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Coupling the SAEM algorithm and the extended

Kalman filter for maximum likelihood estimation

in mixed-effects diffusion models∗

Maud Delattre and Marc Lavielle†

We consider some general mixed-effects diffusion models,
in which the observations are made at discrete time points
and include measurement errors. In these models, the ob-
served likelihood is generally not explicit, making maximum
likelihood estimation of the parameters particularly com-
plex. We propose a specific inference methodology for these
models. In particular, we combine the SAEM algorithm with
the extended Kalman filter to estimate the population pa-
rameters. We also provide some tools for estimating the in-
dividual parameters, for recovering the individual underly-
ing diffusion trajectories and for evaluating the model. The
methods are evaluated on simulations and applied to a phar-
macokinetics example.

Keywords and phrases: Stochastic differential equa-
tions, Mixed-effects models, SAEM, Extended Kalman fil-
ter.

1. INTRODUCTION

Mixed-effects models are standard tools for simultane-
ously describing repeated measurements taken on a series of
individuals. Their structure allows a suitable consideration
of the whole variability characterizing such data, which is
usually split into intra-individual variability – i.e. the vari-
ability occurring within the dynamics of each individual —
and between-subjects variability. In a mixed-effects model,
the same structural model is used for describing each in-
dividual sequence of observations, but the parameters of
this model vary randomly among the individuals, which al-
lows to better account for differences between subjects. In
a mixed-effects diffusion model, the description of each in-
dividual series of observations is based on stochastic dif-
ferential equations (SDE). Diffusion is known to be a rele-
vant tool for modeling stochastic dynamic phenomena, and
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butions from the European Union’s Seventh Framework Programme
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is widely used in various fields including finance, physics,
biology, physiology, control engineering, etc. When an ex-
periment includes several individuals, a straightforward ex-
tension of the individual diffusion model is the mixed-effects
diffusion model, which also takes into account variability
between individuals. So far, the main applications of such
population approaches with SDE-based models are in neu-
roscience [13, 22] and in pharmacokinetics and pharmaco-
dynamics (PK & PD) [9, 21]. Although many methods are
available for the inference in classical fixed-effects diffusion
models, there is still a need for a general, fast and easy-
to-implement method for inference in mixed-effects diffu-
sion models. Indeed, except in some very specific classes of
mixed-effects diffusion models [6, 9], the likelihood of the
observations does not have any closed-form expression, mak-
ing maximum likelihood estimation of the model parameters
rather intricate. The difficulty is twofold for computing the
observed likelihood since it involves the transition densities
of the underlying individual diffusion processes and integrals
over the unobserved individual parameters that can rarely
be computed in closed form.

Several authors have recently tackled maximum likeli-
hood estimation of parameters in mixed-effects diffusion
models, either in the case of noise-free or noisy observa-
tions of the diffusion. One of the main approaches developed
for these purposes consists in approximating the likelihood
of the observations and then maximizing the approximated
likelihood with respect to the parameters. A specific combi-
nation of the First-Order Conditional Estimation (FOCE)
method with the extended Kalman filter has for example
been suggested [15, 21, 25]. Other approximations of the
likelihood in mixed-effects diffusion models can be found
in [23] and [22]. An alternative to such methods is given
by EM-type algorithms which iteratively perform maximum
likelihood estimation based on the complete log-likelihood
rather than the marginal log-likelihood. In particular, spe-
cific versions of the SAEM algorithm have been proposed for
estimating the population parameters in mixed-effects diffu-
sion models. In [10] the SAEM algorithm is combined with
an Euler-Maruyama approximation of the individual pro-
cesses and in [11], it is coupled with some particle Markov
Chain Monte-Carlo methods. In these two versions of SAEM
however, simulation of both the random individual param-
eters and the individual latent processes is required at the
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simulation step, which is computationally cumbersome. In
the present work, we propose a new inference methodology
for mixed-effects diffusion models which consists in coupling
the SAEM algorithm with the extended Kalman filter for es-
timating the population parameters. In this new version of
the SAEM algorithm, we only need to simulate the indi-
vidual parameters at each iteration. We also provide tools
for estimating the individual parameters and the individual
diffusion trajectories. We also show that Visual Predictive
Checks can be used as a diagnostic tool for detecting mis-
specifications of the model.

The organization of the present paper is as follows. In
Section 2, we introduce and motivate mixed-effects diffu-
sion models. In Section 3, we detail our new estimation
methodology based on the extended Kalman filter and the
SAEM algorithm. Some numerical illustrations of the pro-
posed methods are provided in Section 4 through a brief
Monte-Carlo simulation study and an example on a PK ap-
plication. Section 5 summarizes the results and discusses the
properties of the proposed methodology.

2. MODEL

2.1 Fixed-effects diffusion model

Models involving diffusion processes are relevant statis-
tical tools for describing random variability in dynamical
systems. They have numerous applications, including the
description of the price movement of financial assets, neu-
ronal or population growth, among others.

In the fixed-effects version, these models assume that one
trajectory of a diffusion is discretely observed with noise at
discrete time points denoted t1 < · · · < tj < · · · < tn. Let us
note (X(t), t > 0) ∈ R

d the underlying dynamical process
and yj ∈ R the noisy observation of X(tj), j = 1, . . . , n. The
general form of the diffusion model is given by:

(1)

⎧
⎪⎪⎨
⎪⎪⎩

dX(t) = b(X(t), θ)dt+ γ(X(t), θ)dW (t),

yj = g(X(tj), θ) + ξj ,

ξj ∼
i.i.d.

N (0, σ2(θ)), j = 1, . . . , n

with the initial condition X(t1) = x ∈ R
d. Here, (W (t), t >

0) is a standard Wiener process in R
d and ξj ∈ R repre-

sents the measurement error occurring at the jth observa-
tion such that ξj and (W (t), t > 0) are independent. The
measurement function g(x, θ) : R

d × R
p → R, the drift

function b(x, θ) : R
d × R

p → R
d and the diffusion func-

tion γ(x, θ) : Rd × R
p → Md(R), where Md(R) is the set

of d × d matrices with real elements, are known functions
depending on an unknown parameter θ ∈ R

p.
Estimation of the unknown parameter θ from the obser-

vations is challenging. Indeed, an exact evaluation of the
likelihood and its maximization with respect to θ are gen-
erally intractable. y1, . . . , yn are not independent since they

depend on a Markovian latent process. The general expres-
sion for the observed likelihood is given by:

(2) p(y, θ) = p(y1; θ)

n∏

j=2

p(yj |y1, . . . , yj−1; θ),

where y = (y1, . . . , yn) denotes the sequence of observations.
Each conditional density in (2) is expressed as an integral
over the latent process which rarely has a closed form expres-
sion. As a consequence, most diffusion-specific estimation
procedures are based on an approximation of (2). One clas-
sical and widely-used method is the extended Kalman filter
(EKF) which consists in approximating the observations’
distribution with a Gaussian distribution by linearization
of the state and measurement equations along the diffusion
trajectories [14]. More recently, Markov chain Monte Carlo
methods such as sequential Monte Carlo methods have been
proposed [2, 5, 12]. We refer the reader to [20] for a precise
comparison between Monte Carlo methods and Kalman fil-
tering when inferring diffusion models.

2.2 Mixed-effects diffusion model

Let us now consider model (1) with observations coming
from several subjects. An adequate adaptation of model (1)
in such a context consists of considering as many dynamical
systems as individuals, and defining the parameters of the
individual dynamical systems as independent random vari-
ables, in such a way to correctly reflect the variability be-
tween the different trajectories. To standardize notation, we
consider N different subjects randomly chosen from a pop-
ulation and we note ni the number of observations for indi-
vidual i, so that ti1 < · · · < ti,ni

are subject i’s observation
time points, i = 1, . . . , N . (Xi(t), t > 0) ∈ R

d and yij ∈ R

will respectively denote individual i’s diffusion and the ob-
servation of Xi(tij). The yij , i = 1, . . . , N , j = 1, . . . , ni are
governed by a mixed-effects model based on a d-dimensional
real-valued system of stochastic differential equations with
the general form:
(3)⎧
⎪⎪⎨
⎪⎪⎩

dXi(t) = b(Xi(t), φi)dt+ γ(Xi(t), φi)dWi(t),

yij = g(Xi(tij), φi) + ξij ,

ξij ∼
i.i.d.

N (0, σ2(φi)), j = 1, . . . , ni, i = 1, . . . , N,

with initial condition Xi(t1) = xi1 ∈ R
d, i = 1, . . . , N .

The φi are unobserved independent p-dimensional random
subject-specific parameters, drawn from a distribution π
which depends on a set of parameters θ ∈ R

q, called popu-
lation parameters:

φi ∼ π(·, θ).
(W1(t), t > 0), . . . , (WN (t), t > 0) are standard indepen-

dent Wiener processes such that φ1, . . . , φN and (W1(t), t >
0), . . . , (WN (t), t > 0) are independent. The ξij are inde-
pendent Gaussian random variables representing residual
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errors such that ξij and φ1, . . . , φN are independent and
ξij and (W1(t), t > 0), . . . , (WN (t), t > 0) are too. The mea-
surement function g(x, φ) : Rd × R

p → R, the drift func-
tion b(x, φ) : R

d × R
p → R

d and the diffusion function
γ(x, φ) : Rd × R

p → Md(R), are known functions that are
common to the N subjects and depend on the unknown
parameters φi.

As before, the observed likelihood has a nontrivial form.
By independence of the N individuals, the joint probability
distribution function (pdf) of the observations is given by:

(4) p(y1, . . . , yN ; θ) =
N∏

i=1

p(yi; θ).

In any mixed-effects model, the marginal density of the ith

data vector yi = (yi1, . . . , yi,ni
) is obtained by integrating

the conditional density of the data given the non-observable
random effects φi with respect to the density of the individ-
ual parameters:

(5) p(yi; θ) =

∫
p(yi|φi; θ)π(φi; θ)dφi,

with

p(yi|φi; θ) = p(yi1|φi; θ)

ni∏

j=2

p(yij |yi1, . . . , yi,j−1, φi; θ).

It is worth noting that equation (5) gives a generic expres-
sion of the marginal distribution of the observations, which
is valid for any conditional distribution of the observations
given the individual parameters and for any distribution of
the random parameters. In most cases, the φi’s are assumed
to be Gaussian random variables, with mean µ and covari-
ance matrix Ω (see the illustrative Section of the present
paper for example). In this specific example, the set of pop-
ulation parameters would be θ = (µ,Ω). The extension to
models including covariates, such as

φi = βCi + ηi, ηi ∼
i.i.d.

N (0,Ω),

is easy, where β is a p ×K matrix of fixed-effects, Ci a K-
vector of covariates and ηi a p-dimensional random-effect,
i = 1, . . . , N .

3. SOME INFERENCE METHODOLOGY

FOR MIXED-EFFECTS DIFFUSION

MODELS

3.1 Maximum likelihood estimation of the

population parameters

The important issue in mixed-effects models is to evaluate
both the typical trend in the population and the variabil-
ity between subjects. Thus, the main inference problem does
not reduce as in (1) to inferring the individual parameters φi

from the observations of subject i, i = 1, . . . , N , but rather
to estimating the pdf of the φi from the observations of all
subjects. More precisely, we aim to compute the maximum
likelihood estimate (MLE) of θ. Recall that in mixed-effects
diffusion models the likelihood function is not explicit. Thus
maximizing (4) with respect to θ is not straightforward. In
a general manner, linear and nonlinear mixed-effects models
can be seen as incomplete data models in which the random
parameters φ = (φ1, . . . , φN ) are the non-observed data, and
the population parameters θ are the parameters of the model
that need to be estimated from the observations. In general,
estimating the parameters of parametric incomplete data
models is tricky and some specific algorithms are required.
Among these, the EM algorithm [8] is used extensively. The
EM algorithm is iterative and each iteration consists of com-
puting and maximizing with respect to θ the conditional ex-
pectation E

(
log p(y, φ; θ)|y, θ(k−1)

)
, where θ(k−1) represents

the current estimation of θ. In many situations however, es-
pecially when dealing with nonlinear mixed-effects models,
a closed form expression of E

(
log p(y, φ; θ)|y, θ(k−1)

)
is not

available. Some variants of EM have been developed to get
around this difficulty. The SAEM algorithm [7] is one of
them.

3.1.1 General description of the SAEM algorithm

At each iteration of SAEM, the E-step is performed using
a stochastic approximation procedure. Let θ(k−1) denote the
current estimate for the population parameters. Iteration k
of the SAEM algorithm involves three steps [7]:

• In the simulation step, θ(k−1) is used to simulate the

missing data φ
(k)
i under the conditional distribution

p(φi|yi, θ(k−1)), i = 1, . . . , N .
• In the stochastic approximation step, the simulated

data φ(k) and the observations y are used together to
update the stochastic approximation Qk(θ) of the con-
ditional expectation E(log p(y, φ; θ)|y, θ(k−1)) according
to:
(6)

Qk(θ) = Qk−1(θ) + γk

[
log p(y, φ(k); θ)−Qk−1(θ)

]
,

where (γk)k>0 is a sequence of positive step sizes de-
creasing to 0 and starting with γ1 = 1.

• In the maximization step, an updated value of the es-
timate θ(k) is obtained by maximization of Qk(θ) with
respect to θ:

θ(k) = argmax
θ∈Rq

Qk(θ).

This procedure is iterated until numerical convergence
of the sequence (θ(k))k>0 to some estimate θ̂ is achieved.
Convergence results can be found in [7].

3.1.2 SAEM for mixed-effects diffusion models

Although some specific versions of SAEM, presented in
[10] and [11], do already exist, the aim of the present work
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is to propose a new adaptation of the SAEM algorithm
to mixed-effects diffusion models. In [10], the contribution
consists in coupling the SAEM algorithm with some Euler-
Maruyama approximation of the individual diffusion pro-
cesses. In [11], the SAEM algorithm is combined with some
particle Markov Chain Monte-Carlo methods. The param-
eter estimations provided by these SAEM versions are rea-
sonable. However, it is required in both algorithms that the
individual parameters and the trajectories of the individual
diffusion processes be simulated at each iteration, which is
computationally intensive. In mixed-effects diffusion models,
the latent individual processes (Xi(t), t > 0), i = 1, . . . , N ,
and the individual parameters φi, i = 1, . . . , N , are unob-
served data. However, simulation of the diffusion trajectories
is not necessary since there exists some efficient procedures
to approximate the pdf p(yi|φi) for any given φi, such as the
extended Kalman filter. An appropriate combination of such
approximations with SAEM can limit the simulation step of
SAEM to the simulation of the individual parameters under
p(φi|yi; θ(k−1)), thus reducing the computational cost. The
difficulty comes from having to sample from p(φi|yi; θ(k−1))
at each iteration of the algorithm, since this is not known in
a closed form, especially in mixed-effects diffusion models.
Following the idea of [16], a Metropolis-Hastings algorithm

is implemented to perform simulation of φ
(k)
i , i = 1, . . . , N .

Theoretical convergence results about the MCMC-SAEM al-
gorithm obtained by the combination of SAEM with Markov
chain Monte Carlo methods in its simulation steps, can be
found in [1, 16]. Computation of the acceptance probabilities
of the Metropolis-Hastings algorithm requires knowledge of
the expression of p(yi, φi; θ), and the ability to explicitly
calculate it. The expression of p(yi, φi; θ) is also necessary
to update the function Qk(θ) at each iteration of the algo-
rithm. The key to an efficient implementation of the SAEM
algorithm is therefore rapid computation of p(yi, φi; θ) for
any φi and any θ for all i = 1, . . . , N . Recall that

p(yi, φi; θ) = p(yi|φi)p(φi; θ).

Computing p(φi; θ) is straightforward since the φi are Gaus-
sian variables, but computing p(yi|φi) in closed form is gen-
erally impossible. Some numerical approximation p̃(yi|φi) of
p(yi|φi) with Gaussian densities is performed with the ex-
tended Kalman filter.

a) The continuous-discrete extended Kalman filter The
continuous-discrete extended Kalman filter performs state
estimation from continuous-time diffusion models with
discrete-time measurements, such as model (1), by lineariza-
tion of the drift function b, the volatility function γ and
the measurement function g, leading to a Gaussian approx-
imation of the processes and observations’ densities. In the
present paragraph, we focus on a single individual and a
given parameter set φ. To simplify the notation, we omit
the index i and the dependence of the results on φ. In the
following, Xk|k′ ∈ R

d and Pk|k′ ∈ S+
d (R) will denote the

mean and the covariance matrix of the conditional proba-
bility distribution of X(tk)|y1, . . . , yk′ , where S+

d (R) stands
for the set of d × d symmetric and positive-definite real-
valued matrices. The EKF consists of a recursive method,
divided into two steps, Prediction and Filtering, repeated
n− 1 times (j = 2, . . . , n).

• In the predictive cycle, the distribution of X(tj)|y1, . . . ,
yj−1 is approximated by a Gaussian distribution. This

requires computing an estimate X̂j|j−1 of the distribu-

tion’s mean Xj|j−1 and an estimate P̂j|j−1 of its co-
variance matrix Pj|j−1. For this, the following system
of equations, (“moment equations”), is solved in time
interval [tj−1, tj ]:

(7)

{
ẋ = b(x(t)),

Ṗ = B(x(t))P (t) + P (t)B(x(t))T +Ω(x(t)),

with initial conditions
{

x(tj−1) = X̂j−1|j−1,

P (tj−1) = P̂j−1|j−1.

Here, Ω(x) = γ(x)γ(x)T and B(x) stands for the Jaco-
bian matrix of b(x) with respect to x. The solution is
given by:

{
X̂j|j−1 = x(tj),

P̂j|j−1 = P (tj).

• In the filtering cycle, the pdf of X(tj)|y1, . . . , yj is
approximated by a Gaussian pdf p̃(X(tj)|y1, . . . , yj),
which means computing an estimate X̂j|j of the dis-

tribution’s mean Xj|j and an estimate P̂j|j of its co-
variance matrix Pj|j . This requires the calculation of
the Kalman gain, defined as:

Kj = P̂j|j−1G(X̂j|j−1)
T (G(X̂j|j−1)

× P̂j|j−1G(X̂j|j−1)
T + σ2)−1.

Then, X̂j|j and P̂j|j are given by:

{
X̂j|j = X̂j|j−1 +Kj(yj − g(X̂j|j−1)),

P̂j|j = (Id −KjG(X̂j|j−1))P̂j|j−1,

where G(x) is the Jacobian matrix of g(x) with respect
to x and Id denotes the d× d identity matrix.

Once the EKF is calculated, the conditional distri-
bution of yj |y1, . . . , yj−1 can be approximated with a

Gaussian distribution with mean g(X̂j|j−1) and covariance

G(X̂j|j−1)P̂j|j−1G(X̂j|j−1)
T + σ2. Deriving the approxima-

tion p̃(y) of the joint pdf p(y) of the data vector y is straight-
forward.

b) Resolution of the moment ODEs Implementation of the
continuous-discrete EKF is difficult since the moment or-
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Table 1. SAEM combined with EKF for the estimation of the population parameters in mixed-effects diffusion models

At a generic iteration k (k = 1, . . . ,K) do the following:

1. for i = 1, . . . , N do

• use the EKF (a) and Mazzoni’s numerical resolution method of the moment
ODEs (b) to compute p̃(yi|φi; θ

(k−1))

• sample φ
(k)
i

using a single step of the Metropolis-Hastings algorithm tar-
geting

p̃(φi|yi; θ
(k−1)) ∝ p̃(yi|φi; θ

(k−1))p(φi; θ
(k−1))

end for

2. maximize
Qk(θ) = Qk−1(θ) + γk

[

log p̃(y, φ(k); θ)−Qk−1(θ)
]

where

p̃(y, φ(k); θ) =

N
∏

i=1

p̃(yi|φ
(k)
i

; θ)p(φi; θ)

dinary differential equations (7) generally do not have any
closed form solution. We suggest the use of a simplified ver-
sion of the numerical resolution method of these ODEs pro-
posed by Mazzoni in [19], based on higher-order Taylor ap-
proximations. As described in [19], we can provide an ap-
proximation X̃k|k′ of X̂k|k′ and an approximation P̃k|k′ of

P̂k|k′ by setting at each iteration of the extended Kalman
filter:

X̃j|j−1

= X̃j−1|j−1 +

(
I −B(X̃j−1|j−1)

Δtj
2

)−1

b(X̃j−1|j−1)Δtj ,

P̃j|j−1

= P̃j−1|j−1 +Mτj

(
B(Xτj )P̃j−1|j−1 + P̃j−1|j−1B(Xτj )

T

+Ω(Xτj )
)
MT

τj
Δtj ,

where

Δtj = tj − tj−1, τj = tj−1 +
Δtj
2

,

Mτj =

(
I −Xτj

Δtj
2

)−1

,

Xτj =
1

2

(
X̃j−1|j−1 + X̃j|j−1 −B(Xτj )b(Xτj )

Δt2j
4

)
.

The approximations given by this resolution method has
been shown to be of order O(Δt2). See [19] for more details
on these approximations.

It is worth noting that since this method only requires
knowledge of the Jacobian function of the drift function of
the dynamical process, it is easily implementable in many
diffusion models. Note also that this approach can be eas-
ily extended to models involving multidimensional observa-
tions.

Table 1 summarises the proposed adaptation of the
SAEM algorithm for conducting the estimation of the pop-
ulation parameters in mixed-effects diffusion models of the
form of equation (3).

3.2 Some other estimation tasks

3.2.1 Estimation of the Fisher information matrix

When an estimate θ̂ of θ has been obtained, the
standard errors of its components can be derived
by computing the Fisher information matrix I(θ̂) =
−∂2 log(p(y; θ))/∂θ∂θ′|

θ=θ̂
. Once again, due to the complex

expression of the likelihood, I(θ̂) is not known in closed
form. As suggested in [17], we therefore estimate it with
a stochastic approximation procedure, based on Louis’ for-
mula:

∂2 log(p(y; θ))

∂θ∂θ′
= Eθ

[
∂2 log(p(y, φ; θ))

∂θ∂θ′

∣∣∣∣ y, θ
]

+Covθ

[
∂ log(p(y, φ; θ))

∂θ

∣∣∣∣ y, θ
]
,

where

Covθ

[
∂ log(p(y, φ; θ))

∂θ

∣∣∣∣ y, θ
]

= Eθ

[(
∂ log(p(y, φ; θ))

∂θ

)(
∂ log(p(y, φ; θ))

∂θ

)′∣∣∣∣∣ y, θ
]

− Eθ

[
∂ log(p(y, φ; θ))

∂θ

∣∣∣∣ y, θ
]
Eθ

[
∂ log(p(y, φ; θ))

∂θ

∣∣∣∣ y, θ
]′
.

∂2 log(p(y; θ̂))/∂θ∂θ′ is therefore approximated by the se-
quence (Hk)k>0, defined as
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Δk = Δk−1 + γk

[
∂ log(p(y, φ(k); θ̂))

∂θ
−Δk−1

]
,

Dk = Dk−1 + γk

[
∂2 log(p(y, φ(k); θ̂))

∂θ∂θ′
−Dk−1

]
,

Gk = Gk−1 + γk

[
∂ log(p(y, φ(k); θ̂))

∂θ

∂ log(p(y, φ(k); θ̂))

∂θ

′

−Gk−1

]
,

Hk = Dk +Gk −ΔkΔ
′
k.

The φ(k) are simulated under p̃(φi|y, θ̂) via the Metropolis-
Hastings algorithm previously used for the SAEM algo-
rithm. The only difference with SAEM is that the popu-
lation parameter θ is not updated. The derivatives and sec-
ond derivatives of log(p(y, φ; θ)) are computed in a closed
form when p(y, φ; θ) can be decomposed as p(y|φ)p(φ; θ). If
a component of φ has no variability, this decomposition is
no longer possible and some of the derivatives are obtained
by central differences.

3.2.2 Estimation of the individual parameters

Once the population parameters have been estimated, the
distribution of the φi is fully defined. Estimates of φi can
then be derived from the conditional distribution

p(φi|yi, θ̂) =
p(yi|φi, θ̂)p(φi, θ̂)

p(yi, θ̂)
.

For instance,

1. the Maximum A Posteriori (MAP) is the mode of this
conditional distribution:

φ̂MAP
i = argmax

φi

p(φi|yi, θ̂)

= argmax
φi

p(yi|φi)p(φi, θ̂).(8)

Maximization of the right-hand term in (8) is in-
tractable in mixed-effects models based on SDEs, and
requires a numerical optimization procedure.

2. the conditional mean is the expectation of this condi-
tional distribution:

φ̂E
i = E(φi|yi, θ̂).(9)

Once again, the expression of E(φi|yi, θ̂) is not explicitly
given in our models, so this conditional mean of φi is
estimated with a Metropolis-Hastings algorithm.

Since the exact expression of p(φi|yi, θ̂) is not available, both
estimations require the use of the EKF, so the calculations
are based on the approximation p̃(φi|yi, θ̂) of p(φi|yi, θ̂).

3.2.3 Estimation of the latent process

Using the individual parameter estimate φ̂i obtained ei-
ther as the conditional mode or the conditional mean of
p(φi|yi, θ̂), we can now recover the latent process (Xi(t), t ≥
0) at measurement times (ti1, . . . , ti,ni

). Note that the ex-
tended Kalman filter already provides an estimate of Xi(tij)
defined as its conditional expectation given the observations
of subject i up to time tij : E(Xi(tij)|yi1, . . . , yij , φ̂i, θ). How-
ever, this only takes into account the “past” information
relative to Xi(tij). Such an estimation can be improved by
using the fixed-interval Kalman smoother [14] which incor-
porates the “future” observations relative to Xi(tij), and
estimates Xi(tij) by

X̂i(tij) = argmax
Xi(tij)

p(Xi(tij)|yi1, . . . , yi,ni
, φ̂i, θ).

3.2.4 Model diagnostics and model selection

Some diagnostic tools are also needed for practical ap-
plications. Indeed, it is not enough just to obtain a good fit
with a given model in order to keep it. It is mandatory to as-
sess whether the model is capable of producing the observed
data.

A formal statistical test requires the use of some rele-
vant statistics whose distribution is known under the null
hypothesis, i.e., under the proposed model. The choice of
test statistics is essential as it must enable us to uncover
various types of misspecifications: a misspecified statistical
model, a misspecified structural model, a misspecified dif-
fusion model, etc. Deriving in closed form the probability
distribution of these statistics can be extremely difficult for
mixed effects diffusion models. On the other hand, a very
good approximation of the distribution can easily be ob-
tained using a Monte Carlo approach.

Here, we do not propose a complete methodology for
model diagnostics, but suggestions based on visual crite-
ria. The visual predictive check (VPC) is a powerful model
diagnostic method that can be used for evaluating the per-
formance of a given model [3, 4]. The VPC is constructed
from a large number of simulations from the model. These
simulations are used to estimate a prediction interval of the
test statistics. We can then visually compare the observed
test statistics with this prediction interval. The test statis-
tics should summarize the trend and the variability of the
variables of the model, i.e., the observations and the state
variables of the dynamical system. Following the approach
described in [3, 4], we use certain representative percentiles
of the variables (typically 10th, 50th and 90th) computed
on successive time intervals. We will see in the next section,
dedicated to numerical experiments, how the VPC behaves
in various situations.

In most practical cases, several models may be identified
as possible candidates for modeling the observed data. Some
criterion is then required to compare these different models
if only one (or several) of them can be selected. Classical
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information criteria such as AIC and BIC can be computed
using the approximated probability distribution function

(10) p̃(y; θ̂) =

N∏

i=1

E

(
p̃(yi, φi; θ̂)

)
,

where the expectation is approximated with Monte Carlo
integration using an Importance Sampling scheme [18].

3.3 Other existing methods

Several alternative methods for parameter estimation in
mixed effects diffusion models have been proposed during
the last decade. Since we are interested in these models as
tools for practical purposes, we will only comment on meth-
ods whose performance has been illustrated with numerical
experiments.

The PSM package for R provides functions for estimation
of mixed-effects models using stochastic differential equa-
tions [15]. The likelihood function is evaluated using Kalman
filter (KF) for linear systems or EKF for nonlinear systems.
The maximization is based on the First-Order Conditional
Estimation (FOCE) method which approximates the nonlin-
ear statistical model with a Gaussian linear model. Contrary
to SAEM, FOCE can be very sensitive to the initial values
and does not converge to the MLE when the model is non-
linear. Furthermore, though the developers of PSM claim
that their method can be used for nonlinear systems, all the
numerical examples available with the documentation only
consider linear systems.

The method proposed in [23] assumes that there is no
residual error in the model. The conditional transition den-
sity of the diffusion process is approximated by a Hermite
expansion, then the likelihood is numerically optimized us-
ing a Laplace approximation in order to handle statistical
models with multiple random effects. The approach is inter-
esting but still of limited interest for practical applications,
since it assumes that the residual error component is negli-
gible compared to the stochastic component of the model.

Convergence of the SAEM-PMCMC algorithm towards
the maximum likelihood estimator is ensured when the tran-
sition density of the SDE is explicit. Furthermore, the al-
gorithm can be implemented and the computational time
is reasonable. When the transition density is not explicit,
the author defines an approximate diffusion by the recur-
sive Euler-Maruyama scheme which is difficult to use in the
practice. Indeed, such an approximation adds intermediate
latent variables to the model which are tricky to handle
properly within a MCMC or PMCMC approach.

Our method also has its pros and cons. The use of SAEM
avoids any approximation of the statistical model and al-
lows to handle a large number of random effects. Further-
more, it is fast and less sensitive to the initial values in
most situations. Combining SAEM with the Kalman sys-
tem is then recommended for linear dynamical systems. Us-
ing EKF for nonlinear systems is only recommended when

the linear approximation is valid. This is usually the case
for physiological systems which are stable and for which the
state variables randomly fluctuate around a fix value, or
randomly decrease to 0. A Particle MCMC could replace
EKF for more general situations, but a usable version of the
SAEM-PMCMC algorithm proposed in [9] then needs to
be developed. Extension to multidimensional observations
proposed in [20] is straightforward with SAEM-EKF since
SAEM already handles multidimensional observations.

4. NUMERICAL EXPERIMENTS

4.1 Diffusion models for dynamical systems

with linear transfers

Some authors recently underlined that extending the clas-
sical ordinary differential equations (ODEs)-based models
for pharmacokinetics with stochastic differential equations,
could lead to a better description of the fluctuations, usu-
ally occurring around the theoretical drug’s dynamics [21].
They often suggest to describe the evolution of the drug
concentration over time by means of stochastic differential
equations rather than ordinary differential equations. We
emphasize that diffusion models are more appropriate than
ODE-based models for the description of random fluctua-
tions in general dynamical systems. Nevertheless, we suggest
to describe the fluctuations within these systems by consid-
ering the transfer rates as diffusion processes rather than
the components of the system.

Dynamical systems have many applications in various
fields. It is, for example a relevant representation to model
viral dynamics, population flows, interactions between cells
or drugs’ pharmacokinetics. Dynamical systems involving
linear transfers between different entities are usually mod-
elled by means of a system of ODEs with the following gen-
eral form:

(11) dX(t) = KX(t)dt,

where X(t) is a vector whose dth component represents con-
dition of dth entity at time t and K = (Kl,l′)l,l′ is a deter-
ministic matrix defined as:

(12)

{
Kl,l′ = kl,l′ if l �= l′,
Kl,l = −kl0 −

∑
l′ kl,l′ otherwise,

with kl,l′ representing the transfer rate from entity l to entity
l′, and kl0 the elimination rate from entity l. An example of
such a dynamical system with 3 components is schematized
in Figure 1.

In this particular example, matrix K would be defined as

K=

(
−k10 − k12 − k13 k21 k31

k12 −k20 − k21 − k23 k32
k13 k23 −k30 − k31 − k32

)
.

A model defined by equations (11) and (12) is a determin-
istic model which assumes the transfers to take place at the
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Figure 1. Example of dynamical system with 3 components
(circle) and linear transfers between components (arrows).

same rate at all times. This is however often a restrictive as-
sumption since in reality, dynamical systems usually exhibit
some random behavior. It is then reasonable to consider
that the transfers are not constant but randomly fluctuate
over the time. This new assumption leads to the following
dynamical system:

(13) dX(t) = K(t)X(t)dt,

where K has the same structure as in (12) but where some
components kl,l′ are stochastic processes which take non
negative values and randomly fluctuate around a typical
value k⋆l,l′ .

Let us now illustrate the construction of such diffusion
models using some specific examples in pharmacokinetics.

Example 1 (Bolus with linear elimination). The following
ordinary differential equation

dA(t) = −kA(t)dt,

is usually used to describe the kinetics of a drug adminis-
tered by rapid injection (IV bolus) in the plasma. In bolus-
specific compartmental models, plasma is assimilated to a
single compartment of the human body. A(t) represents the
amount of the drug substance in plasma at time t after in-
jection, and k is the elimination rate constant. Now assume
that the drug’s dynamics is perturbed and define k as a dif-
fusion process which takes non negative values and which
fluctuates around a typical value k⋆. In this example, non
negativity of k(t) is ensured by defining the logarithm of the
transfer rate as an Ornstein-Uhlenbeck diffusion process

d log k(t) = −α (log k(t)− log k⋆) dt+ γdW (t),

whereW is a standard one dimensional Wiener process. This
results in the following diffusion system:

dX(t) = b(X(t))dt+ γ(X(t))dW (t),

where

X(t) =

(
A(t)

log k(t)

)
; b(x) =

(
−x1e

x2

−α(x2 − log k⋆)

)

γ(x) =

(
0 0
0 γ

)
.

Note that in this specific example, the Jacobian matrix of
the drift function has a simple form:

B(x) =

(
− expx2 −x1 expx2

0 −α

)
.

Example 2 (Oral with first-order absorption and linear
elimination). Oral PKmodel with first-order absorption and
linear elimination is widely used to describe the time-course
of a drug orally administered through a unique compartment
of the human body. The drug is administrated in a depot
compartment, absorbed by the central compartment with
absorption rate ka and eliminated with elimination rate ke.
Such model is described by the following system of ODEs:

(14)
d

dt

(
Ad(t)
Ac(t)

)
=

(
−ka 0
ka −ke

)(
Ad(t)
Ac(t)

)
,

where Ad(t) and Ac(t) respectively represent the amounts of
drug at time t in the depot compartment and in the central
compartment. Assume now that the constant of elimination
is driven by a stochastic process solution of this stochastic
differential equation

dke(t) = −α(ke − k⋆e)dt+ γ
√
ke(t)dW (t),

whereW is a standard one dimensional Wiener process, then
(14) becomes:

dX(t) = b(X(t))dt+ γ(X(t))dW (t).

Here,

X(t) =

⎛
⎝
Ad(t)
Ac(t)
ke(t)

⎞
⎠ ; b(x) =

⎛
⎝

−kax1

kax1 − x3x2

−α(x3 − k⋆e)

⎞
⎠

γ(x) =

⎛
⎝
0 0 0
0 0 0
0 0 γ

√
x3

⎞
⎠ .

In both examples, the diffusion model can be easily ex-
tended in a population approach by defining the system’s
parameters as Gaussian random variables.

4.2 Simulation study

We now investigate the properties of the maximum like-
lihood estimates obtained with the SAEM algorithm com-
bined with the extended Kalman filter through a short simu-
lation study. The model used for the simulations is a mixed-
effects bolus model with an elimination rate constant defined
as a stochastic process (Example 1), with discrete-time ob-
servations consisting of the log-concentration of drug, up to
a Gaussian noise:
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Table 2. Results of the Monte Carlo simulation study for N = 30: for each parameter of the model, n = 25 and n = 50, the
table displays the mean estimate, the standard deviation of the estimates and the mean estimated standard error

N = 30, n = 25 N = 30, n = 50

Parameter θ0 θ̄ sd s̄e θ̄ sd s̄e

k⋆ 0.2 0.199 0.011 0.011 0.202 0.011 0.011
V 0.5 0.502 0.020 0.019 0.500 0.018 0.018
γ 0.2 0.177 0.026 0.022 0.188 0.021 0.018
σ 0.1 0.102 0.007 0.003 0.101 0.002 0.002
ωk 0.3 0.296 0.045 0.040 0.296 0.039 0.039
ωV 0.2 0.198 0.027 0.028 0.192 0.027 0.026

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dAi(t) = −ki(t)Ai(t)dt,

d log ki(t) = −αi(log ki(t)− log k⋆i )dt+ γidWi(t),

yij = log(Ai(tij)/Vi) + ξij ,

ξij ∼
i.i.d.

N (0, σ2), j = 1, . . . , n, i = 1, . . . , N.

The initial conditions are Ai(0) = Di and ki(0) = k⋆i , where
Di denotes the dose of drug injected at time t = 0. Vi stands
for the apparent volume of distribution of the medication.
In the present simulation study, we set

αi = α,

γi = γ,

log k⋆i = log k⋆ + ηk,i,

log Vi = log V + ηV,i,

for all i = 1, . . . , N . We consider that the random variables
ηk,i and ηV,i are independent zero-mean Gaussian variables
with respective variance ω2

k and ω2
V . Moreover, for reasons

of identifiability in the model, we assume that parameter α
is known. For the present study, we set α = 1. Therefore
the vector of population parameters to be estimated is θ =
(γ, k⋆, V, σ, ωk, ωV ).

100 datasets are simulated with different numbers of sub-
jects (N = 30 and N = 100) and different numbers of ob-
servations per subject (n = 25 and n = 50). For a n given,
we take equally spaced observation times tij between 0 and
24 hours. The parameter values used for the simulations are
displayed in Tables 1 and 2. For each simulated dataset, the
population parameters and the standard errors of θ̂ are esti-
mated with SAEM according to the procedures described in
Section 3. The algorithm is initialized with values randomly
chosen in a neighborhood of the true parameter values θ0.
More precisely, we choose θ(0) drawn from θ0U[0,c] with c
a constant. The EKF and the model were implemented in
Matlab and integrated in the MONOLIX software.

For m = 1, 2, . . . , 100, let θ̂m be the estimated vector
of population parameters obtained with the mth simulated
dataset and let ŝem be their respective estimated standard
errors. For each design, we have computed the mean esti-
mated parameter:

θ̄ =
1

100

100∑

m=1

θ̂m,

the parameter standard deviation

sd =

√√√√ 1

100

100∑

m=1

(θ̂m − θ̄)2,

and the mean estimated standard error:

s̄e =
1

100

100∑

m=1

ŝem.

The distribution of the relative estimation errors 100× θ̂m−θ0
θ0

is displayed Figure 2.
The extended SAEM algorithm gives satisfactory results

overall. It supplies very accurate estimations for the pa-
rameters in every design tested through the present study.
The population parameter estimates show very little bias,
since the absolute relative bias is globally less than 5%, ex-
cept for parameter γ. The volatility parameter is indeed
11.35% underestimated from the smallest simulated datasets
(N = 30, n = 25), but the bias decreases when the sample
size increases. The standard errors of the estimates are quite
small, whatever the values for N and n, and increasing the
number of simulated subjects reduces the empirical vari-
ance of the estimates. We estimate the Fisher Information
Matrix accurately. For every parameter, we notice from Ta-
bles 1 and 2 that s̄e is close to the standard deviation of the
estimates. Finally, convergence is obtained in less than 250
iterations, which only requires about 4′30 on a laptop (pro-
cessor Intel(R) Core(TM) i7-2760QM 2.40GHz) for a single
simulated dataset including N = 30 subjects and n = 25 ob-
servations per subject, and 14′ in largest datasets (N = 100,
n = 50).

4.3 Model diagnostics

The aim of this section is to illustrate with a numerical
example the behavior of the Visual Predictive Check (VPC)
when the model is correct and when it is uncorrect. We
consider two models:
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Figure 2. Results of the Monte Carlo simulation study: distribution of the relative estimation errors for the different designs
for (N,n).

Table 3. Results of the Monte Carlo simulation study for N = 100: for each parameter of the model, n = 25 and n = 50, the
table displays the mean estimate, the standard deviation of the estimates and the mean estimated standard error

N = 100, n = 25 N = 100, n = 100

Parameter θ0 θ̄ sd s̄e θ̄ sd s̄e

k⋆ 0.2 0.203 0.006 0.006 0.202 0.006 0.006
V 0.5 0.500 0.009 0.010 0.499 0.011 0.010
γ 0.2 0.184 0.018 0.012 0.195 0.010 0.010
σ 0.1 0.101 0.002 0.002 0.101 0.001 0.001
ωk 0.3 0.296 0.021 0.021 0.294 0.021 0.021
ωV 0.2 0.194 0.015 0.015 0.197 0.016 0.015

• Model MA is a bolus model with a linear elimination
defined by a stochastic process

dA(t) = −k(t)A(t)dt,

d log k(t) = −α(log k(t)− log k⋆)dt+ γdW (t).

• Model MB is a bolus model with a non linear and non
stochastic elimination

dA(t) = − Vm

V Km +A(t)
A(t)dt.

Two datasets with 100 individuals each were simulated
with the same design used previously for Example 1:

• Dataset A was simulated using model MA incorporat-
ing inter-individual variability on k⋆ and V by defin-
ing the elimination and the volume of subject i as
log k⋆i = log k⋆ + ηk⋆,i and log Vi = log V + ηV,i where
ηk⋆,i and ηV,i are centered Gaussian random variables
with respective variance ω2

k⋆ and ω2
V .

• Dataset B was simulated using model MB incorporat-
ing inter-individual variability on Vm, Km and V : for
any subject i = 1, . . . , N , we set log Vm,i = log Vm +

ηVm,i, logKm,i = logKm + ηKm,i and log Vi = log V +
ηV,i where ηVm,i, ηKm,i and ηV,i are centered Gaussian
random variables with respective variance ω2

Vm
, ω2

Km

and ω2
V .

We then fitted model MA to both datasets. We only show
in Figure 3 the fits obtained with the first individual of each
dataset (we obtain very similar fits for the 100 subjects).
We obtain very nice fits in both cases, which means that the
diffusion is able to capture some smooth component of the
intra-individual variability around the solution of the ODE
model which is obtained by assuming that k remains con-
stant over time (i.e. k(t) = k⋆, t ≥ 0) in model MA. These
fluctuations are described by a stochastic process in exam-
ple A and by a deterministic function in example B (the
deviation between the linear and the non linear elimination
functions). Looking at only one individual fit does not allow
to evaluate if the dynamical system is misspecified or not.
We also displayed in the same figure the estimated func-
tions k(t) obtained with the (extended) Kalman smoother
for these two individuals. Both series seem to randomly fluc-
tuate around a typical value k⋆, but it is impossible to de-
cide whether these fluctuations are purely stochastic, or if
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Figure 3. Top: observed and estimated concentrations obtained with two different models from two different patients, the dots
are the observed concentrations, the solid line is the estimated concentration given by the SDE based model and the dashed
line the estimated concentration given by the ODE based model; bottom: estimated elimination rate processes obtained with

these two different models from these two individuals. Left: results obtained with the first individual of dataset A;
right: results obtained with the first individual of dataset B.

there is a deterministic trend. Assessment of the dynamical
system then requires combining information from several in-
dividuals. Assessment of the statistical model will obviously
require information from several individuals as well.

Figure 4 displays the VPCs for the observations (yij) and
the estimated elimination processes (k(tij)) for datasets A
and B. On one hand, we see that the observed percentiles
obtained from dataset A are mostly within the 90% predic-
tion intervals, both for (yij) and (k(tij)). Model is hence
potentially likely to have generated data A. On the other
hand, there is a strong discrepancy between dataset B and
model MA. We can reject this model with high confidence.
It can be then interesting to use the VPCs to improve the
model. We see in this example that the elimination rate
process (k(t)) does not randomly fluctuate around a typical
value k⋆, but rather seems to increase with time, or equiv-
alently to decrease with the concentration. Such a behavior
may indicate a saturable elimination as described with the
Michaelis Menten elimination of model B.

4.4 A real data example

We have then used the methodology proposed in Section 3
to analyze the well-known theophyllin data (see e.g. [24]).
These data come from twelve subjects who received a single
oral dose of 320 mg of theophyllin, a drug prescribed for the
treatment of asthma. For each subject, the concentration of
theophyllin in plasma is measured through ten consecutive
blood samples taken around 15 minutes, 30 minutes, 1, 2,

3.5, 5, 7, 9, 12 and 24 hours after the dose administration.
These data are classically described by the one compartment
model with first order absorption and first order elimina-
tion based on the ODE system (14) presented in Example 2
(Model 1). We would rather assume that the elimination
rate of theophyllin is a diffusion process. We then consider
the following mixed-effects diffusion model (Model 2):

dAd,i(t) = −ka,iAd,i(t)dt,

dAc,i(t) = (ka,iAd,i(t)− ke,i(t)Ac,i(t)) dt,

d log ke,i(t) = −αi(log ke,i(t)− log k⋆e,i)dt+ γidWi(t),

yij = Ac,i(tij)/Vi + ξij ,

ξij ∼
i.i.d.

N (0, σ2).(15)

Only 12 patients with 10 observations per patient does
not allow to estimate properly all the parameters of the
model with their inter individual variability. It is there-
fore necessary to assume that some parameters do not vary
and/or are fixed. Here, we assume that parameters αi and
γi are identical for the twelve subjects: αi = α and γi = γ,
i = 1, . . . , N .

We set log ka,i = log ka + η1i, log k
⋆
e,i = log k⋆e + η2i and

log Vi = log V + η3i, where (η1i, η2i, η3i)
′ ∼
i.i.d.

N (0,Ω) and

Ω diagonal. The estimated population parameters and the
estimated standard errors are reported in Table 4. We see
that it was not possible to estimate correctly the parame-
ters of the diffusion α and γ which converged to a very small
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Figure 4. Visual predictive checks obtained with dataset A (left) and dataset B (right). Top: VPC for the observed
concentration; bottom: VPC for the estimated elimination rate process. Black: observed 10th, 50th and 90th percentiles; grey:

90% prediction intervals. Dashed line: 10th percentile; solid line: 50th percentile; dashdot line: 90th percentile.

Table 4. Estimation of the population parameters for the theophyllin data with the mixed-effects diffusion model (15). The
table displays the parameter estimates and their estimated standard errors obtained with two different estimates. No prior

information is used in Model 1 and the MLE is computed. A prior information for α, γ and σ is used in Model 2 and the MAP
is computed for these three parameters

Model 1 Model 2
Parameter Estimate Stand. Err. Estimate Stand. Err.

k⋆

e 0.088 0.005 0.103 0.008
α 2.94 NaN 0.522 (MAP) 0.290
γ 0.0003 NaN 0.416 (MAP) 0.180
ka 1.31 0.27 1.14 0.280
σ 0.168 0.013 0.057 (MAP) 0.002
V 0.457 0.024 0.399 0.024
ωke 0.158 0.067 0.085 0.059
ωka 0.678 0.170 0.837 0.180
ωV 0.149 0.042 0.171 0.042

value. The solution obtained by maximizing the likelihood
without any constraint is therefore the ODE model without
any stochastic behavior. We then introduced some prior in-
formation on α, γ and σ to force the solution to contain a
stochastic component. Log-normal distributions were used,
the prior values and the standard deviations were respec-
tively (0.5, 0.05), (0.4, 0.04) and (0.04, 0.01) for α, γ and
σ. We then computed the Maximum a posteriori (MAP)
estimate of the population parameters by maximizing the
conditional distribution. The MAP estimate reduces to a
penalized MLE for parameters with prior and to standard
MLE for parameters without prior.

The predicted curves for three subjects obtained ei-
ther with Model 1 or with Model 2 are displayed in Fig-

ure 5. The predicted curves under both models are satis-
factory for the three subjects, but we see that the SDE
based model leads to a much better fit of the concen-
trations data since the model enables to capture smooth
random variations of the concentration kinetics. Assum-
ing that the elimination rate of theophyllin is driven by
a stochastic differential equation seems to be a plausible
assumption. Nevertheless, the three estimated elimination
processes also displayed Figure 5 show the same behavior
(a peak around t = 5h). This “non-stochastic” behavior
could indicate a misspecification of the structural model.
Given these figures, a modeler should then consider other
PK models compatible with this behavior of the elimina-
tion.
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Figure 5. Top: observed plasmatic concentrations of theophyllin for three subjects and their predicted concentration profiles
given by the ODE based model (Model 1): the unobserved drug’s elimination rate is assumed to keep constant over time;

middle: observed concentrations for the same three subjects and their predicted concentration profiles given by the SDE based
model (Model 2): the unobserved drug’s elimination rate is assumed to be a diffusion process; bottom: predicted evolution of

the elimination rate of theophyllin over time given by the SDE based model.

5. DISCUSSION

This paper proposes a new inference methodology for
mixed-effects diffusion models, observed at discrete time
points up to a Gaussian noise. In particular, we suggest a
specific extension of the SAEM algorithm combined with the
extended Kalman filter to estimate the population parame-
ters in these models. The particularity of this new version
of SAEM is that the simulation step reduces to the simula-
tion of the unknown individual parameters, considering the
diffusion process as a nuisance parameter. This approach
leads to much smaller computational times than other ver-
sions of SAEM for mixed-effects diffusion models previously
proposed in the literature, particularly the combination be-
tween SAEM and particle filters [11]. It should be noted
however, that contrary to the particle filters based method,
our approach does not give exact results since the EKF pro-
vides approximation of the marginal density of the data.

The performances of the new estimation method are il-
lustrated with a brief Monte-Carlo simulation study based
on a stochastic extension of PK bolus model. The simula-
tion globally shows satisfying performances of the new al-
gorithm. The SAEM algorithm reveals very little bias of
the estimates, even in quite small datasets, and converges
in a very few iterations. Mixed-effects diffusion models have
direct applications, especially for dynamical systems with

linear transfers, like in pharmacokinetics. Our approach is
to define the transfer rates as diffusion processes to model
the perturbations observed on the systems rather than con-
stants as it is often done in practice.

We mainly focused ourselves in this paper to the prob-
lem of estimating the population parameters, the individual
parameters and the state variables of the system. We have
also shown that Visual Predictive Checks is a valuable tool
for a model diagnostic. A more complete methodology for
model assessment deserves to be developed, including sta-
tistical tests to distinguish a stochastic and a deterministic
behavior of the dynamical system.
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