
HAL Id: hal-00916758
https://hal.science/hal-00916758v1

Submitted on 13 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SQUARE: Scalable Quorum-Based Atomic Memory
with Local Reconfiguration

Vincent Gramoli, Emmanuelle Anceaume, Antonino Virgillito

To cite this version:
Vincent Gramoli, Emmanuelle Anceaume, Antonino Virgillito. SQUARE: Scalable Quorum-Based
Atomic Memory with Local Reconfiguration. ACM Symposium on Applied Computing (SAC), 2007,
France. pp.12. �hal-00916758�

https://hal.science/hal-00916758v1
https://hal.archives-ouvertes.fr

SQUARE: Scalable Quorum-Based Atomic Memory with
Local Reconfiguration

Vincent Gramoli
IRISA, Université de Rennes 1

35042 Rennes, France

vgramoli@irisa.fr

Emmanuelle Anceaume
IRISA, CNRS

35042 Rennes, France

anceaume@irisa.fr

Antonino Virgillito
ISTAT

00184 Roma, Italy

virgilli@istat.it

ABSTRACT
Internet-scale applications require more and more resources to sat-
isfy the unpredictable clients needs. Specifically, such applications
must ensure quality of service despite bursts of load. Distributed
dynamic self-organized systems present an inherent adaptiveness
that can face unpredictable bursts of load. Nevertheless quality
of service, and more particularly data consistency, remains hardly
achievable in such systems since participants (i.e., nodes) can crash,
leave, and join the system at arbitrary time. Atomic consistency
guarantees that any read operation returns the last written value
of a data and is generalizable to data composition. To guarantee
atomic consistency in message-passing model, mutually intersect-
ing sets (a.k.a. quorums) of nodes are used. The solution presented
here, namely Square, uses self-adaptiveness and load-balancing to
provide atomic consistency in large-scale dynamic distributed sys-
tems. This paper presents the Square algorithm and uses extensive
simulation to show it achieves its desirable properties.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications

General Terms
Algorithms, Simulation, Reliability.

Keywords
Dynamic Distributed Systems, Adaptiveness, Scalability, Consis-
tency, Performance Analysis.

1. INTRODUCTION
Large scale dynamic systems have gained a widespread diffu-

sion in recent years. Their major feature is an extreme dynamism
in terms of structure, content, and load. For instance, in peer-to-
peer (p2p) systems nodes perpetually join and leave during system
lifetime while in ad-hoc networks the inherent mobility of nodes
induce a change in the system topology. Internet applications suf-
fer from unpredictable variation of load. Typically, high bursts of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’07, March 11-15, 2007 Seoul, Korea
Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

load might focus on a specific data (or object) in a small period
of time. For instance, auctions service such as eBay [1] provide
auctions where many participants can bid on an object during its
auction lifetime. Popular objects often experience a high burst of
load during the very end of their auctions. Finally, congestion and
workload applied to centralized services might result in drastically
increased latency and even losses of clients requests.

To increase availability, replication of data is necessary. Mutu-
ally intersecting sets of data replicas (a.k.a. quorums) are a classical
mean to achieve consistent data access limiting the overall replica-
tion overhead. Atomic consistency guarantees that despite concur-
rent operations invoked on a data/object, everything happens as if
these operations were invoked in a sequential ordering preserving
real-time precedence. Atomicity (a.k.a linearizability) preserves an
important property, called locality [10], often considered as the ca-
pability of being compositional. However achieving atomic consis-
tency in face of high dynamism requires additional healing mecha-
nisms to guarantee object persistence despite accumulated failures.
This type of improvement leads naturally to dynamic quorums.

Finally, because of dynamism and unpredictable bursts of load,
the active replicas maintaining an object value might become over-
loaded. For instance if the number of replicas diminishes and/or
the request rate applied to a given object increases, then the replicas
may become overloaded. Moreover, if there are too many replicas
in each quorum and/or the request rate decreases, then the operation
might be unnecessarily delayed. Addressing the resulting trade-
off between operation latency and capacity needed to face load re-
quires self-adaptiveness: self-adaptiveness aims at either replicat-
ing the object while existing replicas gets overloaded or removing
replicas from quorums to minimize operation latency.

Contributions. This paper presents the experimental analysis of
a Scalable Quorum-based Atomic memory with local Reconfigura-
tion, namely Square. Square is an on-demand memory ensuring
i) atomic consistency, ii) fault-tolerance, iii) scalability, iv) load-
balancing, and v) self-adaptiveness.

To provide a distributed atomic memory, Square replicates each
atomic object at distant nodes, called replicas, organized into mu-
tually intersecting sets, called quorums. To cope with nodes fail-
ures, the replicas of an object are organized in a logical overlay
represented as a torus grid similar to the two-dimensional coordi-
nate space of CAN [18]. The size of a zone adapts to face failures.
Replicas responsible of zones of the same row or column form a
quorum—similar quorums have been proved optimal [6, 15]. The
overlay size is far lower than the system size and communication
is restricted to replicas responsible of two abutting sub-zones. This
makes our approach scalable. The overlay reacts to the varying load
implied by numerous clients first by balancing it through unloaded

replicas and then by expanding it. The full version of this paper is
available as a technical report [4].

Background. Quorums for dynamic systems appeared in [10,
13, 2, 17, 16, 9, 8, 7]. Herlihy [10] proposes quorum modifi-
cation to cope with failures. In [13, 9, 8] quorum systems are
subsequently replaced by independent ones to cope with perma-
nent failures. In [2, 17, 16, 19], a quorum relies on a specific dy-
namic structure, and quorum probes are said adaptive (they contact
the quorum members successively in a reactive manner). [2] pro-
poses quorums that intersect with high probability using a dynamic
De Bruijn communication graph, [17] proposes a planar overlay
where a node communicates with its closest neighbor in the plane to
probe a quorum, and [16] proposes a dynamic tree-structure where
And/Or primitives are used to determine quorum participants when
descending into the tree. In [19], the authors briefly describe strate-
gies for the design of multi-dimensional quorum systems for read-
few/write-many replica control protocols. They combine local in-
formation in order to deal with nodes dynamism and quorum sets
caching in order to reduce the access latency.

Robust emulation of shared memory in message-passing systems
appeared in [5]. Since then, [3, 13, 9, 8] have implemented atom-
icity in dynamic systems. First, the architecture of [3] provides an
atomic service that locks operations when a value is being written
to prevent from reading stale values. Consequently, high concur-
rency might delay such operations for an arbitrarily long period of
time. The work presented in [13, 9, 8] provide quorum reconfig-
uration mechanisms to cope with permanent changes. These pa-
pers have a common design seed: they propose quorum system
replacement, thus replacing the whole quorums participants by oth-
ers. Unfortunately, this global change requires message exchanges
among all participants of previous and new configurations to en-
sure consistency. A work where dynamic quorums are maintained
without global communication is [7]. This work describes an archi-
tecture for quorum systems that deal with dynamicity by exploting
the fault-tolerance and self-organization capabilities of an underly-
ing structured overlay network infrastructure. Differently from our
contribution, this work focuses on defining different quorum sys-
tems deployed over the general architecture and comparing their
performance. Quorums are not self-adaptive with respect to vary-
ing request load.

The paper is organized as follows. Section 2 presents the system
model and introduces some preliminary notations. The description
of the Square algorithm appears in Section 3. Section 4 shows the
properties of Square by extensive simulations. Section 5 concludes.

2. SYSTEM MODEL AND NOTATIONS
The system contains a set of uniquely identified nodes. The set

of all identifiers is denoted I . We consider a subset of nodes, called
clients, accessing a pool of shared data to consult or modify their
content. In the following we use the terminology object for data,
read for consult and write for modify. Clients can access these
objects infinitely often, and concurrently. However during a finite
period of time, the level of concurrency is finite. Nodes do not
necessarily know other nodes. Nodes can join or crash at any time
and a joining node is always considered as a new node.

Atomic Consistency. Each object can be accessed through read
or write operations. From a client point of view, these are the only
two operations that can be invoked on the object. Each accessed
object is atomic as defined by Lynch in Lemma 13.16 of [14]. This
makes atomicity a very important property since despite concurrent

accesses on an object, everything happens as if these operations
were invoked sequentially. Another important property of atomic-
ity is locality. A property is local if the system as a whole satis-
fies this property whenever each object satisfies it [11]. Locality is
very important from both a theoretical and a practical point of view.
Indeed, this property allows to design a concurrent application in
a modular way: every object can be implemented independently
from the others, without requiring any additional synchronization
among them to guarantee the correctness of the whole application.
By the locality property, we limit the description of Square to a
single object, implementation of multiple objects being identical.

Self-Healing and Self-Adaptiveness. Two fundamental chal-
lenges arise from scalability and dynamism: (i) guaranteeing object
persistence and availability, and (ii) supporting unpredictable load
variations. This paper proposes a solution dedicated to both prob-
lems by satisfying the following two properties: Self-healing which
is the ability of the memory to preserve persistence and availability
of its objects without any external help. Practically, this is achieved
by dynamically implementing each single object on several nodes
(i.e., replicas), and by replacing failed or left ones by new ones.
Self-adaptiveness which enables the atomic memory to face the
unpredictability of the environment by dynamically adapting the
number of replicas to the load: the number of replicas temporarily
increases during peaks of high concurrency. The load of the mem-
ory is defined regarding to the load of each of its replica as follows:
letLi(t) be the number of operations that a replica has to execute at
time t. Li(t) is referred in the following as the local load of replica
i at time t. Let Bi

min and Bi
max be two application dependent pa-

rameters which define respectively a lower and upper bound of the
load replica i can afford. Replica i ∈ I is overloaded (resp. under-
loaded) iff Li(t) ≥ Bi

max (resp. Li(t) ≤ Bi
min). Self-adjustment

guarantees that at any time, the load at any replica Li(t) is such
that Bi

min < Li(t) < Bi
max. It is noteworthy that our algorithm

does not depend on this specific definition of load. Any definition
of load can be used without altering the algorithm behaviour.

Dynamic Quorums. The behavior of our atomic memory
Square is emulated through a dynamic quorum system sampled
from a dynamic but deterministic traversal. A quorum system is
a set of subsets of replicas, such that every pair of subsets inter-
sects. We consider two types of quorums: horizontal and vertical
ones, such that any quorum of one type simply intersects any quo-
rum of the other type. In a dynamic setting, changes in the quorum
system occur over time in an unpredictable way.

Replicas share a same logical overlay organized in a torus topol-
ogy (as for example CAN [18]). Basically, a 2-dimensional coordi-
nate space [0, 1) × [0, 1) is shared by all the replicas of an object.
A replica is responsible of a zone. The entrance and departure of a
replica dynamically changes the decomposition of adjacent zones.
These zones are rectangles in the plane. Replicas of adjacent zones
are called neighbors in the overlay and are linked by virtual links.
The overlay has a torus topology in the sense that the zones over
the left and right (resp. upper and lower) borders are neighbors of
each other. Initially, only one replica is responsible for the whole
space. The bootstrapping process pushes a finite, bounded set of
replicas in the network. These replicas are added to the overlay us-
ing well-known strategies [17, 18] which consist in specifying ran-
domly chosen points in the logical overlay, and the zone in which
each new replica falls is split in two. Half the zone is left to the
replica owner of the zone, and the other half is assigned to the new
replica. When a replica leaves the memory, its zone is dynamically
taken over to ensure that the whole space is covered by rectangle

zones, and each zone belongs to only one replica. We refer to a
replica zone (or simply to a replica) r as the product of two in-
tervals: Ir

x = [r.xmin, r.xmax) and Ir
y = [r.ymin, r.ymax),

where r.xmin (resp. r.xmax) is the left-most (resp. right-most)
abscissa of zone r, and r.ymin (resp. r.ymax) is the bottom-most
(resp. top-most) abscissa of zone r.

Intuitively, we define dynamic quorum sets as dynamic tiling
sets, that is sets of replicas whose zones are pairwise independent
and totally cover the abscissa and ordinate of the coordinate space
shared by the replicas. The composition of a tiling set changes over
time due to replicas joins and departures, and for each real constant
c ∈ [0, 1), both the horizontal tiling set Qh,c and the vertical tiling
set Qv,c are defined:

DEFINITION 2.1 (DYNAMIC QUORUM). Let c be a real con-
stant with 0 ≤ c < 1. The horizontal quorum Qh,c is defined
as the set of replicas satisfying {r.ymax > c ≥ r.ymin}. The
vertical quorum Qv,c is defined as the set of replicas satisfying
{r ∈ I | r.xmax > c ≥ r.xmin}.

THEOREM 2.2. For any horizontal quorum Qh,c and any ver-
tical quorum Qv,c′ , the intersection holds: Qh,c ∩Qv,c′ �= ∅.

Proof: follows from the fact that it exists a node responsible for
point (c, c′) in the space.

Next, we define an ordering relation on horizontal and vertical
dynamic quorums. A horizontal (resp. vertical) quorum Q is the
next of another horizontal (resp. vertical) quorum Q′, if one of Q
zones has an ordinate (resp. abscissa) greater than any of Q′ zones.

3. ALGORITHM DESCRIPTION

Read/Write Operations. As said before, clients can access an
atomic object of Square by invoking a read or a write operation on
any replica this client knows in Square. This invocation is done
through the Operation procedure of Algorithm 1. All the infor-
mation related to this request are described in parameter R. For
instance, if the client requests a read operation then R.type is set
to read, and value R.value is the default value v0. For a write
operation, R.type is set to write and R.value is the value to be
written. The other subfields ofR are discussed below.

Algorithm 1 Read/Write Operation

1: Operation(R):
2: if available then
3: if overloaded then
4: if first-time-thwart(R) then
5: R.starter ← i
6: Thwart(R, i)
7: else
8: if first-time-traversal(R) then
9: R.initiator ← i

10: 〈timestamp, value〉 ← Consult(R, i)
11: ifR.type = write then
12: R.timestamp ←
13: 〈timestamp.counter + 1, i〉
14: Propagate(R, i)
15: Acknowledge(R)
16: else
17: R.timestamp ← timestamp
18: R.value ← value
19: ifR.value has not been propagated twice then
20: Propagate(R, i)
21: Return(value)

When such a request R is received by a replica, say i, i first
checks whether it is currently overloaded or not. Recall that a
replica is overloaded if and only if it receives more requests than it
can currently treat. If i is overloaded then it conveys the read/write
operation request to a less loaded replica. This is accomplished
by the Thwart process (as described later). Conversely, if i is not
overloaded then the execution of the requested operation can start
and i becomes theR.initiator of this operation. Thus, i starts the
Traversal process. Briefly, the traversal consists in traversing the
overlay vertically or horizontally in order to contact a quorum of
replicas. It ensures that a quorum is aware of the pending operation,
and of the current object value.

More precisely, the Traversal protocol consists in two proce-
dures, called respectively Consult and Propagate; the former con-
sults a whole horizontal quorum to learn about the most up-to-date
value of the object and an associated timestamp whereas the lat-
ter one propagates a value (either the one initialized by the client or
the one previously consulted) and the updated timestamp to a whole
vertical quorum. Each of these procedures is executed from neigh-
bor to neighbor by forwarding the information about the requestR,
until the horizontal and vertical quorums have been traversed. The
traversal ends once the initiator of the traversal receives from its
neighbor the forwarding request it initially sent (i.e., the “loop” is
completed). When Consult or Propagate completes, the initiator
i gets back the message, knowing that a whole quorum has partic-
ipated. From this point on, i can continue the operation execution,
by starting a Propagate phase if needed (see below the fast adap-
tive read operations) otherwise by directly sending the response to
the requesting client if operation R is complete. Both procedures
are executed only if i is available, i.e., is not already involved in a
dynamic event (see below).

There are two differences between Consult and Propagate.
First, Consult gathers the most up-to-date value-timestamp pair of
all the horizontal quorum replicas whereas Propagate updates the
value-timestamp pair at all replicas of the vertical quorum. Sec-
ond, Consult contacts each member of the quorum once following
a single direction, while Propagate contacts each member of the
quorum twice with messages sent in both directions. Consequently,
if the value has been propagated twice at node i, then i knows that
the value has been propagated at least once to every other replica of
its vertical quorum. This permits later read operations to complete
after a single phase without propagating this value once again.

Indeed, not only the traversal is lock-free compared to [3], but it
does not require the confirmation phase of [9, 8], while proposing
fast adaptive read operations: such operations are called fast since
they require a single phase instead of two. Minimizing atomic read
operation latency suffers some limitations. Indeed, to guarantee
atomicity two subsequent read operations must return values in a
specific order. This problem has been firstly explained in [12] as
the new/old inversion problem. That is, when a read operation re-
turns value v, any later (non-concurrent) read operation must re-
turn v or a more up-to-date value. Square proposes read operations
that may terminate after a single phase, solving the aforementioned
problem without requiring locks or additional external phase. For
this purpose, the Consult phase of the read operation identifies if
the consulted value has been propagated at “enough” locations. If
the value v has not been propagated at all members of a vertical
quorum, a Propagate phase is required after the end of the Con-
sult phase and before the read can return v. Conversely, if value
v has been propagated at a whole vertical quorum, then any later
Consult phase will discover v or a more up-to-date value, thus the
read can return v with no risk of atomicity violation.

The Thwart protocol is executed if i receives an operation re-

quest while it is overloaded. This mechanism checks the load of
each quorum until it finds a non-overloaded one. For this purpose a
sequence of quorum representatives, located on the same diagonal
axis, are contacted in turn. Note that contacting subsequent replicas
located on a diagonal axis leads to contacting all quorums. Further-
more, contacting only one representative per quorum is sufficient
to declare that this quorum is overloaded or not. Indeed, referring
to the definition of load, a replica becomes overloaded because of
too many read/write operation requests receipt, not because of the
“load” incurred by the forwarding operation. Consequently, a quo-
rum is not overloaded as long as its initiator is not overloaded.

Adapting to Environmental Changes. Here, we present
self-adaptive mechanisms of Square. If a burst of requests occurs
on the whole overlay the system needs to Expand by finding addi-
tional replicas to satisfy these requests. Conversely, if some repli-
cas of the overlay are rarely requested, then the overlay Shrinks to
speed up operation executions. Finally, when some replicas leave
the system or crash, then a FailureDetection requires some of the
replicas around the failure to reconfigure. Despite the fact that
safety (atomicity) is still guaranteed when failures occur, it is im-
portant that the system reconfigures. To this end, we assume a peri-
odic gossip between replicas that are direct neighbors. This gossip
exploits a heartbeat protocol to monitor replica vivacity. Based on
this protocol, failures are detected after a period of inactivity. When
a failure occurs the system self-heals by executing the FailureDe-
tection procedure: a takeover node is deterministically identified
among active replicas according to their join ordering, as explained
in [18]. This replica takes over the responsibility region that has
been left, it reassigns a constant number of responsibility zones to
make sure the responsibility-replica mapping is bijective, and it no-
tifies its neighborhood before becoming newly available .

Two other procedures, namely Expand and Shrink are used
to keep a desired tradeoff between load and operation complex-
ity. When the number of replicas in the memory diminishes, fault
tolerance is weakened and the overlay is more likely overloaded.
Conversely, if the overlay quorum size increases, then the opera-
tion latency raises accordingly. Therefore, it is necessary to pro-
vide adaptation primitives to maintain a desired overlay size. The
Shrink procedure occurs when a node i is underloaded. If this
occurs, i locally decides to give away its responsibility and leave
the overlay. Conversely, an Expand procedure occurs at replica i
that experienced an unsuccessful thwart. In other words, when the
thwart mechanism, started at i, fails in finding a non-overloaded
replica, then i decides to expand the overlay. From this point on,
initiator i becomes unavailable (preventing itself from participat-
ing in traversals): it chooses a node j outside the memory and ac-
tively replicates its timestamp and value at j. That is, j becomes a
replica, i shares a part of its own workload and responsibility zone,
and j and i notify their neighbors becoming newly available .

4. SIMULATION STUDY
This section presents the results of a simulation study performed

through a prototype implementation of Square. The aim of simu-
lations is to show Square properties: self-adaptiveness, scalability,
load-balancing, and fault-tolerance. The prototype is implemented
on top of the Peersim simulation environment. Peersim is a simu-
lator especially suited for self-organizing large-scale systems. We
used its event-based simulation mode in order to simulate asyn-
chronous communication and independent nodes activities.

4.1 Environment
We simulate a p2p system containing 30,000 nodes. We recall

that this is the maximum number of nodes that can be potentially
added to the overlay/memory. As we show, the actual number of
nodes in the memory during simulation is much lower. Here we
describe the parameters of the simulator:

• We lower bound the message delay between nodes to 100
time units (i.e., simulation cycles) and we upper bound it to
200 time units.
• Any replica has to wait 1500 time units without receiving any

request before deciding to leave the memory (Shrink).
• Once for every period of 2000 time units, replicas look at

their buffer and treat the buffered requests, deciding to for-
ward them (Thwart) or to execute them (Traversal).
• We send from 500 to 1000 operation requests onto the mem-

ory every 50 time units. The exact number of operation re-
quests chosen depends on each of the following experiments.
• Each of the requested operations is a read operation with

probability 0.9 and a write operation with probability 0.1.
• The request distribution can be uniform or skewed (i.e., nor-

mal). Since the results obtained with the two distributions
do not present significant differences we present only those
obtained with uniform distribution.
• We observe the memory evolution every period of 50 time

units starting from time 0 up to 70, 000. Each curve pre-
sented below results, when unspecified, from an average
measurement of 10 identically-tuned simulations.

In all experiments, except otherwise mentioned, requests are issued
at some rate during a fixed period, after which the requests stop. To
absorb the load induced by the requests, the overlay replicates the
object in nodes of the system that are not yet in the memory. This
self-adaptiveness occurs until the memory reaches an acceptable
configuration satisfying the tradeoff between capacity and latency.
An acceptable configuration is a configuration where the memory
is neither overloaded, nor underloaded. This happens when some
replicas of the overlay shrink while other expand. More specifi-
cally, this occurs between the first time the memory size decreases
and the last time the memory size increases for a given fixed rate.

Self-adaptiveness. Figure 1(a) reports the number of nodes in
the memory versus time. In particular, the solid line indicates the
evolution of the memory size along time, showing the adaptive-
ness of Square to a constant requests rate. In this figure, the mem-
ory reaches the acceptable configuration at time 9350, while the
memory leaves the acceptable configuration at time 49, 200. Let us
focus on the three resulting intervals. Before time 9350, the mem-
ory grows quickly and its growth slows down while converging to
the acceptable configuration. Then, the small oscillation in the ac-
ceptable configuration is due to few nodes either leaving the mem-
ory (Shrink) or joining it as replicas (Expand). This shows how
Square is able to tune the capacity with respect to the request load.
After time 49, 200, the memory stops growing and when the last
operations are executed, load decreases drastically causing a series
of memory shrinks until one node remains. Recall that, during all
three phases, although operation requests can be forwarded to other
replicas, every operation is successfully executed by the memory,
thus preserving atomicity. Figure 1(b) shows the adaptiveness of
the memory to abrupt changes in load. The vertical intervals indi-
cate the error margin at some points of the curve. We simulate a
burst of load at time 23000 where the request rate is multiplied by
2. Then requests are stopped at time 46000. We clearly see that the
memory is reactive and quickly self-adapts to face load variation:
the memory size grows right after the burst (i.e. it is multiplied by
1.4) and shrinks right after request stops (i.e. divided by 1.2), while

0

5

10

15

20

25

30

35

40

45

50

0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r

of
 r

ep
lic

as

Time (Simulation cycles)

overlay size
quorum size

number of neighbors

(a)

0

5

10

15

20

25

30

35

40

45

50

0 10000 20000 30000 40000 50000 60000 70000

O
ve

rla
y

si
ze

Lo
ad

Time (Simulation cycles)

size mean
load

(b)

0

5

10

15

20

25

30

35

40

45

50

0 10000 20000 30000 40000 50000 60000 70000

V
ar

ia
nc

e
of

 th
e

ov
er

la
y

si
ze

Time (Simulation cycles)

w/ thwart
wo/ thwart

(c)

0

5

10

15

20

25

30

35

40

45

50

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

O
ve

rla
y

si
ze

Time (Simulation cycles)

size

(d)

Figure 1: (a) Memory size, quorum size, and number of neighbors. (b) Self-adaptiveness in face of bursts of load. (c) Thwart impact.
(d) Self-adaptiveness in face of important failures.

recovering a steady progress.

Scalability. The dotted line in Figure 1(a) plots the evolution of
the average number of neighbors of each node along time and de-
picts an interesting result. We recall that two replicas are neighbors
if they are responsible of two abutting zones. Even though the num-
ber of zones keeps evolving, the average number of neighbors per
replica remains constant over time. Comparing to an optimal grid
containing equally sized zones, the result obtained is similar: we
can see that the number of neighbors is less than 5 while in the
optimal case it would be exactly 4. We point out again that this be-
havior is not exclusively due to the uniform distribution of requests
but it is also obtained with a skewed distribution. Since only a local
neighborhood of limited-size has to be maintained, the reconfigu-
ration needed to face dynamism is scalable.

Load-balancing. The main objective of the thwart mechanism
is to balance the load among nodes. In order to highlight the effects
of the thwart, we ran 5 different executions of the simulations, and
computed the variance of the memory size. Results are reported
in Figure 1(c). The dashed curve refers to executions where we
disabled the thwart process (i.e., when a node is overloaded while
it receives requests it directly expands the memory without try-
ing to find a less-loaded replica of the memory), while the solid
curve refers to executions with the thwart enabled. This simulation
shows that the variance of the memory size is strongly reduced by
the thwart mechanism. Without the thwart, expansion might occur
while a part of the memory is not overloaded, that is, the replicas
become rapidly heterogeneously loaded. This phenomenon pro-
duces a strong variation in the memory size: many underloaded

replicas of the memory shrink while many overloaded replicas ex-
pand. Conversely, with the thwart mechanism any replica tries to
balance the load over the whole memory, verifying that the memory
is globally overloaded before triggering an expansion. This makes
the memory more stable.

Fault-tolerance. In order to show that our system adapts well
in face of crash failures, we injected two bursts of failures, while
maintaining a constant request rate, and observed the reaction of
the memory. Figure 1(d) shows the evolution of memory size as
time evolves and as failures are injected. The first burst of fail-
ures occurs at the 20, 000th simulation cycle and involves 20% of
the memory replicas drawn uniformly at random. The second one
occurs 20, 000 cycles later (at simulation cycle 40, 000) and in-
volves 50% of the memory replicas. At simulation cycle 20, 000,
we clearly observe that the overall number of replicas drastically
diminishes. Then, few cycles later, the number of replicas starts in-
creasing again, trying to newly face the constant request rate. This
phenomenon is even more pronounced at time 40, 000 when 50%
of the replicas fail. In both cases the system is able to completely
return to an acceptable configuration without blocking, even after a
large amount of failures have occurred.

Operation latency. Experiment of Figure 2 is composed of 5
simulations with different request rates and indicates how Square
minimizes read operation latency. First, recall that the fast adaptive
read operation contains only a Consult phase, thus the horizontal
quorum size impacts more on read operation latency than vertical
quorum size does. We tuned Square such that a replica that receives
more read requests than write requests tends to split horizontally

request read latency write latency max. memory max. horizontal max. vertical
rate (in avg) (in avg) size quorum size quorum size

1/250 478.6 733.3 10 5 6
1/200 621.8 812.5 14 4 8
1/100 1131.8 1395.8 24 3 14
1/50 1500.7 2173.5 46 8 23
1/25 2407.9 3500.9 98 11 51

Figure 2: Trade-off between response time and memory size.

its responsibility zone, when an expansion occurs. Since an op-
eration is of type read with probability 0.9, replicas choose more
frequently (in average) to split horizontally than vertically, conse-
quently horizontal quorums are smaller than vertical quorums, as
depicted in the 5th and 6th columns of Figure 2. An increase in the
requests rate—indicated in column 1—strengthens this difference:
it enlarges the amount of operations, thus the phenomenon becomes
more evident. Furthermore, the 2nd and 3rd columns confirm our
thought: read operation latency is far lower than write operation la-
tency. To conclude, even though self-adaptiveness implies that la-
tency increases when load increases, Square minimizes efficiently
read operation latency.

5. CONCLUSION
This paper has proposed an atomic memory for large-scale dy-

namic systems. To achieve this goal the proposed algorithm
presents dedicated properties. We showed these properties through
extensive simulations. The originality of our approach is based on
the self-adaptiveness of the memory to face the extreme dynamism
of these systems and to ensure low response time: by spontaneously
expanding its size when replicas become overloaded, Square sup-
ports bursts of load; while by quickly shrinking to the minimal
number of replicas when load decreases, Square minimizes oper-
ation latency. By providing fast adaptive reads, Square is fully
adapted to applications in which consultations are more common
than modifications. Despite the complexity of these systems, this
paper highlighted that atomic consistency is achievable without
jeopardizing scalability, load-balancing, fault-tolerance, and self-
adaptiveness.

Acknowledgment
We wish to thank Maria Gradinariu, Sylvestre Cozic, Romaric Lu-
dinard, and the anonymous referees for their help.

6. REFERENCES
[1] eBay. http://www.ebay.com/.
[2] I. Abraham and D. Malkhi. Probabilistic quorums for

dynamic systems. Distrib. Computing, 18(2):113–124, 2005.
[3] E. Anceaume, M. Gradinariu, V. Gramoli, and A. Virgillito.

P2P architecture for self* atomic memory. In Proc. of 8th
Intl Symposium on Parallel Architectures, Algorithms and
Networks, pages 214–219, 2005.

[4] E. Anceaume, V. Gramoli, and A. Virgillito. SQUARE:
Scalable quorum-based atomic memory with local
reconfiguration. Technical Report 1805, IRISA Campus de
Beaulieu, Rennes, France, 2006.

[5] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory
robustly in message-passing systems. Journal of the ACM,
42(1):124–142, 1995.

[6] B. Awerbuch and P. Vitanyi. Atomic shared register access
by asynchronous hardware. In Proc. of 27th IEEE
Symposium on Foundations of Computer Science (FOCS),
pages 233–243, 1986.

[7] R. Baldoni, R. Jimnez-Peris, M. Patio-Martinez,
L. Querzoni, and A. Virgillito. Dynamic Quorums for
DHT-based P2P Networks. In Proceedings of the 4th IEEE
International Symposium on Network Computing and
Applications (NCA05), Cambridge, MA, USA, 2005.

[8] G. Chockler, S. Gilbert, V. Gramoli, P. M. Musial, and A. A.
Shvartsman. Reconfigurable distributed storage for dynamic
networks. In Proc. of 9th Intl Conference on Principles of
Distributed Systems (OPODIS), 2005.

[9] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch.
GeoQuorums: Implementing atomic memory in ad hoc
networks. In Proc. of 17th Intl Symposium on Distributed
Computing (DISC), pages 306–320, 2003.

[10] M. P. Herlihy. Dynamic quorum adjustment for partitioned
data. ACM Trans. on Database Systems, 12(2):170–194,
1987.

[11] M. P. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Trans. on
Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990.

[12] L. Lamport. On interprocess communication. Distributed
Computing, 1(2):77–101, 1986.

[13] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable
atomic memory service for dynamic networks. In Proc. of
16th Intl Symposium on Distributed Computing (DISC),
pages 173–190, 2002.

[14] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers, 1996.

[15] M. Maekawa. A
√

N algorithm for mutual exclusion in
decentralized systems. ACM Trans. on Computer Systems
(TOCS), 3(2):145–159, 1985.

[16] U. Nadav and M. Naor. Fault-tolerant storage in a dynamic
environment. In Proc. of he 18th Annual Conference on
Distributed Computing (DISC), 2004.

[17] M. Naor and U. Wieder. Scalable and dynamic quorum
systems. In Proc. of the 22th annual symposium on
Principles of distributed computing (PODC), pages
114–122. ACM Press, 2003.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In Proc.
of the ACM SIGCOMM, pages 161–172, 2001.

[19] B. Silaghi, P. Keleher, and B. Bhattacharjee.
Multi-dimensional quorum sets for read-few write-many
replica control protocols. In Proc. of the 4th
CCGRID/GP2PC, 2004.

