
Managed Agreement: Generalizing Two
Fundamental Distributed Agreement Problems

Emmanuelle Anceaumea Roy Friedmanb Maria Gradinariuc

aIRISA, Rennes, France, anceaume@irisa.fr
bComputer Science Department, The Technion, Haifa, Israel,roy@cs.technion.ac.il

cLIP6, Universite Paris 6, France, Maria.Gradinariu@lip6.fr

Abstract

This paper presents a family of agreement problems calledManaged Agreement, which is
parameterized by the number ofaristocratnodes in the system; NBAC is a special case of
this family when all nodes are aristocrats while Consensus is a special case of this family
when there are no aristocrats. The paper also presents a parameterized family of failure
detectorsF(A) such thatF(A) is the weakest failure detector class that enables solving
Managed Agreement with a setA of aristocrats in an asynchronous environment.

1 Introduction

Consensus [12] and Non-Blocking Atomic Commit (NBAC) [2,13] are two funda-
mental distributed agreement problems. Intuitively, the specification of these prob-
lems assumes that each node in a distributed system starts with a given input value
and the goal of each node is to decide on some output value. However, the decided
values are restricted such that: all processes that do not crash eventually decide
(termination), the value decided by all processes is the same (agreement), and the
value decided must be related to the initial input values (validity). The difference
between Consensus and NBAC is in their validity requirements. Specifically, Con-
sensus only requires that a decided value is also a value thatwas proposed. In
NBAC, it is assumed that the possible initial values areyesandno and the possible
decision values arecommit andabort. If the initial value of at least one node isno,
then the decision must beabort. On the other hand, if the initial values of all nodes
areyesand there are no crash failures, then the decision value mustbecommit.

Despite the similarity in structure of the definitions of Consensus and NBAC,
in asynchronous distributed systems prone to crash failures, these are two differ-
ent problems [10]. In particular, neither problem can be solved in a purely asyn-
chronous system. However, it was shown that the minimal synchrony required to

Preprint submitted to Information Processing Letters 6 November 2006



solve Consensus is strictly weaker than the one required to solve NBAC [5] (we
make this statement more precise below). On the other hand, ablack-box imple-
mentation of NBAC is not sufficient to solve Consensus in an otherwise asyn-
chronous environment.

In this paper we propose a family of problems that we callManaged Agreement1 ,
which generalizes both NBAC and Consensus. Managed Agreement aims at forcing
a decision via a set of special nodes. This approach is complementary to approaches
that aim at speeding up the global decision by locally analyzing the set of proposed
values [6]. Specifically, the definition of Managed Agreement is based on the notion
of aristocrat nodes. In Managed Agreement, there exists a value such that if any
of the aristocrats proposes this value, then a corresponding value must be decided.
On the other hand, if none of the aristocrats proposed the special value and none of
the aristocrats failed, then any possible decision value that corresponds to a value
that was proposed can be decided on. Thus, NBAC is a special case of Managed
Agreement when all nodes are aristocrats, whereas Consensus is a special case of
Managed Agreement when there are no aristocrats.

In this paper we present a generic protocol for solving Managed Agreement, which
is based on a transformation from Consensus to NBAC by Guerraoui [9]. The
protocol we present utilizes any known Consensus protocol as a black-box and
a new class of failure detector that we denote?PAr(A), which is an extension of the
known?P to detect crashes of aristocrats only (?P was introduced in [9]). Finally,
we introduce a failure detector classΨAr(A), again, an extension of the known
classΨ [5], and show that a corresponding family of failure detectors, denoted
F(A) = (?PAr(A), ΨAr(A)), is the weakest class of failure detectors that enables
solving Managed Agreement for a givenA. 2

2 Asynchronous Distributed Systems with Process Crashes

The computation model follows the one described in [4,7]. The system consists
of a finite setΠ of n > 1 processes, namely,Π = {p1, . . . , pn}. A process can
fail by crashing, i.e., by prematurely halting. At mostf < n processes can fail by
crashing. A process behaves correctly (i.e., according to its specification) until it
(possibly) crashes. By definition, acorrectprocess is a process that does not crash.
A faulty process is one that is not correct. Until it (possibly) crashes, a process is
alive.

1 The term Managed Agreement is inspired by the term “managed democracy”.
2 Given two families of failure detectorsD1 andD2, we denote by(D1,D2) the family of
failure detectors whose output for a given failure patternT can be any tuple(s1, s2) such
thats1 is a valid output forD1 onT ands2 is a valid output forD2 onT .

2



Processes communicate and synchronize by sending and receiving messages through
channels. Every pair of processes is connected by a channel.Channels are assumed
to be reliable. There is no assumption about the relative speed of processes nor on
message transfer delays: the system is asynchronous.

We further enhance the environment, denotedE , by assuming that each process
has access to (one or more)failure detector(s)[4]. A failure detector is a module
that provides each process with possibly inaccurate information about the occur-
rence of failures in the system. Below, we list four known types of failure detectors
that enable solving Consensus and NBAC in an otherwise asynchronous distributed
system, and then propose a new one, namely,F(A).

The class quorum failure detector Σ: Specifically,Σ outputs at each process a
set of processes such that any two sets intersect, and eventually every set output at
correct processes consists only of correct processes. It was shown in [5] thatΣ is
the weakest failure detector to implement atomic registers.

The class leader failure detector Ω: The failure detectorΩ outputs the id of some
process at each process. There is a time after which it outputs the id of the same
correct process at all correct processes [3]. It was shown in[5] that (Ω, Σ) is the
weakest failure detector to solve Consensus for all environments.

The class ?P: A failure detector that belongs to the class?P provides a boolean
value to each process while maintaining the following property [9]:

• Anonymous Accuracy: The failure detector eventually returns true iff some
process in the system has crashed.

The class Ψ: For an initial period of time, the output ofΨ at each process isfalse.
EventuallyΨ behaves either like the failure detector(Ω, Σ) at all processes, or,
in case a failure previously occurred, it may behave like thefailure detector?P
at all processes. The switch fromfalse to ?P is allowable only if a failure previ-
ously occurred. In [5] it is proved that(Ψ, ?P) is the weakest failure detector to
solve NBAC, whileΨ is the weakest failure detector to solve another intermediate
problem called Quitable Consensus (this latter problem wasalso introduced in [5]).

3 Managed Agreement Problem

In the Managed Agreement problem, the set of possible proposed values,P-VALS,
can be different from the set of possible decided values,D-VALS. However, we
require a one-to-one mappingM from the setP-VALSto the setD-VALS. In partic-
ular, for each valuepv ∈ P-VALSand valuedv ∈ D-VALSsuch thatdv =M(pv),
we say thatdv is thevalue that corresponds topv. Moreover, we identify one spe-
cial value inP-VALSas thedefault valueand denote itDefault. To clarify, Default

3



is just a generic symbol; for example, in the case of NBAC, thevalueno is the
Default. We also identify a setA of aristocratsamong the entire set of nodes (this
subset is a parameter). Managed agreement is then defined by the following prop-
erties:

• (Uniform) Agreement: No two processes decide differently.
• Termination: Every correct process eventually decides on some value.
• Managed-Obligation: If the decision value isM(Default), then either one of

the aristocrats proposesDefault or crashes.
• Managed-Justification: If the decision valuev is different fromM(Default),

thenv corresponds to a proposed value and all aristocrats proposea non default
value.

Notice that a decision on a value other thanM(Default) requires all aristocrats to
propose a value different fromDefault. In particular, in runs in which at least one
of the aristocrats have crashed even before the beginning ofthe protocol, the only
possible decision value isM(Default).

4 The Weakest Failure Detector to Solve Managed Agreement

We introduce a novel class of failure detectors: the classF(A). First, we introduce
the class of failure detectors?PAr(A). Specifically, given a set of aristocratsA, a
failure detector in?PAr(A) provides a boolean value (initiallyfalse) to each process
while maintaining the following property:

• Aristocratic Accuracy: The failure detector eventually returns true iff some pro-
cess inA has crashed.

Second, we can similarly extend the definition ofΨ to ΨAr(A) in the obvious way.
That is,ΨAr(A) initially outputs⊥ at all processes. Then it either behaves as(Ω, Σ),
or if one of the aristocrats inA has crashed, it may behave as?PAr(A). However,
its behavior has to be consistent at all processes. Notice that whenA = ∅, then
?PAr(A) always returnfalseandΨAr(A) degenerates to(Ω, Σ). Finally, we define
the classF(A) = (?PAr(A), ΨAr(A)).

4.1 Sufficiency: Managed Agreement Through Consensus

A generic protocol for solving Managed Agreement based on the availability of a
failure detectorF(A) appears in Figure 1. Every aristocrat first sends its proposed
value to all other processes. Every process then waits untileither it has received the
proposed values of all aristocrats, or the?PAr(A) part of itsF(A) failure detector
told it that one of the aristocrats has crashed. The latter isused to avoid blocking

4



Function ManagedAgreement(A,vi, ki)

% ki is a parameter aimed as distinguishing between different instantiations of the
protocol
if I am an aristocrat (in A)then

send (VOTE,vi, ki) to everyone;
endif;
wait until either (VOTE,-,ki) messages have been received from every aristocrat or
?PAr(A) returns true;
if received a (VOTE,Default,ki) message from at least one aristocrat or?PAr(A)
returned truethen

let ui :=M(Default)
else

let ui :=M(vi)
endif;
while (ΨAr(A) =⊥) do nop done
if ΨAr(A) = true then /* ΨAr(A) behaves as?PAr(A)

returnM(Default)
else

val:=consensus(ui , ki); /* ΨAr(A) behaves as (Ω,Σ)
return val

endif

Fig. 1. A Managed Agreement Protocol Based onF(A) and a Consensus Subroutine

forever in case one of the aristocrats has crashed before sending its value to all
other processes. Then, if a node received at least oneDefault value, or detected one
aristocrat failure, it starts a Consensus protocol by proposing the value that cor-
responds toDefault in the Managed Agreement specification. Otherwise, it starts
the Consensus with a value that corresponds to its own proposed value. Yet, be-
fore starting the Consensus protocol, the process must waituntil theΨAr(A) failure
detector makes up its mind on whether it behaves as?PAr(A) or as(Ω, Σ). In the
former case, this means that one of the aristocrats has failed, and this has been ob-
served by all correct processes. Thus, it is safe to decideM(Default). Otherwise,
the consensus is invoked, since it is known that the failure detector’s output obeys
(Ω, Σ), and thus the Consensus protocol will terminate correctly.In particular, the
use of Consensus ensures agreement between all nodes while verifying that the
agreed value also maintains validity. Let us note that when there are no aristocrats,
this protocol trivially degenerates to invoking Consensuswith the initial values.

Lemma 1 The protocol in Figure 1 solves the Managed Agreement problem in
asynchronous environments in which processes are equippedwith a failure detector
from the classF(A) and a Consensus subroutine.

Proof: It is easy to see that the agreement property trivially holds. If a process
decidesM(Default) due to findingΨAr(A) = true, then by definition, all cor-
rect processes do the same and decideM(Default). Otherwise, if Consensus is

5



invoked, then all processes decide the output of Consensus,and thus agreement
follows from the correctness of the Consensus protocol. Similarly, the termination
property holds due to the termination property of the Consensus protocol and the
use of the?PAr(A) part ofF(A) in the wait statement. Thus, we only need to
show validity. Clearly, if processes findΨAr(A) = true, then this means that one
of the aristocrats has crashed. In this case, they all decideM(Default) and there-
fore validity is preserved. Therefore, for the rest of this proof we concentrate only
on runs in which theΨAr(A) part of the failure detector acts like(Ω, Σ). Let us
first consider runs of the protocol in which none of the aristocrats crashes. In these
runs, at the end of thewait statement, every alive process has all the proposed val-
ues of all the aristocrats. Thus, if any of the aristocrats has proposed the default
value, then all processes (that do not crash beforehand) start the Consensus with
the corresponding valueM(Default). By the validity of Consensus, the returned
value by Consensus must also beM(Default). Therefore, in these cases Managed-
Obligation is observed. Alternatively, if none of the aristocrats proposesDefault,
then every process (that does not crash beforehand) starts the Consensus with a
valueui that corresponds to its proposed valuevi. By the validity of Consensus, the
decided value must be one of theseui values. Consequently, Managed-Justification
is observed in these runs.

The only thing left to show now is that in runs in which at leastone aristocrat
proposesDefault and at least one aristocrat crashes (either the same aristocrat or
a different one), then the decided value corresponds to the default value. When
considering such a run, at the end of thewait statement, every alive process either
has received at least oneDefault value, or has had its?PAr(A) returntrue. In either
case, the process starts Consensus withM(Default). By the validity of Consensus,
this is also the decided value.

4.2 Necessity: The Minimal Failure Detector for Solving Managed-Agreement

In the following, we show that any failure detectorD that enables solving Managed
Agreement can be transformed into both?PAr(A) andΨAr(A). Consequently, it
implementsF(A).

4.2.1 From Managed-Agreement to?PAr(A)

In the following, we show that any failure detectorD that enables solving Man-
aged Agreement in any environment can be transformed into?PAr(A). The trans-
formation algorithm that we use is similar to the one proposed in [9] for emu-
lating ?P from NBAC. The algorithm works as follows. Each processpi has a
local boolean variableoutputpi

, which provides the information that should be re-
turned by its local failure detector?PAr(A). We assume the existence of the function

6



ManagedAgreement() that solves the Managed Agreement problem. Each pro-
cesspi initiatesoutputpi

to falseand then repeatedly invokes the Managed Agree-
ment function with a non default value. This is done forever,unless the returned
value isM(Default), in which casepi changesoutputpi

to true and exits. The idea
is that by the definition of Managed Agreement,M(Default) can only be returned
in this case if and only if at least one of the aristocrats has failed. The exact pseudo-
code appears in Figure 2 and the proof is given below.

outputpi
:= false; ki := 1;

selectvi ∈ P-VALS\{Default}
repeat

ti := ManagedAgreement(A, vi, ki); ki := ki + 1;
until ti =M(Default);
outputpi

:= true;

Fig. 2. From Managed Agreement to?PAr(A)

Lemma 2 The transformation algorithm in Figure 2 emulates the failure detector
?PAr(A).

Proof: We prove that the transformation algorithm verifies the Aristocratic Accu-
racy property, i.e., it eventually returnstrue if and only if some process inA has
crashed. Suppose the transformation algorithm outputstrueat some point. This can
happen only if some invocation of theManagedAgreement() function returns
M(Default). By definition, this can happen either if one of the aristocrats pro-
posesDefault or crashes. The first scenario is impossible since all processes invoke
ManagedAgreement() with a nonDefault value. Therefore, the output can be
true only due to an aristocrat’s crash.

Let us consider now an execution of the protocol where an aristocrat crashes,
and assume w.l.o.g. that it crashes before invoking thekth instance ofManaged
Agreement(). Also, letpi be a correct process executing the transformation algo-
rithm. By the Termination property, thekth invocation bypi of Managed
Agreement() in the transformation algorithm eventually returns; by the Managed-
Obligation property, the returned value in this case must beM(Default). Therefore,
the transformation algorithm terminates by setting the output totrue.

4.2.2 From Managed Agreement toΨAr(A)

The transformation from Managed Agreement toΨAr(A) is inspired by the trans-
formation that was first proposed in [3], and then in [5], to extractΨ from any fail-
ure detectorD that solves Quitable Consensus. Specifically, letD be an arbitrary
failure detector that can be used to solve Managed Agreementin some environment
E . LetAlg be an algorithm that usesD to solve Managed Agreement inE . We must
prove thatΨAr(A) can be “extracted” fromD in environmentE , i.e., processes can

7



run in E a transformation algorithm that usesD andAlg to generate the output of
ΨAr(A)— a failure detector that initially outputs⊥ and later behaves either like
(Ω, Σ) or like ?PAr(A). The reduction algorithmTD→ΨAr(A) is shown in Figure 3.

The basic idea of the transformation is to have each process locally simulate the
behavior of the overall distributed system. That is, to simulate the execution (by all
the processes of the system) of runs of algorithmAlg that could have occurred in
the current failure detector patternF and failure detector history ofD (this is done
by Task 1 in Figure 3). Additionally, determine whether in the current run of the
simulation it is possible to extract(Ω, Σ), or it is legitimate to start behaving like
?PAr(A) and output true because one of the aristocrats has crashed (see Task 2 in
Figure 3).

Notice that since we assume thatAlg solves Managed Agreement, we can assume,
w.l.o.g., that it solves this problem when{0, 1, Default} ∈ P-VALSandM(i) = i

for i ∈ {0, 1}. With this observation, we detail below both tasks.

In the construction, each processp starts by outputting⊥. In Task 1,p simulates
runs ofAlg that could have occurred in the current failure patternF and the current
failure detector history ofD, exactly as in [3] (see below for extended definitions). It
does this by “sampling” its local failure detectorD and exchanging failure detector
samples with the other processes (Line 5 in Figure 3). Process p organizes these
samples into ever-increasing DAGGp whose edges are consistent with the order
in which the failure detectors samples were taken. UsingGp, p simulates ever-
increasing partial runs ofAlg that are compatible with paths inGp. A path from the
root of a tree to a nodex in the tree corresponds to the schedule of a partial run of the
algorithm, where every edge along the path corresponds to a step of some process.

Each processp organizes these runs in a forest induced byT =







n + p− 1

n







configurations, withn the number of processes, andp the number of different input
values, i.e.,p = 3. This forest, denotedΥp, containsT trees. We can order these
configurations such that configurationsI i andI i−1, with 0 ≤ i < T differ only in
the value of one proposition. These trees are ordered such that Υ0

p corresponds to
simulated runs ofAlg in which all the processes propose 0,Υk

p with somek > 0
corresponds to simulated runs ofAlg in which all the processes propose 1, and
ΥT−1

p in which all the processes proposeDefault. Note that it exists an ordering
which guarantees that there is nok′ with 0 ≤ k′ ≤ k such that some process
proposesDefault in Υk′

p .

Processes periodically query their failure detectors. Theresults of these queries
include failure and temporal information. Each process exchanges the results of its
queries with all the other processes. Upon receipt of such information, a process
construct a DAG [3] by incorporating the received information to its own DAG.
(Each process exchanges its whole DAG with all the other processes. The temporal

8



information enables to incorporate the received DAG with the local one.) Thus
every (correct) process can construct ever-increasing finite approximations of the
same infinite limit DAGG. This DAG is then used to simulate runs of managed
agreement. Specifically, each pathg within G can be used to simulate schedules of
runs of managed agreement. That is, a pathg represents several possible schedules
and failure detectors values for the processes during theirexecution of managed
agreement. There are many different schedules that match a path in DAGG because
each schedule depends on the order in which messages are received. Thus, if we
consider each initial configurationI i then one can construct a tree rooted atI i. The
set of vertices of the tree rooted atI i is the set of all possible schedules that can
occur from the given configurationI i. An edge corresponds to an event “receipt by
a processp of a messagem, and the failure detector value seen by the sender of
the message when it sentm to p”. By considering theT different configurations,
one obtains a forest of simulated runs of managed agreement.Thus the infinite
limit DAG G induces aninfinite limit forest, Υ. Thelimit tree of Υi

p is denotedΥi.
Each nodeS of Υ is tagged by the set of decisions that correct processes reach in
the partial runs that are the descendants ofS. These tags can be either univalent,
i.e., 0-valent or1-valent orM(Default)-valent, or multi-valent (i.e., with more
than one tag). We use the same definition for a critical index as in [5]: Indexi ∈
{0, . . . , T −1} is critical if the root ofΥi is multivalent or the root ofΥi is u-valent
and the root ofΥi−1 is v-valent, withu, v ∈ {0, 1,M(Default)} andu 6= v.

In Task 2,p waits until it decides in some simulated run of every tree of the for-
estΥp (Line 8 in Figure 3). Ifp decidesM(Default) in any of these runs and the
initial configuration of this run does not contain anyDefault value proposed by an
aristocrat then a failure must have occurred (in the currentfailure pattern). Note
that this condition is stronger than the one in [5] because ofthe Managed Obliga-
tion property of Managed Agreement. Thusp knows that it is legitimate to propose
the extraction of?PAr(A). Otherwise,p’s decision values in the simulated runs are
0s, 1s orM(Default) but in this latter case, the initial configuration contains the
Default value (proposed by an aristocrat), and thus does not tell anything regard-
ing failures. Thusp determines that it is possible to extract(Ω, Σ). Note that by
the validity properties of Managed Agreement, starting from an initial configura-
tion in which there is noDefault values (proposed by an aristocrat), the decision
value may be eitherM(Default) if an aristocrat has failed after having voted and
this failure has been detected before the receipt of his vote, or a decision value
v 6= M(Default), otherwise. At this point,p executes the given Managed Agree-
ment algorithmAlg to agree with all the processes on whether to extract?PAr(A)
(because at leastp has detected an aristocrat failure) or to extract(Ω, Σ). Specifi-
cally, in the former case, processp invokes an instance ofAlg by proposingDefault.
In the latter case, it invokesAlg with (I, I ′, S, S ′) value, whereI andI ′ are initial
configurations that differ only in the proposal of one process whileS andS ′ are
schedules in the simulated forest so that processes decideu in S(I) andv in S ′(I ′),
whereu, v ∈ {0, 1} andu 6= v. The proof of existence of such configurations and
schedules is similar to the one shown in Lemma 2 in [8], and detailed in [1].

9



If processes decide to extract (Ω,Σ), they continue the simulation of runs ofAlg

to do this extraction. Note that this extraction cannot start if the decision value in
every simulated run isM(Default). Notice that the failure of an aristocrat may not
be detected. Hence the necessity of the algorithm shown in Figure 2 that emulates
?PAr(A) with Managed Agreement. IfAlg returnsM(Default), thenAlg starts to
behave like?PAr(A): p stops outputting⊥ and outputstrue from that time on (Line
16). IfAlg returns a value of the form(I, I0, S, S0), thenp stops outputting⊥ and
starts extractingΩ (Line 21) andΣ (Line 23). The extraction ofΩ is done using
the procedures of both [3] and [5]. To extractΩ, p must continuously output the
identifier of a process such that eventually, correct processes output the identifier of
the same correct process. The existence of a correct processrelies on the existence
of a critical index (see Lemma 3 below). Finally, the extraction of Σ is done exactly
as in [5] and detailed in [11].

Lemma 3 If any process reaches Line 21, then the limit forestΥ has a critical
index.

Proof: (Adaptation of Lemma 3 in [5]). If a process reaches Line 21, then it
must have previously decided a tuple (I0, I1, S0, S1). By the Managed-Justification
of Managed Agreement, some processq must have proposed this tuple to algo-
rithm Alg. Sinceq proposed this tuple, it must have decided some valuev differ-
ent fromM(Default) in some run ofΥq (this follows from the choice of tuple
(I0, I1, S0, S1)). By construction of the limit forest, all the correct processes are
aware of the partial run that allowedq to decide valuev, and include this partial run
to their own forest. By Termination and Agreement of ManagedAgreement, all the
correct processes decidev 6=M(Default) in some run ofΥ. From above, the root
of some treeΥi is tagged withv 6=M(Default). Two cases are possible. Either the
root is uni-valent, i.e., it is tagged with only valuev, or it is multi-valent, i.e., it is
tagged with bothv and other tags (1 − v, and/orM(Default)). In the latter case,
we are done by the definition of a critical index. In the formercase, all the roots
are uni-valent. We consider two cases: Suppose first thatv = 1. Two sub-cases are
possible. Eithera) i≤ k (recall that indexk corresponds to the tree in which all the
processes propose value 1), orb) i > k. In sub-casea), by considering the sequence
Υ0, . . . , Υi, . . . , Υk, there must exist some indexk′ with 0 < k′ ≤ i such that the
root of Υk′−1 is 0-valent while the root ofΥk′

is 1-valent. By definition,k′ is a
critical index. In sub-caseb), by considering the sequenceΥk, . . . , Υi, . . . , ΥT−1,
there must exist some indexk

′′

with i < k
′′

≤ T − 1 such that the root ofΥk
′′

−1 is
1-valent while the root ofΥk′′

is u-valent, withu ∈ {0,M(Default)}. By definition
k′′ is a critical index. The case forv = 0 is similar to the casev = 1.

Theorem 1 For all environmentsE , if failure detectorD can be used to solve Man-
aged Agreement inE , then the algorithm shown in Figure 3 transformsD into
ΨAr(A) in E .

Proof: The proof follows the lines of Theorem 6 in [5]. The only difference con-

10



cerns the validity property. Specifically, for each processp, if ΨAr(A) − outputp
is true then it must be the case that some aristocrat has crashed during the current
run. Suppose that processp outputs true in Line 16 in Figure 3, thenp decided
M(Default) in the current execution of algorithmAlg (see Line 15). Thus, by
Managed-Obligation of Managed Agreement, it must be the case that some pro-
cessq invokedAlg with valueDefault as initial proposition (see Line 10) or that
some aristocrat crashed during the current execution ofAlg. In the latter case, we
are done. In the former case,q invokedAlg with valueDefault only if q decided
M(Default) in one of the simulated runs ofAlg and if the initial configuration of
this run did not contain anyDefault value proposed by some aristocrat. Thus, by
Managed-Obligation of Managed Agreement, it must be the case that some aris-
tocrat crashed during this run. The rest of the proof of this theorem is exactly the
same as in [5].

Theorem 2 F(A) is the weakest class of failure detectors that enables solving
Managed Agreement.

Proof: The theorem follows directly from Lemma 1, Lemma 2 and Theorem 1.

References

[1] E. Anceaume, R. Friedman, and M. Gradinariu. Managed agreement: Generalizing
two fundamental distributed agreement problems. Technical Report 1785, IRISA,
2006.

[2] P. Bernstein, V. Hadzilacos, and H. Goodman.Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, MA, 1987.

[3] T. Chandra, V. Hadzilacos, and S. Toueg. The Weakest Failure Detector for Solving
Consensus.Journal of the ACM, 43(4):685–722, 1996.

[4] T. Chandra and S. Toueg. Unreliable Failure Detectors for Asynchronous Systems.
Journal of the ACM, 43(4):685–722, 1996.

[5] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Kouznetsov, and
S. Toueg. The Weakest Failure Detectors to Solve Certain Fundamental Problems in
Distributed Computing. InProc. 23rd ACM Symposium on Principles of Distributed
Computing (PODC), pages 338–346, 2004.

[6] P. Dutta, R. Guerraoui, and B. Pochon. Fast non-blockingatomic commit: An inherent
trade-off. Information Processing Letters, 91(4):195–200, 2004.

[7] M. Fischer, N. Lynch, and M. Patterson. Impossibility ofDistributed Consensus with
One Faulty Process.Journal of the ACM, 32(2):374–382, 1985.

[8] R. Guerraoui, V. Hadzilacos, P. Kouznetsov, and S. Toueg. The weakest failure
detectors to solve quitable consensus and non-blocking atomic commit. Technical
report, LPD EPFL, 2004.

11



[9] Rachid Guerraoui. Non-Blocking Atomic Commit in Asynchronous Distributed
Systems with Failure Detectors.Distributed Computing, 15(1):17–25, 2002.

[10] V. Hadzilacos. On the Relationship Between the Atomic Commitment and Consensus
Problems.Fault-Tolerant Distributed Computing, pages 201–208, 1990.

[11] P. Kouznetsov. Synchronizations using Failure Detectors. PhD thesis, School of
Computer and Communication Sciences, EPFL, Suisse, 2005.

[12] L. Pease, P. Shostak, and L. Lamport. Reaching Agreement in Presence of Faults.
Journal of the ACM, 27(2):228–234, 1980.

[13] D. Skeen. Crash Recovery in a Distributed Database System. Memorandum No.
UCB/ERL M82/45, Electronics Research Laboratory, Berkeley, 1982.

12



Initially: (1) T :=







n + p− 1

n







(2) ΨAr(A) − outputp := ⊥ {ΨAr(A)− outputp is the output of module
ΨAr(A) atp }

Task 1:
(3) do forever /* same construction as in [3] */
(4) cobegin /* cases a) and b) are executed in parallel */
(5) a) p builds an ever-increasing DAGGp of failure detectors samples by repeatedly

sampling its failure detectorD and exchanging these samples with the processes
(6) b) p usesGp and theT initial configurations to construct a forestΥp of ever-

increasing simulated runs ofAlg usingD that could have occurred with the
current failure patternF and the current failure detector history.

(7) coend
Task 2:
(8) wait until (∀ Υi

p, with 0 ≤ i ≤ (T − 1), p decides in one of the runs ofΥi
p)

(9) if (∃ i such thatp decidesM(Default) in Υi
p andIi does not contain anyDefault

value proposed by an aristocrat)then
(10) p runsAlg with Default as input value
(11) else /* ∀ Υi

p, ∃ a run in which the decision value is either 0, 1, orM(Default) but
in the latter case,Default∈ Ii */

(12) select two configurationsIi−1 andIi, with 1 ≤ i ≤ (T − 1) and two schedulesS
andS′ stp decidesu in S(Ii−1) andv in S′(Ii), with u, v ∈ {0, 1} andu 6= v

(13) p runsAlg with (I, I ′, S, S′) as input value
(14) wait until (p decides inAlg)
(15) if (p decidesM(Default)) then
(16) ΨAr(A)− outputp := true /* ΨAr(A) behaves as?PAr(A) */
(17) else /* p decides(I0, I1, S0, S1) */
(18) Ω− outputp := p

(19) Σ− outputp := Π
(20) cobegin /* cases a), b) and c) are executed in parallel */
(21) a) do forever /* extractions ofΩ */
(22) Ω− outputp ← q such thatp extractsq following the procedure in [3]
(23) b) let C be the set of configurations reached by applying all prefixes of S0 to

I0 andS1 to I1

(24) do forever /* extraction ofΣ */
(25) Σ− outputp ←

⋃

C∈C set of processes thatp extracts following the
procedure in [5]

(26) c) do forever
(27) ΨAr(A) − outputp := (Ω− outputp,Σ − outputp)
(28) coend
(29) endif
(30) endif

Fig. 3. Extraction ofΨAr(A) from D and Managed Agreement algorithmAlg – code for
processp

13


