
HAL Id: hal-00916751
https://hal.science/hal-00916751

Submitted on 13 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

STORM: A Secure Overlay for P2P Reputation
Management

Aina Ravoaja, Emmanuelle Anceaume

To cite this version:
Aina Ravoaja, Emmanuelle Anceaume. STORM: A Secure Overlay for P2P Reputation Management.
IEEE International Conference on Self-Adaptive and Self-Organizing Systems, 2007, France. pp.12.
�hal-00916751�

https://hal.science/hal-00916751
https://hal.archives-ouvertes.fr

STORM: A Secure Overlay for P2P Reputation Management

Aina Ravoaja
IRISA

Campus Universitaire de Beaulieu
Rennes, France

aravoaja@irisa.fr

Emmanuelle Anceaume
IRISA

Campus Universitaire de Beaulieu
Rennes France

anceaume@irisa.fr

Abstract

A fundamental problem that confronts decentralized
reputation systems is the design of efficient, secure and
incentive-compatible mechanisms to gather trust informa-
tion despite malicious peers, and particularly collusion.
This paper presents STORM (forSecure sTructured Over-
lay for Reputation Management), a P2P protocol which ad-
dresses this issue. STORM provides support for gather-
ing peers reputation information safely by self-organizing
peers into clusters of peers of common interests. To miti-
gate the effect of malicious peers, STORM relies on a ran-
domized decision algorithm aiming at securing the routing
table maintenance, and on constrained redundant routing
focusing on securing information lookup. We show STORM
efficiency and robustness through a formal analysis. Specif-
ically, we prove a lower bound on the number of malicious
peers that can be inserted in routing tables and we show
that our solution is very close to optimal. Finally, we show
that our constrained redundant routing approach succeeds
at countering collusive behavior.

1 Introduction

Enabling e-commerce in decentralized peer-to-peer
systems relies on the consumer confidence in online service
providers. Reputation systems have been proven effective
at encouraging trust among peers that usually do not know
each other [13]. They enable consumers to decide whether
a future interaction with a target entity is conceivable or
not by collecting, aggregating and ranking opinions about
the past behavior of that target peer. Establishing trust
in decentralized P2P systems is a fundamental problem,
essentially because peers are autonomous, rational, and
can be strategic. Peers are rational because they wish to
maximize their utility (either by taking advantage of the
efficiency of the reputation mechanism, or by maximizing
their own reputation, or by reducing their contribution in

the reputation estimation effort to save their resource).
Peers can be strategic because they can devise complex
strategies to subvert the system (e.g. they can manipulate
the routing tables or intercept requests to subvert the
system). This impact can be greatly increased when groups
of malicious peers coordinate their actions to achieve a
common goal. Collusion of malicious peers may cause
severe damages on the whole system online market. By
sending unfair opinions about target peers behaviour, they
can abusively inflate the reputation of that peers, and push
users to be involved in fraudulent transactions. On the other
hand, harming competitors’ reputation may discourage
further interactions with that competitors leading to unfair
market. Thus reputation mechanisms must be robust to a
variety of severe attacks, coordinated or not.

Motivations. In a prior work [2], we proposed a solution
to the robust reputation problem. Essentially this problem
aims at evaluating peers reputation despite free-riding
and dishonest behaviours. In that work, robustness to
attack is accomplished through an aggregation technique
in which collected first-hand feedback is weighted by a
credibility factor locally computed by the requesting peer,
while incentive for participation is implemented through
a fair differential service mechanism relying on peers’
level of participation and peers’ credibility. We showed
within modest churn the presence of a high fraction of
malicious peers does not prevent a correct peer from
accurately evaluating the reputation value of a target
peer. However, this is achieved at the expense of a non
negligible number of messages mainly due to the way
feedback are collected. Indeed, to face malicious peers,
feedback is gathered from peers randomly selected within
the system which clearly makes the efficiency of this
crawling technique highly reliant on the way the graph of
witnesses is constructed. Finding the right set of witnesses
in an efficient way is a challenging issue since the reputa-
tion value depends on the feedback provided by these peers.

Contributions. In the present work, we present a cost
effective solution to this problem by relying on two
schemes: first, to increase the likelihood of collecting a
large amount of feedback from the right set of witnesses,
secure gathering techniques are identified. Briefly, these
techniques aim at guaranteeing that feedback is collected
only from a cluster of peers sharing a similar interest for
the target service provider, and that bribes and collusion
do not interfere by constraining the gathering scheme.
STORM is designed to gather information on the reputation
of a peer inO(logN) steps, withN the number of peers.
Complementary to this scheme, secure routing tables
maintenance and secure routing techniques are provided.
These techniques ensure first that routing tables cannot be
attacked by malicious peers by keeping the distribution of
malicious peers uniform. This is achieved by arandomised
decisionalgorithm, which prevents malicious peers from
strategizing to get inserted in routing tables. We show that
this algorithm eventually minimises the expected number
of malicious peers in routing tables. Second, to prevent
malicious peers from dropping or delivering a feedback
request to their collusion group instead of a legitimate
peer, STORM usesconstrained redundant routing. This
scheme guarantees that each request is successful with
high probability if the fraction of colluders in a cluster

does not exceed1 −
(

1
2(1−c′)(log2N)/2

) 2
log2N′

, with N

the size of the system,N ′ the size of the cluster, andc′,
the expected number of malicious peers in routing tables.
To summarise, the contribution of this paper is a scal-
able protocol for efficient and secure information gathering
in a system with high churn and presence of colluding peers.

Roadmap. The paper is organised as follows: Section 2
presents related work, Section 3 presents the model and
problem definition, Section 4 presents the basic protocol,
Section 5 addresses the security issues, and finally, Sec-
tion 6 concludes. For space reasons pseudo-codes of some
procedures and involved proofs of correctness are presented
in the full version of the paper [?].

2 Related Work

This section analyses previous work on storage reputa-
tion information trustworthily despite collusion and on se-
cure routing. Aberer and Despotovic [1] propose a reputa-
tion mechanism in which trust information, actually com-
plaint information, is stored in P-Grid, a distributed hash
table-based overlay distributed over the system. Their
mechanism is made robust by guaranteeing that trust in-
formation is replicated at different peers, and thus can be
accessed despite malicious entities. The efficiency of their
approach relies on peers propensity to fully cooperate by

storing trust information locally and by forwarding requests
to feed the P-Grid overlay. Additionally, as for most of the
DHT-based approaches, peers have to store data they are not
concerned with, and thus for different reasons may discard
them. This is to prevent such issue that in STORM, trust
information are stored at peers sharing similar interest with
such information. Simulations based on P-Grid have shown
that even sophisticated metric trust are vulnerable to col-
lusion and worse may render the system less efficient than
without these metrics [17]. More generally, Zhang et al.
[19] have shown that eigenvector-based reputation systems
such as PageRank [11] and HITS [10] are very sensitive to
collusion essentially because they rely on the notion of tran-
sitive trust which can be easily manipulated. To face this
issue, presence of pre-trusted peers [9], hash-function ap-
plied on long-lived peers [8], and reciprocative-based incen-
tive techniques [7] are proposed. While these approaches
show heir effectiveness against different undesirable sce-
narios, the former one requires the presence of trusted peers
known by all the peers in the system, while the two last one
can only tolerate modest churn.

Regarding the secure routing problem, Castro et al. [3]
are among the first ones to focus on secure routing. They
propose theredundant routingapproach. Essentially, their
technique consists in for each request, to send multiple
copies of that request over independent routes so that at least
one copy almost surely reaches a legitimate recipient. We
extend their approach to cope with colluders by constrain-
ing the result of a query, which guarantees to reach the legit-
imate receipeient with high probability. Sit and Morris [15]
take advantage of the fact that distance between the sender
and the legitimate destination should decrease at each step
of the lookup. By making the sender observe his query
progress, he can detect re-routing toward malicious desti-
nations, however their implementation doubles the optimal
cost of a lookup.

3 Model and Problem Definition

We adopt the model proposed in [2]. We consider a peer-
to-peer system populated with at mostN peers. Some peers
calledservice providersrepeatedly offer the same service
to interested peers. The effort exerted by a service provider
determines its Quality of Service (QoS). We assume that
a server ’s effort is the same for all the peers that solicit
him and takes its value within the [0,1]. After each interac-
tion with servers, each peer has an imperfect observation
of the effort exerted bys. Peers may have different tastes
abouts QoS, but basically, these observations are closely
distributed arounds’s effort. Estimation of the expected be-
haviour of a servers is based on its recent past behaviour,
that is, its recent interactions with the peers of the system.
Every time a peer desires to interact with a service provider

s, it asks for feedback from peers that have recently inter-
acted withs. In the following, awitnessdenotes a peer
having interacted with a given service provider.

Some peers try to manipulate the system by exhibiting
undesirable behaviours. Such peers are calledmalicious.
Malicious peers can drop messages, forward requests to
illegitimate peers, send dishonest feedback or no feedback
at all. Note that malicious peers are rational, that is, they
try to maximise their utility within the system. Thus they
follow STORM protocol when it is in their interest to do so.
However, they can be strategic, that is, they can elaborate
strategies to subvert the system. Malicious peers may act
independently or may be part of acollusion group. A mem-
ber of a collusion group is calledcolluder. A peer which
always follows STORM protocol is said to becorrect. We
assume that there exists at most a fractionf(0 ≤ f < 1) of
malicious peers in the whole system. The set of malicious
peers is partitioned into independent disjoint collusion
groups with size bounded bycN(1/N ≤ c ≤ f). When
c = f , all malicious peers collude with each other to
cause the most damage to the system [3]. In this work,
we do not consider sybil attacks [6], that is peers that
pollute the system by creating numerous fake identifiers.
We suppose that STORM uses some external technique to
counter this problem and leave this issue for future work.
We use cryptographic techniques to prevent a malicious
peer from observing or modifying a message physically
sent between any two correct peers. However a malicious
peer has complete control over messages it receives, i.e.,
it can drop them or forward them to illegitimate peers.
Finally, we assume that every peer in the P2P overlay
has static IP address at which it can be contacted. Note
that P2P overlays can be extended to address dynamic IP
addresses [5].

Specification of the Secure Gathering Problem.A repu-
tation mechanism collects, aggregates and rates feedback.
Collecting honest feedback in a dynamic environment in
which a non null fraction of malicious peers can collectively
collude to subvert the system is the problem we address in
this work. A solution to this problem should satisfy the fol-
lowing property:

Property 1 (Secure feedback collect).If a peerp requests
w opinions regarding the service provided bys, thenp re-
ceivesw such opinions with high probability, and each one
is sent by a correct witness with probability1− f ′. 1

4 STORM Protocol

STORM is a scalable protocol for efficiently gathering
numerous and honest feedback to evaluate the reputation

1f ′ is explicited in Section 5.

of service providers. The principles that led to STORM
are the following ones: first, to increase the likelihood of
locating sufficiently enough feedback, all the peers having
interacted with a target server (witnesses) should dynami-
cally self-organise into clusters with respect to that target
server. In the following,clusters denotes the group of peers
having interacted with service providers. Second, to effi-
ciently retrieve these opinions in a large scale system, each
such cluster should be reachable in a logarithmic number of
hops. Finally, to prevent collusive peers from subverting the
gathering scheme (either by re-routing, by dropping feed-
back, or by flooding the system with dishonest feedback),
collusion formation should be prevented. All these tenets
have been integrated in STORM and are now presented.

This section describes the STORM protocol, namely, lo-
cation of service providers and witnesses, insertion of new
peers and departures of existing ones. Prior to this descrip-
tion, we recall some background on DHT-based protocols,
by focusing on Chord. Indeed, we take advantage of the
attractive features of Chord (i.e., its scalable key location
and dynamic join and leave operations) to adapt them to
the secure gathering problem. Note that other DHT-based
protocols such as Pastry [14] or CAN [12] could have been
adapted too, however, the choice of Chord was motivated
by security considerations as discussed in Section 5.

4.1 Background

4.1.1 DHT-based Protocols

DHT-based protocols [16, 14, 12] provide substrates for
the construction of large-scale, decentralised applications.
They allow applications to locate an object in a probabilis-
tic bounded small number of hops while requiring per-peer
routing tables with only a small number of entries. These
protocols are scalable, fault-tolerant and provide effective
load balancing. In a structured overlay, peers are assigned
unique random identifiers,nodeIds, from a largeid space.
Application-specific objects are assigned unique identifiers,
calledkeys, selected from the same id space. Each key is
mapped by the overlay to a unique peer, called the key’s
root. The routing protocol routes messages with a given key
to its associate key’s root. To route messages efficiently,
each peer maintains arouting tablewith nodeIds of other
peers and their associated IP address.

4.1.2 Chord Protocol

In Chord, peers are uniformly assigned nodeIds from a cir-
cularm-bits id space through a consistent hashing function,
with m = log2N , andN the size of the system. Each Chord
peer maintains a routing table, calledfinger table, consisting
of up tom pointers to other peers. Theith pointer of peer
(of nodeId)n refers to the peer with the smallest nodeId

clockwise fromn + 2i−1. Each Chord key is mapped to the
peer with the closest preceding nodeId to the key. To find a
particular key, a request is forwarded in clockwise direction
to the peer in the routing table with the closest preceding
nodeId to the key. Thus, the expected number of routing
hops in Chord is(log2N)/2. A newly joining peerp ini-
tialises its fingers, and notifies existing peers, which in turn
updates their fingers to reflectp’s arrival. Chord handles
abrupt peers departure through a periodic invocation of a
stabilisation protocol which exchanges messages among a
small number of peers. A complete description of Chord is
presented in [3].

4.2 STORM Overview

As previously said, STORM adapts Chord to gather
opinions regarding the service provided by servers. Briefly,
the very notions of keys and peers are at the roots of the
adaptation we propose. As previously mentioned, Chord as-
signs keys to peers. That is application resources are physi-
cally assigned to peers. In STORM, the notion of cluster of
witnesses acts as a substitute for the notion of application
resource, while the notion of (physical) peer is replaced by
the one of (logical) label or key. Specifically, each clus-
ter clusters is assigned as a whole to akey which is ob-
tained by hashing the IP address of the service providers.
Keys are ordered on akey circlemodulo2m. Note thatm
must be large enough to make the probability of two service
providers IP addresses hashing to the same key negligible.
In the rest of the paper, key circle will refer to theback-
bone ring, and the term ”service provider” will refer to both
the service provider and its key under the consistent hash
function. Let us now focus on clusters structure. A con-
sistent hash function assigns witnesses of a given cluster
identifiersordered on aidentifier circlemodulo2n.2 The
identifier circle is referred in the following as thewitnesses
ring. Note that a peer may belong tox witnesses rings if
it has interacted withx service providers. Figure 1) illus-
trates the backbone ring on which five witnesses ringsW1,
W2, W3, W5, W6 sit, with Ws the witnesses ring including
witnesses having interacted with servers. For clarity pur-
pose, we focus on witnesses ringW1, W2, andW3, and con-
sider only peerp1’s tables. Each witnessp ∈ Ws maintains
two tables: arouting table, denotedRoutings

p, to maintain
the inter-ring connectivity, and awitnesses table, denoted
Witnessess

p, to maintain the inner-ring connectivity (both
tables are described hereafter). Beyond such tables, each
witness stores the opinion it has about the experiences it has
had with the given service provider. Note that game theo-
retic results and empirical studies on eBay show that only
recent ratings are meaningful [4]. Thus a witness stores

2In practicem = n since each witness may potentially be a service
provider.

only its latest observations.
Note that in most of the reputation systems based on

DHT overlays [9, 1] the opinions of peers are located at
remote peers. Specifically, the feedback that peerp has on
some target servers is not locally stored atp but rather is
owned by some remote peerp′ whose location is given by
some consistent hash function, for instance by hashings’s
Id to a key. Generally,p′ has no reason to be interested in
the feedback related tos, while the cost incurred by stor-
ing such information is not negligible. As a consequence, it
may be a clear disincentive to actively and honestly partic-
ipate to the reputation process. This is the reason why the
alternative approach has been adopted in STORM.

4.2.1 Witnesses Table

As aforementioned, witnesses tables ensure the inner con-
nectivity of a witness ring. For scalability reasons, we do
not require each witness to know about every other witness
in the witnesses ring. Rather, a witness points to only a
small number of other witnesses. Thus, similarly to Chord’s
finger table, p’s witnesses table contains at mostm entries,
such that theith entry points to the first witnessp′ that suc-
ceedsp by 2i−1 on the ring (that isp′ is the first peer that
succeeds(p + 2i−1) mod2m, with 1 ≤ i ≤ m). Entry i in-
cludes bothp′’s identifierandp′’s IP address. Witnessp′ is
indifferently called theith witness ofp, or theith succeed-
ing witnessof p. By symmetry,p is apreceding witnessof
p′. From Chord properties, each witness maintains infor-
mation about onlyO(logN) other witnesses, and with high
probability the number of witnesses that must be contacted
to find a particular witness in a witnesses ring isO(logN)
(Theorem IV.2 of [16]).

4.2.2 Routing Table.

Routing tables ensure the connectivity between the differ-
ent witnesses rings. As for witnesses rings, only a small
amount of routing information can be maintained by each
witness. Thusp’s routing table contains at mostm entries,
such that theith entry refers to the first witnesses ringWs′

that succeedsWs by at least2i−1 on the backbone ring.
In the sequelWs′ is called theith successor ring ofWs,
or simply asuccessorof Ws. By symmetry,Ws is a pre-
decessorof Ws′ . From here on, we denote byEp[i] the
ith entry of the routing table ofp. Each entryEp[i] con-
tains a set of witnesses’ identifiers associated to their IP ad-
dress, such that each of those witnesses belongs toWs′ . We
have|Ep[i]| ≤ d for all i, with d an application parame-
ter. Referring to Figure 1, the routing tableRouting2

1 of
peerp1 contains3 entriesE1[1], E1[2], andE1[3] referring
respectively toW3, W5, andW6. The first entryE1[1] of
Routing2

1 refers to the witnesses ringW3, and points to wit-
nessesp2 andp5. As will be described in Section 5, this set

is introduced first for security reasons (it aims at preventing
collusion formation), and second for fault-tolerance consid-
erations. Assuming that each peer fails independently with
probability pf , the probability that alld witnesses fail si-
multaneously is onlypd

f . Note thatd is independent of the
size of the systemN , and thus the amount of information
maintained by a peer in its routing table is inO(logN).
Putting things together, the amount of information needed
to maintain both tables isO(logN).

Figure 1. A STORM architecture with m = 3
and d = 2

4.3 Routing Procedure

We now describe how a witnesses ring is located in
STORM. Basically, the routing procedure of STORM fol-
lows the lines of Chord but applied to witnesses rings. The
first difference lies in the fact that unlike in Chord where
a finger table entry contains the identifier of a single peer,
in STORM a routing table contains asetof peers. Then at
each hop of a STORM message routing procedure, the next
peer is chosen from the relevant routing table entry at ran-
dom. This random choice is motivated by load balancing
and, more importantly, by security considerations (see Sec-
tion 5.2). The second difference is that a STORM message
keeps track of the first encountered peerpred that refers to
the target witnesses ring. Finding such a peer is useful for
the update procedure (Section 4.4), for the secure insertion
procedure (Section 5.1), and for the secure routing proce-
dure (Section 5.2).

When a peerp sends a request for the witnesses ringWs

of service providers, p executes thefind witness()
procedure. This procedure returns a tuple (pred,target),
with pred a peer that refers toWs, and target a peer in
Ws. find witness() consists of the following steps.
If the routing table ofp contains a non empty entryEp[i]
(that refers toWs) then find witness() ends and re-
turns(p, p′), with p′ a peer chosen at random fromEp[i].
Otherwise,p searches in its routing table for the entryEp[i]
that refers to the witnesses ringWs′ whose keys′ most im-
mediately precedess. Thenp picks a random peerp′ from
Ep[i], which in turn invokesfind witness() . Note that
if key s ofWs falls between keys′ of Ws′ and keys′′ of the
witnesses ringWs′′ that immediately succeedsWs′ , then it
means thatWs does not exist andfind witness() re-
turns (p′, null).

Locating a witness within the witnesses ring is done ex-
actly as previously, with the difference that witnesses tables
contain only one pointer per entry.

As the backbone ring is placed on a Chord-like ring,
searching for a witnesses ring costsO(logN) hops.

/* peer p wishes to find Ws */
p.find witness(s) {1

Ep = entry ofp that refers to the closest ringWs′ toWs;2
p′ = choose a random peer fromEp;3
q = p;4
while(s /∈ [s′; s′′]){5

q = p′;6
Eq = entry ofp that refers to the closest ringWs′′ toWs′ ;7
p′ = choose a random peer fromEq ;8

}9
if (s = s′){10

result.pred = q;11
result.target = p′;12

}else{13
result.pred = p′;14
result.target = null;15

}16
return result;17

}18

Algorithm 1 : Routing procedure

4.4 Handling Witnesses Arrivals and Re-
movals

This section presents how new witnesses are inserted on
the STORM rings, and how departures (voluntary or not) of
existing witnesses are handled.

4.4.1 Insertion Operation

When an interaction between service providers and peer
p is completed, peerp may want to join STORM as
witness to actively participate to the estimation of servers’s
reputation. In the sequel, we assume thatp knows at least
one peer already inserted in STORM. A bootstrap peer can
be obtained using for example a set of dedicated servers.
Peerp issues an insertion request to the bootstrap peer in
order to be inserted inWs (invocation of a “join” proce-
dure). The “join” procedure first locates the witnesses ring
Ws on the backbone ring using thefind witness()
procedure described hereabove. As previously explained,
this procedure returns a tuple(pred, target), with pred a
member of a witnesses ringWs′ that points totarget, with
target ∈ Ws. Two cases have to be considered:

case a)target = null, i.e.,Ws does not exist. In that case,
Ws has to be created and this creation has to be reflected
in all the witnesses rings that precedeWs on the backbone
ring. Creation ofWs is done by initialisingp’s routing table
(by successively contacting the successors ofpreds). p’s
witness table is not initialised at this stage sincep is the
only member ofWs.

Creation ofWs is reflected in the other routing tables
by invoking a procedure which updates the routing tables
of peers concerned inp’s arrival. Briefly, this procedure

consists in contacting all the witnesses belonging to all
the witnesses ringsWs′ that precedeWs. Each witness
p′ in Ws′ insertsWs as a new entryi in its routing table,
and makes this entry point top, i.e.,Ep′ [i] = p. Note that
this costly procedure is applied only at the creation of a
witnesses ring. Once a witnesses ring exists, the insertion
of a new witness in that ring is reflected in at most one
routing table entry (see below). Note also that once a
witness has been inserted in a witnesses ring, his next
interactions with the same service provider are transparent
for STORM: feedback is locally updated if necessary, but
no insertion operation has to be invoked as long as he does
not leave that witnesses ring. Malicious peers may try to be
inserted several times in the same witnesses ring to subvert
the system, however the insertion procedure guarantees that
once a peer exists in the ring it cannot be inserted a second
time.

case b)target 6= null, i.e.,Ws exists. In that case,p’s in-
sertion inWs needs to be reflected at some of the members
of Ws and to be possibly incorporated inpred’s routing ta-
ble. Specifically,p’s insertion is achieved by first locating
his position onWs, and then by askingp’s preceding wit-
nesses to update their witnesses tables to incorporatep as
witness (recall that witnessp′ precedesp if it exists i such
that p is the first peer that succeeds(p′ + 2i−1) mod 2m,
with 1 ≤ i ≤ m). Thenp initialises his own witnesses
table by successively contacting its succeeding witnesses.
This procedure follows the lines of the “join” procedure of
Chord.

On the other hand, and contrary to case a) only one rout-
ing table is susceptible to incorporatep’s identifier. This
routing table ispred’s one, andp’s incorporation is con-
ditioned by the sequence of insertion requests previously
received bypred. Indeed, by constraining peers’ insertion
in routing tables, we prevent malicious peers from devising
strategies (collective or not) to infect routing tables entries.
Consequently we decrease the likelihood that such peers
get control over both the witnesses ring they point to (and
thus the danger that they illegitimately reply to requests ad-
dressed to other members of those witnesses rings), and the
backbone ring (and thus the risk that they intercept requests
they should forward). Therandomised decisionalgorithm
responsible for that insertion is presented in Section 5.

4.4.2 Departure and Failure Operation

By construction STORM does not impose any constraints
on feedback availability. Indeed, since witnesses are re-
sponsible for their own feedback, feedback of failed left
witnesses does not have to be kept by other peers. Thus, the
only property that needs to be maintained by STORM is to
guarantee that peers’ departure (volunteer or not) does not

compromise connectivity on the backbone and within wit-
nesses rings. Regarding connectivity among the witnesses
rings, each peer periodically sends alive messages to each of
his successors of his routing table. If a peer notices that one
of his successors has left then it removes him from his rout-
ing table. Recall that each routing table entry contains up to
d witnesses pointing to a same witnesses ring, and thus up
to d concurrent failures have to occur to damage witnesses
rings inter-connectivity, and this case happens only with
probability pd

f . Regarding connectivity within witnesses
rings, we adopt the solution proposed in Chord. Their so-
lution consists in maintaining at each witnessp a successor
list containingp’s b immediate successor. If ap’s immedi-
ate successor does not respond,p can substitute the second
entry in its successor list. As for routing tables entries, up to
b concurrent failures have to occur to damage connectivity
within witnesses rings, which happens with only a proba-
bility pb

f .

5 Security Issues

In this section we focus on the security aspects of
STORM. We argue that DHT-based overlay for reputation
systems should satisfy the following two properties:

• Routing tables should be insensitive to collusion. That
is, if before a table update procedure the probability
that a link points to a malicious peer isf ′, then after
the update this probability should not exceedf ′.

• Routing should be efficient. That is, a request should
reach a legitimate destination (i.e. should neither be
dropped, nor derouted) with high probability.

Probability f ′ corresponds to the maximal fraction of
malicious peers that can be inserted in a witnesses ring that
is f N

|Ws| < f ′ for all service providerss.
In the sequel we propose strategies that enjoy both prop-

erties, and show that their combination allow to build a se-
cure feedback gathering procedure.

Before describing our contribution regarding secure
routing table maintenance and secure routing, we present
arguments which guarantee that peers cannot choose their
own identifiers or identifiers of other peers. These argu-
ments are very similar to Castro et al’s ones [3]. First, by
safely assigning keys and identifiers through a trusted Cer-
tification Authority (CA) (central or installed as part of the
peer software itself), peers cannot practically forge a key
or an identifier. Second, from the consistent hash func-
tion property, keys and identifiers are distributed uniformly
at random over the backbone ring and over each witnesses
ring. Moreover, as keys and identifiers are assigned through
a cryptographic hash function, malicious peers can ardu-
ously know which IP address has generated a particular key

or identifier. Thus, they cannot target a particular point on
the key or identifier space. Finally, from Chord properties,
strong constraints on the keys and identifiers positions on
the rings are imposed, i.e., a peer has to be the closest to
some fixed point on the ring. Thus a peer cannot manip-
ulate the system to be inserted close to a target peer, this
target being either another malicious peer to form a collu-
sion, or a correct peer harmed by the manipulating peer.

5.1 Secure Insertion in Routing Tables

The aforementioned arguments are sufficient to prevent
malicious peers from choosing their position in witnesses
rings. However they cannot prevent them from choosing
the witnesses ring in which they will be inserted. Indeed,
the only condition required to be inserted in a witnesses ring
Ws is to claim a recent interaction with service providers.
On the other hand, additional mechanisms can be designed
to prevent malicious peers from devising strategies (collec-
tive or not) to infect routing tables entries. We address this
issue by randomising the insertion process. Intuitively, col-
luders can more easily draw a successful adversarial strat-
egy from a deterministic algorithm than from a randomised
one. For example, colluders may easily subvert a First-
In-First-Out (FIFO) insertion algorithm by executing peri-
odic rapid-fire insertion requests. In contrast, a colluder can
hardly make up a successful strategy if the inserted peers
are chosen randomly among the requesting peers. We show
that regardless of the adversarial strategy colluders employ,
the randomised decision algorithm we propose guarantees
that the expected number of colluders in each routing table
is eventually minimal.

Specifically, suppose that among a sequence oft inser-
tion requests, colluders can send at mostx requests, with
x < t, and that colluders can strategize on the order of
these requests. For instance, they can send all thex inser-
tion requests at the beginning of the sequence, or they can
spread thex requests over the whole sequence. Note that
x/t ≤ f ′. Our algorithm guarantess that the expected num-
ber of malicious peers inserted in a routing table entry is at
most(x/t)d. For t = 30, x = 10, andd = 10, if a FIFO
insertion policy were used, colluders would be able to in-
fect100% of the peers in the routing table entry by sending
rapid-fire insertion requests. Using our randomized algo-
rithm, only 33% of these peers would be malicious. Note
that to prevent a malicious peerp already inserted in a wit-
nesses ringWs to send new insertion requests in order to in-
fect the routing table of a peerpred that refers toWs, pred
checks whetherp is not already inWs before executing the
randomized insertion algorithm.

In the following, an insertion request originating from a
colluder is called amalicious insertion request. Now, letp
be a peer issuing a insertion request to be inWs. Let pred

be the peer belonging toWs′ such thatWs′ precedesWs,
and such that theith routing table entry ofpred, Epred[i],
contains up tod witnesses belonging toWs. Finally, let
transiti be a list containing the identifiers of thet last peers
that have solicitedpred to be inserted inWs. Upon receipt
of p’s insertion request,pred runs therandomised decision
algorithm which consists of the following five steps:

1. if transiti is full, remove the oldest peer from it,

2. insertp in transiti,

3. pick at random a peerp′ from transiti,

4. if Epred[i] is full then drop a random a peer from
Epred[i],

5. insert peerp′ in Epred[i].

Recall that this algorithm is executed only ifWs exists
(see Section 4.4). Before showing that this algorithm guar-
antees that the expected number of malicious peers is even-
tually equal to(x/t)d, we first show that the algorithm is
vulnerable to malicious peers during the STORM creation.
By construction, the firsti, with i < t, peers issuing an in-
sertion request are inserted inEpred[i] with probability1/i.
After that, the probability of insertion of a peer inEpred[i]
is always equal to1/t. Clearly, as colluders generally try
to maximize the probability of being inserted in a routing
table entry, thet first insertions constitute the most vulner-
able phase of the randomized decision algorithm. Note that
a possible alternative would be to wait for thet first inser-
tion requests before inserting the first peer inEpred[i]. The
drawback of this strategy would be to prevent requesting
peers from getting any feedback for service providers dur-
ing this initial period of time. While this vulnerability ex-
ists, the routing table entry is eventually “cleaned up” by
our randomized algorithm as now demonstrated.
Analysis. In the following we show first that the expected
number of malicious peers in each routing table is even-
tually at most equal to(x/t)d (Theorem 1), and second
that for any randomized algorithm, there exists adversarial
strategies for which the expected number of malicious peers
is equal to(x/t)d (Theorem 2).

Theorem 1. Using the randomized decision algorithm, the
expected number of malicious peers in a routing table entry
is eventually at most equal to(x/t)d.

Theorem 2. For any randomized algorithm, there exists a
sequence oft insertions such that the expected number of
malicious peers in a routing table entry is at least(x/t)d.

The randomized decision algorithm eventually bounds
the expected number of malicious peers in each routing ta-
ble entry to(x/t)d, which is the best result that can be

achieved. Note however that this mechanism cannot be used
to minimize the number of malicious peers in witnesses ta-
bles. Indeed, by excluding some peers from witnesses ta-
bles, their potential feedback would not be available, which
would degrade the efficiency of the reputation estimation.

5.2 Secure Routing

The previously described randomized decision algorithm
prevents the formation of collusion. Even if this schema
limits the likelihood of requests being dropped or being
routed toward undesirable peers, current structured p2p
overlays provide best-effort routing. The probability of
reaching a legitimate recipient is small for the simple rea-
son that only one malicious peer on the path is sufficient to
prevent a request from being delivered to its destination. To
illustrate this problem, consider a system ofN peers and a
target witnesses ringWs of sizeN ′ ≤ N . By assumption
the fraction of malicious peer inWs and thus in each wit-
nesses table is at mostf ′. We have shown (see Theorem
2) that regardless of the adverserial strategy, the expected
number of malicious peers in each entry of each routing
table is equal to(x/t)d which is the best result that can
be achieved. From the routing procedure (Section 4.3), the
peer at which a request received by peerq is forwarded is
chosen at random from the appropriate entry ofq’s routing
table. Thus the probability of choosing a malicious peer at
each hop is equal toc′ = x/t. Moreover, the expected num-
ber of hops needed to reachWs is equal to(log2N)/2 and
the maximum expected number of hops needed to reach a
target peer inWs is equal to(log2N

′)/2. Therefore from
above, the probability that a request reaches a legitimate
destination is given by the following equation:

(1− c′)(log2N)/2(1− f ′)(log2N ′)/2.

Note that this legitimate destination is correct with prob-
ability 1− f ′. Figure 2 illustrates this result by plotting the
probability of a successful request for different ratio of ma-
licious peers withN = 100, 000 andc′ = 0.01. For exam-
ple, forN ′ = 1, 000 we see that 0.08% of malicious peers
(that is80 malicious peers) inWs makes the probability of
success of a request forWs drop to 60%.

Figure 2. Probability of success of a re-
quest with respect to the fraction of mali-
cious peers in Ws for N = 1, 000, 000 and
c′ = 0.01.

To improve the probability of reaching a legitimate des-
tination, Castro et al. [3] propose theredundant routingap-
proach. Essentially, for each request, multiple copies of that

request are sent over independent routes so that at least one
copy almost surely reaches a legitimate recipient. To cope
with colluders inWs and malicious peers in routing tables,
we extend their approach toconstrained redundant routing.
Our approach consists in constraining the result of a request.
In our case the constraint concerns the identifier of a wit-
ness. Specifically, consider a peerp that wishes to findw
witness identifiers inWs. Thenp executes theconstrained
redundant routingalgorithm which consists of the follow-
ing four steps:

1. generatew random numbersnk, k = 1 . . . w from 0 to
2m − 1;

2. sendr copies of the feedback request forWs over r
independent routes;

3. when a peerpred having an entryEpred[i] referring to
Ws receives a feedback request copy, he asks all thed
witnesses inEpred[i] to find the closest witness to each
nk, k = 1 . . . w;

4. p waits until timer expires;

5. the final result of the feedback request is thew identi-
fiers of the witnesses that have been returned the most
often.

The constraint is expressed by Step 3 of the algorithm.
With such a constraint, a requester can evaluate the valid-
ity of the result and can choose the appropriate one (Step
5). Such an evaluation would be impossible if peers could
return arbitrary witnesses identifiers inWs.

Note that generatingw random keys from0 to2m−1 and
asking for the closest peers to these keys can be interpreted
as choosingw peers in the witnesses ring (approximately)
randomly. Thus the probability that the closest peerwk to
nk is correct is1− f ′.

By independent routes, we mean that routes are indepen-
dently chosen. Thus sending multiple copies of a request
over independent routes can be viewed as making multiple
random walks on the set of possible paths starting from the
requester to the destination. Recall that a routing table en-
try may contain up tod identifiers, and that at each hop of a
request the subsequent peer is chosen from the appropriate
routing table entry at random (see Section 4.3). Thus send-
ing r copies of a request over independent routes simply
consists in sendingr request messages simultaneously.

Sending each copy of a request to thed peers in each
routing table entry that refers toWs is motivated by the fact
that colluders are more likely to be present inWs than in
routing tables (c′ ≤ f ′). It can be interpreted as checking
many possible routes to thew target witnesses to increase
the chance to reach them.

Analysis. We now show that if the fraction of malicious

peersf ′ < 1−
(

1
2(1−c′)(log2N)/2

) 2
log2N′

inWs, then for each

keynk, the most often returned witnesswk is the legitimate
destination. Such a request is called asuccessfulrequest.
To show this result, we consider that all malicious peers in
Ws collude altogether by claiming that for each keynk, w′

k

is the legitimate destination withw′
k 6= wk.

Theorem 3. If f ′ < 1 −
(

1
2(1−c′)(log2N)/2

) 2
log2N′

, then by

settingr andd to large enough values, with high probability
a request is successful.

Table 1 gives some numerical values of the maximum
number of colluders that the constrained redundant routing
algorithm can handle with respect to the size ofWs and for
N = 1, 000, 000 andc′ = 0.01.

Size ofWs Maximum size of
a collusion group

100 16
1, 000 115

10, 000 876
1, 000, 000 7078

Table 1. Maximum tolerated size of a collu-
sion group

Now, for more practical considerations, we seek to deter-
mine the probability that a request is satisfied with respect
to r and d. From the previous analysis, we observe that
the number of copies of a request that reaches a legitimate
destination follows a binomial law of parametersps andr,
with ps = (1 − c′)(log2N)/2(1 − f ′)(log2N ′)/2. Then, the
probability of success of a request is given by the following
equation:

r∑
k>r/2

(
r

k

)
pk

s(1− ps)r−k.

As illustrated by Figure 3, forN = 100, 000, N ′ =
1, 000, andc′ = 0.01, with 0.08% of colluders (80 collud-
ers), and forr = 5 andd = 10, the probability of success
of a request increases to 94%.

The expected total number of messages for a constrained
redundant routing isr ((log2N + wdlog2N

′)/2). Since
N ′ ≤ N andr, d, andw are fixed, the complexity of the
constrained redundant routing algorithm is stillO(logN).

5.3 Gathering Feedback

We can finally describe how opinions are gathered from a
set of witnesses. When a peerp wishes to getw opinions re-
garding service provider says, p invokes a “query” function

Figure 3. Probability of success of a request
with respect to the number r of copies for
each request.

to locateWs. In case no witness have ever interacted withs,
this procedure returns a null pointer. Otherwise,p gets back
w opinions abouts. The approach simply consists in exe-
cuting the secure routing procedure described in Section 5.2
to getw identifiers of witnesses. Then,p directly contacts
each witness and requests their recent feedback abouts.

Since this procedure returnsw witnesses ofs with high
probability (Section 5.2), and sincew are chosen at random
from Ws (Section 5.2) and thus is correct with probability
1 − f ′ by assumption, Property 1 of the Secure Feedback
Collect is satisfied.

6 Conclusions

We have presented STORM, a scalable protocol for ef-
ficient and secure information gathering in a system which
high churn and collusive peers. Efficiency comes from two
ingredients: The first one is self-organization. By making
peers to be adjacent to other peers sharing the same interest,
we increase the likelihood of finding relevant information
within a small number of number of steps. The second one
is Distributed Hash Tables (DHT)-based overlay. By tak-
ing advantage of the attractive features of these systems se-
mantic clusters are located in a logarithmic number of hops
and high churn is faced through simple and fast leave and
join operations. Secure information gathering techniques
are proposed. These techniques guarantee that feedback is
collected from the legitimate cluster, and bribes and collu-
sion do not interfere the gathering, without having to dis-
cover who the undesirable peers are.

7 Acknowledgments

We thank the anonymous reviewers for their useful com-
ments that helped improve the paper. This work is par-
tially supported by a grant from brittany region convention
1306, and the ANR RIAM-011 03 “Solipsis”.

References

[1] K. Aberer and Z. Despotovic. Managing trust in a peer-to-
peer information system. InProceedings of the 10th Inter-
national ACM Conference on Information and Knowledge
Management (CIKM), 2001.

[2] E. Anceaume and A. Ravoaja. Incentive-based robust rep-
utation mechanism for p2p services. InProceedings of the

10th International Conference On Principles Of Distributed
Systems. LNCS 4305, 2006.

[3] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach. Secure routing for structured peer-to-peer overlay
networks. InProceedings of the 5th Symposium on Operat-
ing Systems Design and Implementation, 2002.

[4] C. Dellarocas. How often should reputation mechanisms up-
date a trader’s reputation profile.Information Systems Re-
search, 2006.

[5] P. Dewan and P. Dasgupta. Pride: Peer-to-peer reputation
infrastructure for decentralized environments. InProceed-
ings of the 13th international World Wide Web conference
on Alternate track papers and posters, 2004.

[6] J. Douceur. The sybil attack. InProceedings of the 1st Inter-
national Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[7] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust incen-
tive techniques for peer-tto-peer networks. InProceedings of
the ACM Conference on Electronic Commerce (EC), 2004.

[8] D. Grolimund, L. Meisser, S. Schmid, and R. Wattenhofer.
Havelaar: A robust and efficient reputation system for active
peer-to-peer systems. InProceedings of the First Workshop
on the Economics of Networked Systems (NetEcon), 2006.

[9] S. Kamvar, M. Schlosser, and H. Garcia-Molina. The eigen-
trust algorithm for reputation management in p2p networks.
In Proceedings of the 12th International Conference on
World Wide Web (WWW), 2003.

[10] J. Kleinberg. Authoritative sources in a hyperlinked environ-
ment. InProceedings of the 9th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 1999.

[11] L. Page, S. Brin, R. Motwani, and T. Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical
report, Stanford Digital Library Technologies Project, 1998.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proceedinds of the Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communi-
cations, 2001.

[13] P. Resnick, R. Zeckhauser, J. Swanson, and K. Lockwood.
The value of reputation on ebay: A controlled experiment.
Experimental Economics, 2006.

[14] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. InProceeding of the International Conference on Dis-
tributed Systems Platforms (Middleware), 2001.

[15] E. Sit and R. Morris. Security considerations for peer-to-
peer distributed hash tables. InProceedings of the First Int’l
Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[16] I. Stoica, D. Liben-Nowell, R. Morris, D. Karger, F. Dabek,
M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. 11(1),
2003.

[17] L. Xiong and L. Liu. Peertrust: Supporting reputation-based
trust in peer-to-peer communities.IEEE Transactions on
Knowledge and Data Engineering (TKDE), 2004.

[18] A. Yao. Probabilistic computations: toward a unified mea-
sure of complexity. InProceedings of the 17th IEEE Symp.
on Foundations of Computer Science (FOCS), 1977.

[19] H. Zhang, A. Goel, R. Govindan, K. Mason, B. V. Roy, and
L. Stefano. Making eigenvector-based reputation systems
robust to collusion.Lecture notes in computer science, 2004.

