ sys type s y s f s
devpts on /mnt/dev/ pts type devpts
/dev/ sda3 on /mnt/mnt type v f a t

The ARDSYS auto-boot process is now complete.

10/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

3 ArDroneXT customization

3.1 ARDSYS configuration

There are some modifications that can be applied to the ARDSYS partition.

Upgrading packages repository

f i l e / e t c / apt / sources . l i s t
deb http :// f tp . f r . debian . org /debian / squeeze main cont r i b non−f r e e
deb−s r c http :// f tp . f r . debian . org /debian / squeeze main cont r i b non−f r e e
deb http :// s e c u r i t y . debian . org / squeeze /updates main cont r i b non−f r e e
deb−s r c http :// s e c u r i t y . debian . org / squeeze /updates main cont r i b non−f r e e

Changing host name

f i l e / e t c /hostname
ArDroneXT

Customizing telnet connection message

f i l e / e t c / i s s u e
|−−−−−−−−−−−−−−−−−−−−−−|
|−My Wonderful ArDrone−|
|−−−−−−−−−−−−−−−−−−−−−−|

Defining shell init

f i l e / roo t / . bashrc
con f i gu r e as you wish

We also need to create a script in order to directly launch a root shell. It will be used in the next
section. This script is called sroot and has to be installed in the /bin of the ARDSYS partition.

ardrone$ touch /mnt/bin / s r oo t
ardrone$ chmod 777 /mnt/bin / s r oo t

The content of the file /mnt/bin/sroot has to be as follows.

#!/ bin / sh

i f [$# −eq 0]
then

su root −c /bin /bash ;
else

su root −c "$∗" ;
f i

11/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

We also need to create scripts in order to halt and reboot the drone. Indeed, the operating system
in the ARDSYS partition (i.e. ArDroneXT) cannot perform these tasks directly, their use is reserved
to the core drone operating system. Calling halt or reboot from the ARDSYS partition will not have
any effect. Therefore, we use the local telnet server to send instructions to the original base system of
the drone. The script will be called sreturn and will be placed in the /bin of the ARDSYS partition.

ardrone$ touch /mnt/bin / s r e tu rn
ardrone$ chmod 777 /mnt/bin / s r e tu rn

The content of the file /mnt/bin/sreturn has to be as follows.

#!/ bin / sh

i f [$# −eq 0]
then

/bin /busybox t e l n e t 1 2 7 . 0 . 0 . 1 ;
else

echo "$ ∗ ; e x i t " | netcat 1 2 7 . 0 . 0 . 1 23 ;
f i

3.2 ARDUSR init script

We now have to create a user init script in the ARDUSR partition that will be launched by
ArDroneXT just after executing the chroot. This script will enable to launch services at the drone
startup time. It is suitable for instance to:

1. set the drone hostname;

2. launch a telnet server inside the ARDSYS partition (port 2323 for instance);

3. enable the drone to communicate with internet to perform some packages installation.

The telnet server will make it possible to run a root shell directly on ArDroneXT without passing
by the original drone base system (i.e. ArDroneBS).

Here is an example of such a script which is installed in ARDUSR/init.

#!/ bin / bash

TELNET_PORT=2323;
GATEWAY_IP=192 . 168 . 1 . 2 ;

hostname $ (cat / e tc /hostname) ;
/ bin /busybox t e l n e td −p ${TELNET_PORT} − l ’/ bin / sroot ’ ;
route add de f au l t gw ${GATEWAY_IP} ;
echo "nameserver ␣${GATEWAY_IP}" > / etc / r e s o l v . conf ;

12/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

3.3 ARDSYS upgrade

Now we plug the USB flash drive and start the drone. After enabling the Wi-Fi connection, we have
to contact our new telnet server.

$ t e l n e t 1 92 . 1 6 8 . 1 . 1 2323

|−−−−−−−−−−−−−−−−−−−−−−−|
|−My Wonderful Ar Drone−|
|−−−−−−−−−−−−−−−−−−−−−−−|

ArDroneXT$

We have to enable the drone to communicate with internet in order to install new packages. To
achieve this task, we need (on the Linux base station):

• to enable IP forwarding;

• to start a DNS server relay;

• to set a NAT masquerading.

The require commands are listed bellow.

l inux$ echo 1 > /proc / sys /net / ipv4 / ip_forward
l inux$ dnsmasq
l inux$ i p t a b l e s −t nat −A POSTROUTING −−source 192 . 168 . 1 . 0/24 \

−o eth0 −j MASQUERADE;

Now the drone can communicate with internet.

ArDroneXT$ ping −c1 www. l a b r i . f r
PING www3. l a b r i . f r (1 4 7 . 2 1 0 . 8 . 5 9) 56(84) bytes o f data .
64 bytes from www3. l a b r i . f r (1 4 7 . 2 1 0 . 8 . 5 9) : icmp_req=1 t t l =61 time=3.84 ms

−−− www3. l a b r i . f r ping s t a t i s t i c s −−−

1 packets transmitted , 1 rece ived , 0% packet l o s s , time 0ms
r t t min/avg/max/mdev = 3 .845/3 .845/3 .845/0 .000 ms

We can now perform a Debian update/upgrade.

ArDroneXT$ apt−get update
ArDroneXT$ apt−get upgrade
ArDroneXT$ apt−get d i s t−upgrade
ArDroneXT$ apt−get autoc l ean
ArDroneXT$ apt−get autoremove

13/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

We can also install new packages. For instance, we can install Python [17].

ArDroneXT$ apt−get i n s t a l l python

It is of course possible to install more packages if needed.

4 Ad-hoc networking

In this section we modify the ARDUSR init script in order to force the drone to join a specific ad-hoc
network. This feature enables to create a swarm of several Ar.Drone 2 which shares the same Wi-Fi
network.

We first have to install wireless-tools [12] in order to configure the Wi-Fi connection.

ArDroneXT$ apt−get i n s t a l l w i r e l e s s−t o o l s

4.1 ARDUSR init script upgrade

We now upgrade the ARDUSR init script in order to force the drone to join a pre-existing ad-hoc
network with a predefined IP address. We also need to enable the broadcast ICMP reply (i.e. ping
reply) on the drone in order to check ad-hoc network peers status. By default, the drone ignores ICMP
requests sent in broadcast. The resulting script is detailed hereafter.

#!/ bin / bash

IP=192 . 168 . 1 . 1 ;
TELNET_PORT=2323;
GATEWAY_IP=192 .168 .1 . 254 ;
ESSID=ArDroneXT ;

hostname $ (cat / e tc /hostname) ;
i f c o n f i g ath0 down ;
iwcon f i g ath0 mode ad−hoc ;
iwcon f i g ath0 e s s i d ${ESSID} ;
iwcon f i g ath0 commit ;
i f c o n f i g ath0 up ;
i f c o n f i g ath0 $IP ;

echo 0 > /proc / sys /net / ipv4 / icmp_echo_ignore_broadcasts ;
/ bin /busybox t e l n e td −p ${TELNET_PORT} − l ’/ bin / sroot ’ ;
route add de f au l t gw ${GATEWAY_IP} ;
echo "nameserver ␣${GATEWAY_IP}" > / etc / r e s o l v . conf ;

14/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

We can create a DHCP server on our Linux base station and force the drone to use it in order to get
its network configuration automatically at startup. However we will first have to bypass the original
drone DHCP server. The resulting script is given bellow.

#!/ bin / bash

TELNET_PORT=2323;
ESSID=ArDroneXT ;

hostname $ (cat / e tc /hostname) ;

i p t a b l e s −t f i l t e r −A OUTPUT −p udp −−spor t 67 −j DROP;
i p t a b l e s −t f i l t e r −A INPUT −p udp −−dport 67 −j DROP;

i f c o n f i g ath0 down ;
iwcon f i g ath0 mode ad−hoc ;
iwcon f i g ath0 e s s i d ${ESSID} ;
iwcon f i g ath0 commit ;
i f c o n f i g ath0 up ;
dhc l i e n t ath0 ;

echo 0 > /proc / sys /net / ipv4 / icmp_echo_ignore_broadcasts ;
/ bin /busybox t e l n e td −p ${TELNET_PORT} − l ’/ bin / sroot ’ ;

We can setup the DHCP server on the Linux base station with dnsmasq [11]. In the following exam-
ple, our Linux base station has a wireless interface called wlan0 which IP address is set to 192.168.1.254.

l inux$ / usr / sb in /dnsmasq −− i n t e r f a c e=wlan0 \
−−s t r i c t −order \
−−expand−hos t s \
−−domain="ArDroneXT" \
−−dhcp−range =192 . 168 . 1 . 10 , 192 . 168 . 1 . 100 , 2 h \
−−dhcp−opt ion=" opt ion : router , 1 9 2 . 1 6 8 . 1 . 2 5 4 "

4.2 Ad-Hoc network creation

Then, we just have to turn the drone on and to configure the Wi-Fi chip of the base station to
join the ad-hoc network. Please note that it is recommended that the Linux base station initiates the
ad-hoc network to prevent any drone join problem. Indeed, we have noticed that the drone sometimes
encounters some problems to init a new ad-hoc network. This problem stills unresolved for the moment.

l i nux$ i f c o n f i g wlan0 down
l inux$ iwcon f i g wlan0 mode ad−hoc
l inux$ iwcon f i g wlan0 e s s i d ArDroneXT
l inux$ i f c o n f i g wlan0 up
l inux$ i f c o n f i g wlan0 192 . 168 . 1 . 2 54

15/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

If we choose the DHCP configuration to set the drone IP address automatically, we have to launch
the dnsmasq tool as explained in the previous section.

Finally, we can test if several drones are part of the swarm by using a broadcast ping. Each drone
that is part of the ad-hoc network should reply and thus be visible. In the following example, 2 drones
are part of the network (192.168.1.10 and 192.168.1.11), and the Linux base station has the IP address
192.168.1.254.

l inux$ ping −b 192 . 1 6 8 . 1 . 0
PING 192 . 1 6 8 . 1 . 0 (1 9 2 . 1 6 8 . 1 . 0) 56(84) bytes o f data .
64 bytes from 192 . 1 6 8 . 1 . 2 5 4 : icmp_req=1 t t l =64 time=0.022 ms
64 bytes from 19 2 . 1 6 8 . 1 . 1 0 : icmp_req=1 t t l =64 time=1.06 ms
64 bytes from 19 2 . 1 6 8 . 1 . 1 1 : icmp_req=1 t t l =64 time=1.17 ms
64 bytes from 192 . 1 6 8 . 1 . 2 5 4 : icmp_req=2 t t l =64 time=0.020 ms
64 bytes from 19 2 . 1 6 8 . 1 . 1 0 : icmp_req=2 t t l =64 time=1.02 ms
64 bytes from 19 2 . 1 6 8 . 1 . 1 1 : icmp_req=2m t t l =64 time=1.15 ms
. . .

5 Swarm of several Ar.Drone 2

In order to configure other drones, we have, for each one:

• to clone the USB flash drive;

• to create the /etc/init.d/xtStart script in the drone root file system as explained in section 2.5;

• to upgrade the /etc/init.d/rcS script in the drone root file system as explained in section 2.5;

• optionally:

– to change the drone IP in ARDUSR/init if it is set in this file;

– to customize the hostname of the drone.

To clone a USB flash drive we can use the dd [18] software. In the following example, the original
USB flash drive is sdb and the new one is sdc.

l i nux$ dd i f=/dev/sdb o f=/dev/ sdc bs=4096 conv=notrunc , noerror , sync

16/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

6 Supporting ARM EABI (using ARDSYS partition without drone)

This section enables to run programs directly inside the ARDSYS partition without using a drone.

6.1 The cross-execution problem

As explained above, the architecture of programs in ARDSYS is ARM EABI compliant. There is a
strong probability that our Linux base station lays on a different processor architecture like x86_64
for instance. Consequently, it is theoretically impossible to launch ARDSYS programs directly on our
Linux base station.

However, it is possible to use an emulator in order to solve the problem. A well known solution is
QEMU [19]. It can emulate a lot of architectures including ARM EABI. After installing QEMU on
our Linux base station, we will then be able to run ARM EABI programs directly.

For example, we create a simple ARM EABI executable thanks to our ARDDEV partition as follows.

l i nux$ export PATH=$PATH:/mnt/ARDDEV/arm−2012/bin /
l inux$ cd /tmp
l inux$ echo "#inc lude ␣<s td i o . h>" > he l l o . c
l inux$ echo ’ i n t main (){ printf (" I t ␣works\n") ; return 0 ; } ’ >> he l l o . c
l inux$ arm−none−l inux−gnueabi−gcc h e l l o . c −o h e l l o . e l f
l i nux$ f i l e h e l l o . e l f
h e l l o . e l f : ELF 32−b i t LSB executable , ARM, EABI5 ve r s i on 1 (SYSV)
dynamical ly l i nked (uses shared l i b s)
l inux$. / h e l l o . e l f
. / h e l l o . e l f : cannot execute binary f i l e : i n v a l i d a r c h i t e c t u r e for exec ()

As we can see, we cannot run the hello.elf executable because of its ARM EABI architecture. We
use QEMU to bypass the problem.

l inux$ qemu−arm ./ h e l l o . e l f
/ l i b / ld−l i nux . so . 3 : No such f i l e or d i r e c t o r y

The error we get is due to the fact that the hello.elf program uses shared libraries which are not
installed on our Linux base station. We thus have to compile our program in static mode to solve this
issue.

l i nux$ arm−none−l inux−gnueabi−gcc h e l l o . c −−s t a t i c −o h e l l o . e l f
l i nux$ f i l e h e l l o . e l f
h e l l o . e l f : ELF 32−b i t LSB executable , ARM, EABI5 ve r s i on 1 (SYSV)
s t a t i c a l l y l i nked
l inux$ qemu−arm ./ h e l l o . e l f
I t works

17/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

6.2 Applying cross-execution to ARDSYS

It is possible to adapt the previous solution to the whole ARDSYS partition in order to support the
ARM EABI architecture directly on our Linux base station. The trick is to indicate to our system
that it has to use QEMU for all ARM EABI programs. Most Linux distributions enable this binding
when QEMU is installed. If your Linux distribution does not perform this action, please refer to Linux
kernel module binfmt_misc [20].

Then, we have just to perform a chroot inside ARDSYS. Please note that a chroot implies a file
system isolation, thus we have to copy the QEMU executable inside the ARDSYS partition. We also
have to use the static version of QEMU as explained in section 6.1.

l i nux$ f i l e $ (which qemu−arm)
qemu−arm : ELF 64−b i t LSB executable , x86−64, v e r s i on 1 (GNU/Linux)
dynamical ly l i nked (uses shared l i b s)
l inux$ f i l e $ (which qemu−arm−s t a t i c)
qemu−arm−s t a t i c : ELF 64−b i t LSB executable , x86−64, v e r s i on 1 (GNU/Linux)
s t a t i c a l l y l i nked

We copy the static version of the executable inside the ARDSYS partition.

l inux$ cp $ (which qemu−arm−s t a t i c) /mnt/ARDSYS/usr /bin /

Now we can mount sub-directories and chroot in the same way we would have done if using a drone.

l i nux$ mount −−bind /dev /mnt/ARDSYS/dev
l inux$ mount −−bind /proc /mnt/ARDSYS/proc
l inux$ mount −−bind / sys /mnt/ARDSYS/ sys
l inux$ mount −−bind /dev/ pts /mnt/ARDSYS/dev/ pts
l inux$ chroot /mnt/ARDSYS
ArDroneXT$

Then we can run any ARM EABI application. Please not that we first have to call the DHCP server
because the network configuration (DNS server, default gateway, etc.) is not inherited when chrooting.

ArDroneXT$ dhc l i e n t eth0
run any commands

18/19

ArDroneXT - Swarming V. Autefage & S. Chaumette

References

[1] Parrot. ArDrone 2.0. http://ardrone2.parrot.com.

[2] Linux Kernel. Linux. http://www.kernel.org.

[3] IEEE. 802.11. http://www.ieee802.org/11/.

[4] Debian. Debian. http://www.debian.org.

[5] Kingston. DataTraveler G3. http://www.kingston.com/fr/usb/personal_business/.

[6] Asus. WL-167G [Ralink RT2571]. http://fr.asus.com/Networks/Wireless_Adapters/WL167g.

[7] Gnu. Parted. http://www.gnu.org/software/parted/.

[8] Theodore Ts’o. E2fsprogs. http://e2fsprogs.sourceforge.net.

[9] Daniel Baumann. Dosfstools. http://www.daniel-baumann.ch/software/dosfstools.

[10] Debian. Debootstrap. http://wiki.debian.org/Debootstrap.

[11] Simon Kelley. Dnsmasq. http://www.thekelleys.org.uk/dnsmasq/doc.html.

[12] HP. Linux Wireless Tools. http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.
html.

[13] Mentor Graphics. GCC/G++ ARM EABI. http://www.mentor.com/embedded-software/

sourcery-tools/sourcery-codebench/editions/lite-edition/.

[14] Debian. Debian ARM EABI Port. http://wiki.debian.org/ArmEabiPort.

[15] Gnome. NetworkManager. http://projects.gnome.org/NetworkManager.

[16] Bruce Perens. BusyBox. http://www.busybox.net.

[17] Python Software Foundation. Python. http://www.python.org.

[18] Free Software Foundation. Coreutils. http://www.gnu.org/software/coreutils/.

[19] Fabrice Bellard. QEMU. http://qemu.org.

[20] Linux Kernel. Binary Formats Kernel Support. https://www.kernel.org/doc/Documentation/
binfmt_misc.txt.

19/19

http://ardrone2.parrot.com
http://www.kernel.org
http://www.ieee802.org/11/
http://www.debian.org
http://www.kingston.com/fr/usb/personal_business/
http://fr.asus.com/Networks/Wireless_Adapters/WL167g
http://www.gnu.org/software/parted/
http://e2fsprogs.sourceforge.net
http://www.daniel-baumann.ch/software/dosfstools
http://wiki.debian.org/Debootstrap
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
http://wiki.debian.org/ArmEabiPort
http://projects.gnome.org/NetworkManager
http://www.busybox.net
http://www.python.org
http://www.gnu.org/software/coreutils/
http://qemu.org
https://www.kernel.org/doc/Documentation/binfmt_misc.txt
https://www.kernel.org/doc/Documentation/binfmt_misc.txt

	Foreword
	Requirements
	Hardware requirements
	Software requirements

	Ar.Drone Base System to ArDroneXT
	Ar.Drone 2 operating system
	USB flash drive partitions setup
	Installing the ARM EABI compiler (ARDDEV partition)
	Installing the operating system (ARDSYS partition)
	Setting up the root file system
	Connecting to the drone
	Finishing the ARDSYS debootstrap process

	ARDSYS auto-boot

	ArDroneXT customization
	ARDSYS configuration
	ARDUSR init script
	ARDSYS upgrade

	Ad-hoc networking
	ARDUSR init script upgrade
	Ad-Hoc network creation

	Swarm of several Ar.Drone 2
	Supporting ARM EABI (using ARDSYS partition without drone)
	The cross-execution problem
	Applying cross-execution to ARDSYS

	References

