Managed Agreement: Generalizing Two
Fundamental Distributed Agreement Problems

Emmanuelle AnceaunteRoy Friedmart Maria Gradinariu

8|RISA, Rennes, France, anceaume@irisa.fr
bComputer Science Department, The Technion, Haifa, Isragf@cs.technion.ac.il
°LIP6, Universite Paris 6, France, Maria.Gradinariu@Iig6.

Abstract

This paper presents a family of agreement problems cMladaged Agreemenivhich is
parameterized by the numberarfistocratnodes in the system; NBAC is a special case of
this family when all nodes are aristocrats while Consensusspecial case of this family
when there are no aristocrats. The paper also presents mgtargzed family of failure
detectorsF(A) such thatF(A) is the weakest failure detector class that enables solving
Managed Agreement with a sdtof aristocrats in an asynchronous environment.

1 Introduction

Consensus [12] and Non-Blocking Atomic Commit (NBAC) [2Z], 88 two funda-
mental distributed agreement problems. Intuitively, thecsfication of these prob-
lems assumes that each node in a distributed system sté#nta given input value
and the goal of each node is to decide on some output valueevérnhe decided
values are restricted such that: all processes that do ash @ventually decide
(termination, the value decided by all processes is the saagesement and the
value decided must be related to the initial input valuesidity). The difference
between Consensus and NBAC is in their validity requiremeBpecifically, Con-
sensus only requires that a decided value is also a valuemdmatproposed. In
NBAC, it is assumed that the possible initial valuesyasandno and the possible
decision values areommitandabort If the initial value of at least one nodens,
then the decision must ort On the other hand, if the initial values of all nodes
areyesand there are no crash failures, then the decision value lmeustmmit

Despite the similarity in structure of the definitions of Gensus and NBAC,
in asynchronous distributed systems prone to crash failuhese are two differ-
ent problems [10]. In particular, neither problem can bevetlin a purely asyn-
chronous system. However, it was shown that the minimalleymy required to

Preprint submitted to Information Processing Letters 6&vober 2006

solve Consensus is strictly weaker than the one requiredite \NBAC [5] (we

make this statement more precise below). On the other hablhck-box imple-
mentation of NBAC is not sufficient to solve Consensus in dmentise asyn-
chronous environment.

In this paper we propose a family of problems that we bahaged Agreement
which generalizes both NBAC and Consensus. Managed Agreezimas at forcing
a decision via a set of special nodes. This approach is congpitary to approaches
that aim at speeding up the global decision by locally anatythe set of proposed
values [6]. Specifically, the definition of Managed Agreetrisbased on the notion
of aristocratnodes. In Managed Agreement, there exists a value suchf thiay i
of the aristocrats proposes this value, then a correspgndiliie must be decided.
On the other hand, if none of the aristocrats proposed thaap@lue and none of
the aristocrats failed, then any possible decision valaedbrresponds to a value
that was proposed can be decided on. Thus, NBAC is a spesialafaManaged
Agreement when all nodes are aristocrats, whereas Corsenatspecial case of
Managed Agreement when there are no aristocrats.

In this paper we present a generic protocol for solving Madalygreement, which

is based on a transformation from Consensus to NBAC by Goerf@]. The
protocol we present utilizes any known Consensus protoe@ alack-box and

a new class of failure detector that we derty®&, (A), which is an extension of the
known?P to detect crashes of aristocrats orllfP(was introduced in [9]). Finally,

we introduce a failure detector clags,,(A), again, an extension of the known
classV¥ [5], and show that a corresponding family of failure detestalenoted
F(A) = ("Par(A), ¥a,(A)), is the weakest class of failure detectors that enables
solving Managed Agreement for a givein?

2 Asynchronous Distributed Systems with Process Crashes

The computation model follows the one described in [4,7]e Bigstem consists
of a finite setll of n > 1 processes, namelyl = {pi,...,p,}. A process can
fail by crashing i.e., by prematurely halting. At mogt < n processes can fail by
crashing. A process behaves correctly (i.e., accordingstegecification) until it
(possibly) crashes. By definitioncarrectprocess is a process that does not crash.
A faulty process is one that is not correct. Until it (possibly) cessta process is
alive.

1 The term Managed Agreement is inspired by the term “managetbdracy”.

2 Given two families of failure detecto®; and D, we denote by D;, D) the family of
failure detectors whose output for a given failure pattérnan be any tuplés;, s2) such
thats; is a valid output forD; on7 andss is a valid output forD, on 7.

Processes communicate and synchronize by sending andngamiessages through
channels. Every pair of processes is connected by a ch&imahnels are assumed
to be reliable. There is no assumption about the relativegspéprocesses nor on

message transfer delays: the system is asynchronous.

We further enhance the environment, denafedy assuming that each process
has access to (one or moff@jlure detector(s)]4]. A failure detector is a module
that provides each process with possibly inaccurate irdtion about the occur-
rence of failures in the system. Below, we list four knowndypf failure detectors
that enable solving Consensus and NBAC in an otherwise asyneus distributed
system, and then propose a new one, nanfefy).

The class quorum failure detector >: Specifically,> outputs at each process a
set of processes such that any two sets intersect, and allgr@very set output at
correct processes consists only of correct processesslsth@vn in [5] that is
the weakest failure detector to implement atomic registers

Theclassleader failure detector €2: The failure detectof2 outputs the id of some
process at each process. There is a time after which it autpatid of the same
correct process at all correct processes [3]. It was shovj]ithat (2, X)) is the
weakest failure detector to solve Consensus for all enwents.

The class 7P: A failure detector that belongs to the cla&8 provides a boolean
value to each process while maintaining the following propg]:

e Anonymous Accuracy: The failure detector eventually returns true iff some
process in the system has crashed.

The class ¥: For an initial period of time, the output df at each process false
Eventually U behaves either like the failure detect@,) at all processes, or,
in case a failure previously occurred, it may behave likeftikeire detector?P

at all processes. The switch frofalseto P is allowable only if a failure previ-
ously occurred. In [5] it is proved thdtl, ?P) is the weakest failure detector to
solve NBAC, whileV is the weakest failure detector to solve another interntedia
problem called Quitable Consensus (this latter problemalsasintroduced in [5]).

3 Managed Agreement Problem

In the Managed Agreement problem, the set of possible pezpegluesP-VALS
can be different from the set of possible decided vallle¥ALS However, we
require a one-to-one mapping from the seP-VALSto the seD-VALS In partic-
ular, for each valugv € P-VALSand valuelv € D-VALSsuch thatlv = M (pv),
we say thatlv is thevalue that corresponds ta. Moreover, we identify one spe-
cial value inP-VALSas thedefault valueand denote iDefault To clarify, Default

is just a generic symbol; for example, in the case of NBAC, walkeie no is the
Default We also identify a sefl of aristocratsamong the entire set of nodes (this
subset is a parameter). Managed agreement is then defindeé byllowing prop-
erties:

(Uniform) Agreement: No two processes decide differently.

Termination: Every correct process eventually decides on some value.
Managed-Obligation: If the decision value isVI(Default), then either one of
the aristocrats proposé&¥efault or crashes.

Managed-Justification: If the decision value is different from M (Default),
thenv corresponds to a proposed value and all aristocrats pr@nea default
value.

Notice that a decision on a value other th&t Default) requires all aristocrats to
propose a value different frofefault In particular, in runs in which at least one
of the aristocrats have crashed even before the beginnitigegdrotocol, the only
possible decision value i$1(Default).

4 TheWeakest Failure Detector to Solve Managed Agreement

We introduce a novel class of failure detectors: the cfagd). First, we introduce
the class of failure detector$,.(A). Specifically, given a set of aristocrats a
failure detector ir’P,,(A) provides a boolean value (initialfglse to each process
while maintaining the following property:

e Aristocratic Accuracy: The failure detector eventually returns true iff some pro-
cess inA has crashed.

Second, we can similarly extend the definitiorlofo W, (A) in the obvious way.
Thatis, U, (A) initially outputs_ L at all processes. Then it either behavegas®),
or if one of the aristocrats id has crashed, it may behaved,,(A). However,
its behavior has to be consistent at all processes. NotatewthenA = (), then
?Pa:(A) always returnfalseand ¥, (A) degenerates t(2,). Finally, we define
the classF(A) = (7Pa:(A), Ua,(A)).

4.1 Sufficiency: Managed Agreement Through Consensus

A generic protocol for solving Managed Agreement based erathailability of a
failure detectotF(A) appears in Figure 1. Every aristocrat first sends its prapose
value to all other processes. Every process then waitsaititér it has received the
proposed values of all aristocrats, or th@,,(A) part of itsF(A) failure detector
told it that one of the aristocrats has crashed. The latteseésl to avoid blocking

Function ManagedAgreement(A,v;, k;)

% k; is a parameter aimed as distinguishing between differataimiations of the
protocol
if am an aristocrat (in A)hen
send YOTE,v;, k;) to everyone;
endif;
wait until either {/OTE,-,k;) messages have been received from every aristocrat or
7Par(A) returns true;
if received aOTE,Defaultk;) message from at least one aristocratBg, (A)
returned truehen
let u; :== M (Default)
else
let Ui 1= M(UZ)
endif;
while (U, (A) = 1) do nop done
if Uar(A)=truethen /* W, (A) behaves a3Py,(A)
return M (Default)
else
val:=consensusf, k;); I* Wa.(A) behaves ag,X)
return val
endif

Fig. 1. A Managed Agreement Protocol Based®{¥) and a Consensus Subroutine

forever in case one of the aristocrats has crashed befodingeits value to all
other processes. Then, if a node received at leasDerf@ult value, or detected one
aristocrat failure, it starts a Consensus protocol by psompthe value that cor-
responds tdefaultin the Managed Agreement specification. Otherwise, it start
the Consensus with a value that corresponds to its own pedpesue. Yet, be-
fore starting the Consensus protocol, the process mustmglithe U ,,.(A) failure
detector makes up its mind on whether it behavesfg(A) or as(€2, X). In the
former case, this means that one of the aristocrats has faihel this has been ob-
served by all correct processes. Thus, it is safe to detid®efault). Otherwise,
the consensus is invoked, since it is known that the failetector’s output obeys
(2, %), and thus the Consensus protocol will terminate correltlparticular, the
use of Consensus ensures agreement between all nodes wetifieng that the
agreed value also maintains validity. Let us note that whenretare no aristocrats,
this protocol trivially degenerates to invoking Consensith the initial values.

Lemmal The protocol in Figure 1 solves the Managed Agreement proble
asynchronous environments in which processes are equipipled failure detector
from the classF(A) and a Consensus subroutine.

Proof: It is easy to see that the agreement property trivially hdiida process
decidesM (Default) due to finding¥,,(A) = trug then by definition, all cor-
rect processes do the same and dedideéDefault). Otherwise, if Consensus is

invoked, then all processes decide the output of Conseasdsthus agreement
follows from the correctness of the Consensus protocolil&ily, the termination
property holds due to the termination property of the Cosssmprotocol and the
use of the?P,.(A) part of F(A) in the wait statement. Thus, we only need to
show validity. Clearly, if processes finél,(A) = trug then this means that one
of the aristocrats has crashed. In this case, they all detidPefault) and there-
fore validity is preserved. Therefore, for the rest of thisqgd we concentrate only
on runs in which thel ,,(A) part of the failure detector acts lik€,). Let us
first consider runs of the protocol in which none of the agstts crashes. In these
runs, at the end of thwait statement, every alive process has all the proposed val-
ues of all the aristocrats. Thus, if any of the aristocrats px@posed the default
value, then all processes (that do not crash beforehand)tlstaConsensus with
the corresponding valua1(Default). By the validity of Consensus, the returned
value by Consensus must alsob€ Default). Therefore, in these cases Managed-
Obligation is observed. Alternatively, if none of the anstats proposeBefault
then every process (that does not crash beforehand) dtartSdnsensus with a
valueu; that corresponds to its proposed valyeBy the validity of Consensus, the
decided value must be one of thesevalues. Consequently, Managed-Justification
is observed in these runs.

The only thing left to show now is that in runs in which at lease aristocrat
proposedefault and at least one aristocrat crashes (either the same aaistyc

a different one), then the decided value corresponds to ¢ifeeull value. When
considering such a run, at the end of thait statement, every alive process either
has received at least ofefaultvalue, or has had it5P,,(A) returntrue In either
case, the process starts Consensus wittDefault). By the validity of Consensus,
this is also the decided value. [|

4.2 Necessity: The Minimal Failure Detector for Solving Mgad-Agreement

In the following, we show that any failure detec®ithat enables solving Managed
Agreement can be transformed into bG8tRa.(A) and ¥4, (A). Consequently, it
implementsF(A).

4.2.1 From Managed-Agreement1®,,(A)

In the following, we show that any failure detectbrthat enables solving Man-
aged Agreement in any environment can be transformed’iAte(A). The trans-
formation algorithm that we use is similar to the one propose[9] for emu-
lating 7P from NBAC. The algorithm works as follows. Each processhas a
local boolean variableutput,,, which provides the information that should be re-
turned by its local failure detectP,,4). We assume the existence of the function

ManagedAgr eenent () that solves the Managed Agreement problem. Each pro-
cessp; initiatesoutput, to falseand then repeatedly invokes the Managed Agree-
ment function with a non default value. This is done foreugless the returned
value isM (Default), in which case; changeutput, to trueand exits. The idea

is that by the definition of Managed Agreement,(Default) can only be returned

in this case if and only if at least one of the aristocrats hdsd. The exact pseudo-
code appears in Figure 2 and the proof is given below.

output,, := falsg k; .= 1;
selectv; € P-VALS\{Default}
repeat
t; ;= ManagedAgr eenment (A, v;, k;); ki = k; + 1;
until t; = M(Default);
output,, := true;

Fig. 2. From Managed Agreement @, (A)

Lemma 2 The transformation algorithm in Figure 2 emulates the fedldetector
?PAr(A)-

Proof: We prove that the transformation algorithm verifies the #dsatic Accu-
racy property, i.e., it eventually returmgie if and only if some process id has
crashed. Suppose the transformation algorithm outipuésat some point. This can
happen only if some invocation of tidanagedAgr eenent () function returns
M (Default). By definition, this can happen either if one of the aristtearo-
posesDefaultor crashes. The first scenario is impossible since all psasesivoke
ManagedAgr eenent () with a nonDefault value. Therefore, the output can be
trueonly due to an aristocrat’s crash.

Let us consider now an execution of the protocol where artoariat crashes,
and assume w.l.o.g. that it crashes before invokingithenstance ofManaged

Agr eenent (). Also, letp; be a correct process executing the transformation algo-
rithm. By the Termination property, thgh invocation byp, of Managed

Agr eemnrent () in the transformation algorithm eventually returns; by Managed-
Obligation property, the returned value in this case musthi®efault). Therefore,

the transformation algorithm terminates by setting thgpouto true [|

4.2.2 From Managed Agreementdo,,(A)

The transformation from Managed Agreementitg,(A) is inspired by the trans-
formation that was first proposed in [3], and then in [5], toragt ¥ from any fail-
ure detectofD that solves Quitable Consensus. SpecificallyDdte an arbitrary
failure detector that can be used to solve Managed Agreemsaine environment
E. Let Alg be an algorithm that us@3to solve Managed Agreementéh We must
prove thatl ,,(A) can be “extracted” fronD in environment, i.e., processes can

run in £ a transformation algorithm that us®&sand.Alg to generate the output of
VA (A)— a failure detector that initially outputs and later behaves either like
(€2, %) or like ?Pay4). The reduction algorithris ¢, (4 is shown in Figure 3.

The basic idea of the transformation is to have each prooesdly simulate the
behavior of the overall distributed system. That is, to dateithe execution (by all
the processes of the system) of runs of algorithiy that could have occurred in
the current failure detector pattefhand failure detector history @ (this is done
by Task 1 in Figure 3). Additionally, determine whether i tturrent run of the
simulation it is possible to extra¢f?, >3), or it is legitimate to start behaving like
?Par(a) @and output true because one of the aristocrats has crasheddsk 2 in
Figure 3).

Notice that since we assume thély solves Managed Agreement, we can assume,
w.l.0.g., that it solves this problem whén, 1, Defaultt € P-VALSand M (i) =i
fori € {0, 1}. With this observation, we detail below both tasks.

In the construction, each procegsstarts by outputtingL. In Task 1,p simulates
runs of Alg that could have occurred in the current failure pattérand the current
failure detector history db, exactly as in [3] (see below for extended definitions). It
does this by “sampling” its local failure detectbrand exchanging failure detector
samples with the other processes (Line 5 in Figure 3). Psgcesganizes these
samples into ever-increasing DAG, whose edges are consistent with the order
in which the failure detectors samples were taken. Ugihgp simulates ever-
increasing partial runs ofllg that are compatible with paths {#,. A path from the
root of atree to a nodein the tree corresponds to the schedule of a partial run of the
algorithm, where every edge along the path correspondstpab some process.

: : : n+p-—1
Each procesg organizes these runs in a forest inducediby=

n

configurations, witle the number of processes, amthe number of different input
values, i.e.p = 3. This forest, denoted’,,, containsI’ trees. We can order these
configurations such that configuratiofisand 7=t with 0 < i < T differ only in
the value of one proposition. These trees are ordered sathﬁrcorresponds to
simulated runs of4lg in which all the processes proposelqj with somek > 0
corresponds to simulated runs dfg in which all the processes propose 1, and
Tg‘l in which all the processes propofSefault Note that it exists an ordering
which guarantees that there is howith 0 < k&’ < k such that some process
proposesDefaultin T,

Processes periodically query their failure detectors. fdseilts of these queries
include failure and temporal information. Each proces$arges the results of its
gueries with all the other processes. Upon receipt of sufdrration, a process
construct a DAG [3] by incorporating the received informatito its own DAG.

(Each process exchanges its whole DAG with all the otherge®es. The temporal

information enables to incorporate the received DAG wité kbcal one.) Thus
every (correct) process can construct ever-increasintg fapproximations of the
same infinite limit DAGG. This DAG is then used to simulate runs of managed
agreement. Specifically, each patlvithin G can be used to simulate schedules of
runs of managed agreement. That is, a gatpresents several possible schedules
and failure detectors values for the processes during éxeicution of managed
agreement. There are many different schedules that matth &a@DAGG because
each schedule depends on the order in which messages akededéus, if we
consider each initial configuratiai then one can construct a tree rooted‘afrhe

set of vertices of the tree rooted Htis the set of all possible schedules that can
occur from the given configuratiofi. An edge corresponds to an event “receipt by
a proces® of a messagen, and the failure detector value seen by the sender of
the message when it semt to p”. By considering thel different configurations,
one obtains a forest of simulated runs of managed agreembkus. the infinite
limit DAG G induces annfinite limit forest Y. Thelimit tree of T; is denotedY™.
Each nodeS of T is tagged by the set of decisions that correct processel meac
the partial runs that are the descendants .of hese tags can be either univalent,
i.e., 0-valent or1-valent or M(Default)-valent, or multi-valent (i.e., with more
than one tag). We use the same definition for a critical indexd5]: Indexi €
{0,...,T —1} is critical if the root of Y is multivalent or the root o is u-valent
and the root of(*~! is v-valent, withu, v € {0, 1, M(Default)} andu # v.

In Task 2,p waits until it decides in some simulated run of every treehef for-
estY, (Line 8 in Figure 3). Ifp decidesM (Default) in any of these runs and the
initial configuration of this run does not contain aBgfault value proposed by an
aristocrat then a failure must have occurred (in the curi@hire pattern). Note
that this condition is stronger than the one in [5] becaugh®Managed Obliga-
tion property of Managed Agreement. Thuknows that it is legitimate to propose
the extraction of P4, (A). Otherwisep’s decision values in the simulated runs are
0s, 1s orM (Default) but in this latter case, the initial configuration contaihs t
Default value (proposed by an aristocrat), and thus does not tethangregard-
ing failures. Thugp determines that it is possible to extrd€t, ¥). Note that by
the validity properties of Managed Agreement, startingrfran initial configura-
tion in which there is ndefault values (proposed by an aristocrat), the decision
value may be eitheM (Default) if an aristocrat has failed after having voted and
this failure has been detected before the receipt of his, wota decision value

v # M(Default), otherwise. At this pointp executes the given Managed Agree-
ment algorithmAlg to agree with all the processes on whether to extt> (A)
(because at leagthas detected an aristocrat failure) or to exti@et>)). Specifi-
cally, inthe former case, procesgvokes an instance o4lg by proposingDefault

In the latter case, it invokedlg with (I, I’, S, S’) value, wherd and’ are initial
configurations that differ only in the proposal of one pracesile S and S’ are
schedules in the simulated forest so that processes deaide(/) andv in S'(1"),
whereu, v € {0,1} andu # v. The proof of existence of such configurations and
schedules is similar to the one shown in Lemma 2 in [8], andildet in [1].

If processes decide to extraé?,t), they continue the simulation of runs gfig
to do this extraction. Note that this extraction cannottstahe decision value in
every simulated run i81(Default). Notice that the failure of an aristocrat may not
be detected. Hence the necessity of the algorithm showrgiwr&i2 that emulates
?Pa:(A) with Managed Agreement. Illg returnsM (Default), then.Alg starts to
behave like’P,,(A): p stops outputting. and outputsrue from that time on (Line
16). If Alg returns a value of the forrfY, I, S, Sy), thenp stops outputting. and
starts extracting (Line 21) andX (Line 23). The extraction of) is done using
the procedures of both [3] and [5]. To extrdet p must continuously output the
identifier of a process such that eventually, correct pseesutput the identifier of
the same correct process. The existence of a correct pnateEsson the existence
of a critical index (see Lemma 3 below). Finally, the extiacf X is done exactly
as in [5] and detailed in [11].

Lemma 3 If any process reaches Line 21, then the limit for€shas a critical
index.

Proof: (Adaptation of Lemma 3 in [5]). If a process reaches Line 2kntit
must have previously decided a tuplg,(/1, So, S1). By the Managed-Justification
of Managed Agreement, some processiust have proposed this tuple to algo-
rithm Alg. Sinceq proposed this tuple, it must have decided some valddfer-
ent from M (Default) in some run ofY, (this follows from the choice of tuple
(1o, I1, So, S1)). By construction of the limit forest, all the correct prgses are
aware of the partial run that allowedo decide value, and include this partial run
to their own forest. By Termination and Agreement of Managgceement, all the
correct processes decide# M (Default) in some run off. From above, the root
of some tre€l" is tagged withy # M (Default). Two cases are possible. Either the
root is uni-valent, i.e., it is tagged with only valueor it is multi-valent, i.e., it is
tagged with bothy and other tagsi(— v, and/orM (Default)). In the latter case,
we are done by the definition of a critical index. In the forroase, all the roots
are uni-valent. We consider two cases: Suppose firstthatl. Two sub-cases are
possible. Eithea) i < k (recall that index: corresponds to the tree in which all the
processes propose value 1)di > k. In sub-casa), by considering the sequence
YO ..., Y% ..., Tk there must exist some indéxwith 0 < &’ < i such that the
root of Y*~1 is 0-valent while the root off* is 1-valent. By definition ' is a
critical index. In sub-casb), by considering the sequen®@, ..., Y¢ ... Y71,

there must exist some indéx with i < & < T — 1 such that the root oT* ! is
1-valent while the root oft*" is u-valent, withu € {0, M (Defaulh}. By definition
k" is a critical index. The case fer= 0 is similar to the case = 1. n

Theorem 1 For all environmentg, if failure detectorD can be used to solve Man-
aged Agreement ig, then the algorithm shown in Figure 3 transforfsinto
\I/Ar(A) in€&.

Proof: The proof follows the lines of Theorem 6 in [5]. The only difface con-

10

cerns the validity property. Specifically, for each procgss U4, (A) — output,

is true then it must be the case that some aristocrat hasecrakhing the current
run. Suppose that procepsoutputs true in Line 16 in Figure 3, thendecided
M (Default) in the current execution of algorithmdlg (see Line 15). Thus, by
Managed-Obligation of Managed Agreement, it must be the taagt some pro-
cessqg invoked.Alg with value Default as initial proposition (see Line 10) or that
some aristocrat crashed during the current executioalgf In the latter case, we
are done. In the former casgjnvoked.Alg with value Default only if ¢ decided
M (Default) in one of the simulated runs oflg and if the initial configuration of
this run did not contain anpefault value proposed by some aristocrat. Thus, by
Managed-Obligation of Managed Agreement, it must be the tagt some aris-
tocrat crashed during this run. The rest of the proof of theotem is exactly the
same as in [5]. m

Theorem 2 F(A) is the weakest class of failure detectors that enables rgplvi
Managed Agreement.

Proof: The theorem follows directly from Lemma 1, Lemma 2 and Theoiem

References

[1] E. Anceaume, R. Friedman, and M. Gradinariu. Manage@egent. Generalizing
two fundamental distributed agreement problems. Techieport 1785, IRISA,
2006.

[2] P. Bernstein, V. Hadzilacos, and H. Goodm&oncurrency Control and Recovery in
Database System#&ddison-Wesley, Reading, MA, 1987.

[3] T.Chandra, V. Hadzilacos, and S. Toueg. The WeakestifeaiDetector for Solving
ConsensusJournal of the ACM43(4):685—-722, 1996.

[4] T. Chandra and S. Toueg. Unreliable Failure DetectorsAsynchronous Systems.
Journal of the ACM43(4):685-722, 1996.

[5] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Fitatos, P. Kouznetsov, and
S. Toueg. The Weakest Failure Detectors to Solve Certain&uental Problems in
Distributed Computing. IiProc. 23rd ACM Symposium on Principles of Distributed
Computing (PODG)pages 338-346, 2004.

[6] P.Dutta, R. Guerraoui, and B. Pochon. Fast non-blochiiegnic commit: An inherent
trade-off. Information Processing Letter81(4):195-200, 2004.

[7]1 M. Fischer, N. Lynch, and M. Patterson. Impossibilityl@istributed Consensus with
One Faulty Processlournal of the ACM32(2):374-382, 1985.

[8] R. Guerraoui, V. Hadzilacos, P. Kouznetsov, and S. Toudthe weakest failure
detectors to solve quitable consensus and non-blockingiatcommit. Technical
report, LPD EPFL, 2004.

11

[9] Rachid Guerraoui. Non-Blocking Atomic Commit in Asyrroimous Distributed
Systems with Failure DetectorBistributed Computing15(1):17-25, 2002.

[10] V. Hadzilacos. On the Relationship Between the Atomaertnitment and Consensus
Problems.Fault-Tolerant Distributed Computingpages 201-208, 1990.

[11] P. Kouznetsov. Synchronizations using Failure DetectorsPhD thesis, School of
Computer and Communication Sciences, EPFL, Suisse, 2005.

[12] L. Pease, P. Shostak, and L. Lamport. Reaching Agreemearesence of Faults.
Journal of the ACM27(2):228-234, 1980.

[13] D. Skeen. Crash Recovery in a Distributed DatabaseeBystMemorandum No.
UCB/ERL M82/45, Electronics Research Laboratory, Benkel©82.

12

n+p—1
Initially: (1) T := b

n
(2) Uar(A) —output, := L {Ua.(A) — output, is the output of module
\IjAr(A) atp }
Task 1:
(3) doforever /* same construction as in [3] */
(4) cobegin /* cases a) and b) are executed in parallel */
(5) @) pbuilds an ever-increasing DAG,, of failure detectors samples by repeatedly
sampling its failure detectdP and exchanging these samples with the processes
(6) b) p usesG, and thel initial configurations to construct a fore¥t, of ever-
increasing simulated runs oflg usingD that could have occurred with the
current failure patterd” and the current failure detector history.
(7) coend
Task 2:
(8) wait until (v Y}, with0 <4 < (T — 1), p decides in one of the runs &f,)
(9) if (34 such thap decidesM (Default) in T}, and* does not contain anefault
value proposed by an aristocréten
(10) prunsAlg with Defaultas input value
(11) dse/* vV Y%, 3 a run in which the decision value is either 0, 1,/et(Default) but
in the latter caseDefaulte I* */
(12) select two configurationg—! andI?, with 1 < i < (T — 1) and two schedule§
andS’ stp decidesu in S(I'~1) andw in S'(I%), with u,v € {0,1} andu # v
(13) prunsAlg with (I,1',5,5") as input value
(14) wait until (p decides inAlg)
(15) if (p decidesM (Default)) then
(16) War(A) — outputy, := true [* Wa,(A) behaves a8Py,4) */
(A7) ese/* pdecidesIy, I1, So,S1) */
(18) Q — outputy, :=p
(29) Y — output, :=1I

(20) cobegin /* cases a), b) and c) are executed in parallel */

(21) a) doforever /* extractions of(2 */

(22) 2 — output, + g such thap extractsg following the procedure in [3]

(23) b) let C be the set of configurations reached by applying all prefixes ¢o
IpandS; to I

(24) do forever /* extraction ofX */

(25) ¥ — output,, +— Joec Set of processes thatextracts following the

procedure in [5]

(26) ¢) do forever

(27) U (A) — output, = (Q — outputy, ¥ — output,)

(28) coend

(29) endif

(30) endif

Fig. 3. Extraction ofl' 5, (A) from D and Managed Agreement algorithdlg — code for
proces

13

