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ERROR ESTIMATE IN A FINITE VOLUME APPROXIMATION OF
THE PARTIAL ASYMPTOTIC DOMAIN DECOMPOSITION *

GRIGORY PANASENKOT AND MARIE-CLAUDE VIALLON

Abstract. The method of asymptotic partial domain decomposition (MAPDD) has been pro-
posed for partial differential equations set in rod structures, depending on a small parameter. It
reduces the dimension of the problem (or simplifies it in another way) in the main part of the
domain keeping the initial formulation in the remaining part and prescribing the asymptotically
precise conditions on the interface. This paper is devoted to the finite volume implementation of the
MAPDD. We consider a model problem in a thin domain (its thickness is a small parameter). We
obtain an error estimate, expressed in terms of the small parameter and the step of the mesh.

Key words. energy estimates, homogenization, asymptotic expansion, finite volume scheme,
elliptic problem

AMS subject classifications. 35B27, 35Q53, 35C20, 35J25, 65N12, 76M12

1. Introduction. A great number of applied problems contain small parameters.
Normally their presence either in the equation or in the domain makes the numerical
implementation more complicated, more time and memory consuming. This issue
emphasizes the importance of the asymptotic methods studying the behavior of the
solution as the small parameter tends to zero. Nevertheless the asymptotic methods
are often related to some cumbersome calculations, or they are not too clear for
engineers. That is why some special numerical methods taking into account the
asymptotic behavior of the solution were developed. Omne of such ideas has been
implemented in the numerical schemes uniform with respect to the small parameter
[2],[7] or in some projection numerical methods with a special choice of the projection
space basis taking into account the regular part of an asymptotic solution [8],[17],
(the idea of projection procedure has been widely used in engineering).

The present paper is devoted to the finite volume implementation of the method
of partial asymptotic domain decomposition (MAPDD), introduced in [11],[12],[13].
This method reduces the problem to a simplified form on some subdomain of
regular asymptotic behavior of the solution (for example, by means of the di-
mension reduction) keeping the initial formulation on a small part of the domain
where the asymptotic behavior is singular (for example, where the boundary
layers are located). Then these two models are coupled by some special interface
conditions respecting with great accuracy the asymptotic expansion of the solution.
These interface conditions are obtained from some projection procedure in the vari-
ational formulation where the projection subspace keeps the asymptotic behavior of
the solution out of a boundary layer zone.

In the present paper we consider a two-dimensional setting, although the finite
volume implementation of the MAPDD can be generalized for three-dimensional set-
tings. In this case the three dimensional finite volumes should be coupled to the one
dimensional finite volume approximations. However, the details are rather technical
and it will be published in a separate paper. In section 2, we remind the method of
partial asymptotic domain decomposition (MAPDD) for the thin rod structures. The
rod structures [10] play an important role in the modelling of the mechanical behavior
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of the industrial installations, in the human or animal blood circulatory system [16].
The dimension reduction in such a modelling is a natural approach [10], [13], [14], [24]-
[40], although the full-dimensional models have to be kept in the neighborhoods of
the bifurcations or junctions. So the MAPDD gives the asymptotically exact answer
what should be the correct interface conditions.

In section 3, we consider the Poisson equation as model problem. The Poisson
equation is set in a thin bidimensional rod structure (union of some thin rectangles
[8]). The same approach may be used for more general equations, for example, for
the fluid dynamics equation [18]. The MAPDD version for the Poisson equation is a
hybrid 1D-2D dimension model, where 1D and 2D problems are coupled (the so called
partially decomposed problem).

However, applying the principle of superposition one can decompose completely
(and not partially) this hybrid 1D-2D dimension problem and reduce it to some set
of independent auxiliary completely 1D subproblems and completely 2D subprob-
lems and to a linear algebraic system of equations. We study the properties of the
coefficients and the solution of this system.

In section 4, we obtain the asymptotic expansion of the solutions, and of their first
and second derivatives, of the 2D auxiliary subproblems. These results are important
for the error estimate at the end of the paper.

In section 5, we discuss the finite volume implementation of the MAPDD set in
rod structures. The finite element implementation of the MAPDD has been discussed
in [6], and the finite volume implementation in the case of the simplest thin structure,
containing only one branch, was considered in [15]. Below we consider a general 2D
thin structure containing n branches. The finite volume implementation respects the
mesh admissibility condition [19]. This condition allows to follow the classical idea of
the proof of the error estimates and convergence. The goal is to study the influence
and the contribution of the small parameter € in the overall error estimate.

The main result obtained in the section 6, is the global error estimate, combining
the influence of both : small parameter € and the mesh step h.

In section 7, we present some numerical results that prove the good behaviour of
the hybrid finite volume scheme.

2. The method of asymptotic partial decomposition of domain. The
method of partial asymptotic decomposition of domain was proposed in [11],[12] for
partial differential equations, stated in rod structures, i.e. in some connected unions of
thin cylinders. It is based on the information about the structure of the asymptotic
solution in different parts of such domain. The principal idea of the method is to
extract the subdomain of singular behavior of the solution and to simplify the problem
in the subdomain of regular behavior of the solution. The special interface conditions
are imposed on the common boundary of these partially decomposed subdomains.

Consider the Poisson equation set in a rod structure. Describe the method in a
simple case of a rod structure containing one bundle.

Let €1, ... ,e, be n closed segments in JR?, which have a single common point O
(i.e. the origin of the coordinate system), and let it be the common end point of all
these segments. Denote O; the second end of ¢;, i.e., let e; be OO;. Define the graph

B = U;l:le].

Denote (z,y) the coordinates in the canonical base in IR?. Define the local coordi-
nates (z%,y% ), associated with the segment e;. This local system is obtained by the
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rotation around the origin O of the coordinate axes such that the new axe Oz | being
the image of Oz, coincides with the direction OO;.

€;
Denote ¢; the angle between Ox and Oz ,j =1, ...,n. We have { z J =Ty { zej J,
with T'; = C?S(%) —sinly)
sin(p;)  cos(p;)
gle pj,7=1,...,n.
Denote Bj the rectangles

, matrix of the rotation around the center O of an-

; ) €, €6;

(@) | 2% € Oh), v e (-2 T}
where I; = [e;| stands for the length of e;, 01, ..., 0, are some positive numbers inde-
pendent of e.

Let wp, ..., w, be n + 1 bounded domains in R%, Denote

o ={ay) | 0% ey,

by convention, Oy = O. Denote

QE - U‘;Llej U U;lzowj

Assume that . has a smooth boundary 99Q. € C2. Denote the small sides of
rectangles B5:

. e e cl; €0,
ﬁj:{(xvy) | 2% =0, y% € (- 2]7 2])}’
re .y o el; €0
Bi =A{(zy) | 2% =1;, y9 € (—TJ»TJ)}

Assume that Bj C 09 (see Fig. 2.1).
Consider the boundary value problem set in the domain €).:

Au,=f, in Q
(2.1) u. =0, on f5j=1..n

Ju. 0 Ae
o =0, on 0Q:\(Uj_; 55)

with the right hand side from L?(€.).

Define f(z,y) = f;(x%), if (z,y) € BS,j = 1,...,n, where f; are independent of £ and
vanish in some neighborhood of the ends of the segments e; (and so, the size of these
neighborhoods is independent ofz).

An asymptotic analysis (see [10], [14]) shows that an asymptotic solution does
not depend on y% at some distance 4,9 > 0 from O, i.e. if when § < 2% <I; —6,j =
1,...,n. It allows to apply the method of asymptotic partial decomposition of the
domain (MAPDD, see [11], [12],[14]). Let us describe this method for the above
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°l

€4

x J

Fic. 2.1. The thin domain Q.

model problem. Let us cut the rectangles Bj at the distance 6, § >> ¢, § << 1, from
the ends O and O; of each segment e;, i.e., let us trace the segments v} and v}

. . €l; cb;
’Y‘;:{(xay) | xe] :57 y‘] e(_#a?J)}a
. o eb; €0,
=A@y | 2 =45 yo e (-S4 T0),

and denote €2(j) the truncated connected part of €, such that its closure contains
Oj. Replace the parts between v; and 7 by the parts eo; = {(z,y) | y*% =0, 2% €
(0,1; — 8)}, of the segments e;. Remind that f =0 on Q(j),7 =0,...,n.

Consider the following 1D-2D hybrid dimension partially decomposed problem
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¢l

y
%4
A
Fi1G. 2.2. The decomposed domain
vi(x%) = fi(x%), 2% € (6., lj.— 5),j=1,..,n
Auj(z,y) =0, (z,y) € Uj),j=0,...,n
UQ n
uo(z,y) = v;(9), (v,y) €75,5=1,..,n
Uj(il?,y) = ’U](l] - 6)’ (CC,y) S 7‘;‘,’.7 = ]-a"'an
ou; . sev
3—77? =0, on I\ UBS),i=1,....n
1 8u0 .
() = — —d =1,..
’U]( ) 0]5 7,‘ an 77] 9 ,
1 ou;
"l —0) = —— - =1,...
’U] (ZJ 6) 9]'5 S on d7’j 5 ey 10

Denote u®(z,y) = { B D Ay Rl the so-

vj(z%) if (z,y) € BS, 2% € (3,l; —6),j=1,...,n '
lution of the partially decomposed problem. The theory of the method of asymptotic
partial decomposition of the domain gives the following estimate for the difference of
the exact solution and the solution of the partially decomposed problem [11], [12],[14]:
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for any K > 0 there exists K independent of , such that if § = K ¢|lne| then
l[ue — Ud||H1(QE) = 0(e").

Our aim is to obtain a finite volume approximation u%l- for u¢ and to get the overall
estimate for the difference u. — u%l—. Thanks to the above estimate, it is sufficient to
evaluate ||u® — u%| in a suitable norm. Namely, we will specify the dependence of
this estimate on € and the mesh step h.

3. Complete decomposition of the partially decomposed problem.

3.1. Auxiliary problems. In order to solve (2.2), we introduce auxiliary vari-
ables ap; and «j, j=1,...,n, allowing to solve separately the 1D-problems and the
2D-problems. It means that due to the linearity of the problem (2.2), it can be de-
composed completely and not only partially. Indeed, the components of u? can be
presented in the following form:

vj =TUj n+ a()j’U];g +a;v55,7=1,...,n
(3.1) Uo = ) g o;jlo;
u; = a;uj,j =1,...,n

Here v, 9,0, 0}, Uoj, Uj, j=1,...,n, are the solutions (respectively) of the following
independent problems P;, Pjo, Pj;, Poj, Pj :

7 (x9) = fi(x%), @ € (3,1 — )
5,

1(5) =0
v; (15 —4§)=0

(3.2) (P;)

T (z%) =0, 2% € (8,1; — ) U (a%) = 0, 2% € (8,1; - 9)

(Pjo) q Ujo0(0) =1 (Pjj) § ©33(0) =0
vjo(l; —6) =0 vl —0) =1
(3.3)
éﬂoj(x, y) =0, (z,y) € Q0) éﬂj(xay) =0, (z,y) € Q)
N Uosly =1, | wlhy =1
(Poj)  lojly, =0, if bk #jk=1,..,n  (P){ Uyl =0,
D, n ot , .
2. = 0 om IAONUGy 7)) =0, ondQ()\(7] U )
(3.4)

The boundary of the domain €. is smooth. Assume also that the following hypothesis
holds:

(H1) Domain £(0) and its symmetric reflection Q) (0) with respect to the segment
~i (for sufficiently large §/c) have the closures such that

foralli =1,...,n.
The same property takes place for any Q(¢) with respect to +;’, but this property
is not assumed: it is always satisfied for sufficiently large d/¢.
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Then using the extensions of problem (3.4) (Py;) to Q®(0), odd with respect
to v/, when ¢ # j, and odd for up; — 1, when ¢ = j, it is easy to see that wg; is
C?—smooth.

Indeed, consider the extended problem in Q(0) U Q®(0) U v): Adigjert = 0 in

Ot . . .
this domain, —2¢*X — ( for all boundary except for v (k # i) and their symmetric
ima, @

ges vy -
For i # j we set: qgj, wt| D = 0 for all k #£ j; ﬂod’exth/ =1 a07j,e$t|7{(i) =-—1.

For ¢ = j we set: g, eoct|'y’ =0 for all k # j; 1o;, Em| o = 2.

The uniqueness of the solution and its oddness for ¢ ;é ] (and oddness of G,z — 1
for i = j) with respect to 7, gives: tg,j, emt|7/ =0if i # j and doj, emt|7/ =1ifi=j.
So, it coincides with @g; on €2(0). On the other hand, @gj ez is smooth on the
branch B N Q(0) (see [1]), and so dy,; is also smooth there up to the boundary, and
consequently, everywhere in ©(0) (even in the corners!).

Finally, all functions vy, vj0, V5, Uoj, Uj, j=1,...,n, are smooth. Let us note that

T — (ZJ —6) ~

(P ) and ( ”) can be solved analytically. We have v;o(x%) = —5 o Ui (%) =
Y
e _§
9167 25 1 —vo(z%), x% € (6,l; — d). This last relation leads to consider
i —

Bi = aoj — a5 =1,...,n. So, (3.1) is equivalent to:

vy =T; + ﬂ]@o +oaj,j=1,...,n
(3.5) uo =350 L(ag + B5) — (an + Ba))loj + (an + Bn)
u; = a;u,j=1,...,n

Mention that Z?zl Ug; = 1, so that ug, =1 — Z;:ll oy -
It is easy to see that v;,u;,j = 1,...,n satisfy (2.2) if o, 85,5 = 1,...,n satisfy
the relations

n—1

L Do, 5
((cu +,3k)—(an+ﬁn))/ dry — —7.(5),
9 I; v on 20 — lj J
j=1..,n-1
(3.6) 5,
_7;9125—1 25_1 29” 7, ()
1oy Bi oo
a] e Jyr On @+ 20 — 1 ”j(la 0),j=1,..,n

obtained by writing the interface conditions between the 1D parts and the 2D parts
of the decomposed problem (the two last equations in (2.2)), and using

1 dug 1 Aug 12
WO =g | =522 ) o D=y 200
n n n j=1 J n j=1

- 8u
since Aug=0= E g
Q(0) iz
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Let us simplify the notations. Define first

1 Ok . 1 ou; .
ik = g2 —dv, j,k=1,..,n tj = ﬁ /,, —dy,j=1,..,n

jE€ 7; on ¥, on

We have faQ(j) ﬂj%d’y = / [Va,||? > 0, where ||.|| is the euclidian norm in IR
Q)

(u; is smooth, vanishes on ,5’]5 and is equal to 1 on 7, therefore / V|2 # 0).
Q)
We deduce

0t )
(3.7) /7{, 8—an7 =0et; >0,7=1,...,n
So, we just proved ¢; > 0, j = 1,...,n. Similarly one can get the inequalities r;; > 0,
7=1..n
Now, we divide the lines j=1,...,n-1 of (3.6) by rj;, and the lines j=n+1,...,2n by t,.
We obtain the following system (P, ) below:

n—1 Tjk B; 69(6) .
= @ +ﬁ an‘l’ﬁn = ,]:1,...,77,—].
= (00 6) = ))Tjj (20 =lj)ry; 1y
9]' —/
(B8) g, 25 Ze
4 B; _ _l(l —06)
a]—l-(%_lj)tj— tj ,i=1..n

3.2. Uniqueness of the solution to (P,) . Indeed, Y ;_, tior = 1, so that
Sr_imik =0,7 =1,...,n. Then the n-1 first equations of (P,) can be written

Z (ar + Br)rjx — 25’% =705(6),j =1,..,n— 1.
k=1 J

0;
Now, we remove from the n-th equation the sum of —= times each of the previous

ones, j=1,...,n-1. Denote (P’,) the new system, equlvalent to (Py). The n-th equation
of (P’4) reads:

n—1 n
25—1 ZZak-l-ﬁk —T]k—v(5)
j=1k=1
Mention that / NAug =0 = Z/ auo = Z Z(ak + Br)0jerjk. So, we get
j=1k=1
that (P’',) reads
n 0;ep; _
> k1 (o + Br)Ojerjr — —2(;_ ; =0;e7,(8),j =1,
(3.9) 0;¢0; , I ‘
Hjé’()éjtj + —— = —9]‘81)]»(1]' - 5),] =1,..,n

26 — 1,



ERROR ESTIMATE FOR THE MAPDD IMPLEMENTATION 9

Now, since [q, o) uoAuo =0 = — [o [Vuol? + Joa(0) uo 22 dry, we have
(3.10) Z/ uo—odfy Z a; + 55) Z g+ Br)0iersr >0
j=1 j=1 k=1

The system (P’,) is linear. Let us write this system in the form A'U = B’ with
= (81, ., By @1, ooy ). (Py) has a unique solution if and only if (P’,) has a

In In , a block

unique solution if and only if A/U =0=U =0. Let us set T = [ 0 I,

matrix, where I, is the identity n x n—matrix. We have
AU=0= (TU)TAU =0 = Z'; (o + 6J) Soneq (o + Br)bjer

N 0, 0,
— Yy + B)5 5@ +Z¢9 calt +Z myﬁ’

The estimates (3.10) and (3.7) prove that (TU)TA’U is a sum of positive terms
(l; =26 > 0 since § — 0 when ¢ — 0.) We deduce that each term of the sum is
zero, so that a; = §; = 0,57 = 1,...,n, that is to say U = 0. This proves that (P,)
has a unique solution.

4. Asymptotic solution of the Laplace equation in a truncated one
bundle tube structure. In this section, we obtain estimates of ug;, @;, j=1,...,1n,
thanks to an asymptotic expansion. We also give estimates for the first and second
derivatives. We conclude with estimates for «;, 55, j=1,...,n

4.1. Preliminary estimates. Consider solution of the problem (Py;),(3.4). The
domain 2(0) depends on two small parameters ¢ — 0, § — 0, where o= K |In(e) |,

K is a constant independent of £, § . It Wlll be specified later. Namely, we are going
to construct an asymptotic approximation u 7) of the solution of problem (POJ) of the

accuracy of order O(¢”), and constant K depends on this order J (see (4.5)).

Let dje be the minimal distance from the base of the cylinders B} to a parallel cross-
section o5 of B such that this cross-section does not contain points of other cylinders
(ie. 05N B; = 0, i# j). Consider function 6 € C*(IR™) such that 6(t) = 0 for
t < d, 9( ) =1 for t > 2d, where d = maz{d;,1 < j < n}. 6 is independent of
small parameters; define T;(£) = (&%) if € € Bf ; T;(§) = 0 if e€ & BS; €7 = xgb;
(z,y) = &

An asymptotic approximation U;

)4

is saught in the form of a linear function of the
local variable z¢ for every branch B; NQ(0) (i.e. u;‘]) : b
and completed by a boundary layer corrector U depending on the variable & and such
that U (&) — const as £}’ — +o0.

The linearity of uy) at the branches follows from the analysis [14] section 4.3.1, where
the dimensional reduction of the Laplace equation in a strip leads to the second order
ordinary differential equation

’U”( ) =0.

Thus, ug ) is saught in the form :

J :17 Yyp— x%
ul!) = ZAk< g,g)%l—?Tj(
k#j

= a;x%) multiplied by 6(| z

o8

,g)e);l + U

o8
M|

)) + 4

?
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where Ay are some constants, Uy; is a solution of the following problem set in an
unbounded domain
Qoo (0) = " H{QO)} U R, BY®

Ok Ok

Bgo = {(:va) S Bzaxek € (07 +OO)7yek € (_?7?)} :

§5ng£()§) = Fiij (), € € Qs0(0),
kj
=ho) -0 0),
(4.2) e 0 6 €90 (0)
Ug; — 0, §lej — 400,
lim,e; Urj = const(l), E€ B°, 1 #j

—+o0

where
" ! N— j

Fiy(§) = — (67 Tw(€)" 0, + (67 T5(9))

[0, € € By,
Tk(g) - { 0, ¢ g BISO
Let us remark that the right hand side of (4.1) doesn’t contain J explicitely. As we
will see below, J appears in the forthcoming estimates of the exponential decay of
Uk; and its derivatives, and so finally J will define K.
Mention that [q ) Fij(€)dé = =0, "0 + 05160, = 0.
It is known (see [9]) that there exist a unique set of constants ajx;, k # j,1 # 5, L,k €
{1,...,n} and a function Uy; satisfying the above problem and such that,

" Oj_l and T (&) is extended as follows :

(4.3) | Ukj — augy |< e
and
(44) | VeUy; |, | VgUkj |< Clje_c%ffl

at each branch Bf°,l € {1,...,n}, c15,¢2; > 0.
Here aj; = 0.
Determine K from the inequality

s J+1

4.5 .
(4.5) ~ maz{c;,1 < j < n}

This inequality yields:

1)
(4.6) if§ = Ke|In(e)| thene & <t

The constants A, k # j, are chosen in such a way that the boundary conditions at ~;
for ugJ) are satisfied with the accuracy O(¢”):

d e
Aj+ AiEOi Ty ZAkaikj =0, ifi#£j4,i€e{l,..,n},

(4.7) R
Aj = Akgej—l =1, ifi = j.



ERROR ESTIMATE FOR THE MAPDD IMPLEMENTATION 11

4]
Change the unknown A; to A; gej. Then the matrix of this linear system has a form

Am? | g,
€

where A B(™) are independent of ¢, ; A™ has all elements equal to zero except

for the j — th line, j — th column, and the diagonal. The diagonal is : (67!, ...,6;1),

the j — th line has all elements (except for number j)) equal to —9.7—1, and the j —th

column has all elements equal to 6 1 And Bz(,?) (1 —ds5)ain;-
Mention that A™ is inversible because det A = 9 ZZ 1 Hk;éﬁ_
Indeed, for any n > 3, let us permute the j — th hne with the first, and the j — th

column with the first one. Denote 0; = 0, if i # 1,j; 01 = 0; and §; = 61, and apply
the induction.

Then

det A(M) ) . )
. 10 0 . 0
=0, det| 1 0 @' .. 0
L0

" 1 1 —1 1

_9_11 _91 e _91 _91

. n ~ 0, 0 .. 0 0

=0, | (-1)*"0, det A®=D@; + (—1)"*+! det 0 8 .. 0 0

0 0 0.5, 0

-7, (515;1 det A1) (-1)n+l(—1)n(_§;1)§;1...§;i1)
=7 " det A1 4 a;ln;;—lla,;l

S (e v 11,6#9,@ + 510,

= 51_1 Zi:l HZ:l,k;éz‘gk

To initial}ze the ilnduction let us check that
det | O, M) =@ 6,0,
6, 0,

) )
So, det A > 0, and so, for - large enough, det (A(")g + B(")> > 0. Solving sys-

tem (4.7), we get the vector A= (A1, ..., Ax)T, such that (A(”)(S + B(”)> A= €,

where €; is the n-dimensional vector with the components equal to zero except for
the component number j, that is, equal to one.

. AN
Let us show that | Al = O <<E> ) (|I-ll2 is the euclidian norm). Indeed,

—

9 qm g = e —BMA,
A= S(AM)71g; — S(AW) T BO A,

- s — 15 ) — n T
142 < <A™ allE 2 + S (A™) 7 2l B 2| All2

and
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- e A(n) -1
L=< IA™) 2 BT 12

0 - 5 .
So, for - large enough, [|A|2 = O (%) Mention that o= K | In(e) |— 4o0.
Mention that the constructed asymptotic approximation (4.1) satisfies equation and
conditions (Py;) exactly, except for the boundary conditions at +: due to the prop-
erties (4.3), (4.4), and the choice of K satisfying (4.5), (4.6), they are satisfied up to
the terms of order O(e? T maz{Ax,1 <k <n} =0 (€J+1%) in the H'/2(~}) norm.

Extending these traces uth) |l from 7; to each Bf N Q(0) as

(4.8) Zk?éj Ay (Ukj (g, g) - aikj) (1 -0 <:cei€— 6)) ,if [ 2% — 0 < e,

0, 1f| ¢ — ) |2 g, (ajkj = 0)

we check directly that the difference W between ug-J) and this extension satisfies

(Py;) with the non-vanishing right hand side in the Laplace equation of order O(e”)
in H=1(Q(0)). Taking into consideration the Poincaré-Friedrichs inequality in ©(0)
(for functions of H'(€Q(0)) vanishing at U ;~/) with the constant independent of ¢, §
(see [14], Ch4, Appendix), we get the estimate (following the Lax-Milgram lemma):
| tioj — W || 20y = O(e7),

J -
and so, || u§ ) toj | 100y = O(e”). N
Remark 4.1. The same analysis for problems (P;), (3.4), gives an asymptotic ap-
proximation in the form

~(J) 7 e e z—0;
A  (22)

where A; is a constant, U; is a solution of the following problem set in an unbounded
domain Q. (j) = e~ {Q(j) — O;} U B3°, where

EOO = {(Iay) S Bzaie'j S (07 +OO)7:.Ier € ( 0] 0])} :

; 22

AeU;(8) = Fi(§), § € Qoold)s

oU;(§) W F
= 07 € aQOO ﬂ.v
(4.9) One § (1)\B;
U; |E]: 0,
limé;j 400 Uj = const.

Here §; = e~ {,5’]5 - Oj} JFj=— (flejH(ffj))”.

Zj is chosen from the conditions of vanishing of ﬂ;‘]) on Bj and ﬂ;J) =1lon 7;'/:
~ ) Y 1
i (‘ + lim Uf) ~Lie dj=5————=0(3).

€ ot -+ _lim U

€ éfj — 400
As for ug; we have : if 6 = Ke | In(e) | then | u; — ﬁ‘g") 100y = O(e7™).

Here K is chosen from the condition K > J

1
, where Cy; is such that
. 2j
| Uj —limge; Uy |< Cijem @7 and | VU; ||| V2U; |< Crjem @8
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4.2. Estimates for the second derivatives. Here we will improve the esti-
mates for ||U§J)—ﬂ0j||Hl and ||ﬂ§J)—ﬂj |71 and get the estimates for ||V(u§J) —ig;)|| Lo

and ||V2(u§»‘]) — @igj)| L= and finally ||Vig;||r and [|[V2dg;| e and the same esti-
mates for @;. As it was just mentioned above, the hypothesis (H1) is assumed and it
implies the smoothness of the exact solution. On the other hand, by construction, the
asymptotic solution ugJ) as well as function W are also the C?—smooth functions and
W can be extended to Q((0) in the same way as it was done for the exact solution
figj. So, the difference W — ig; in any extended domain Q(0) U Q®(0) U~/: satsfies
the Laplace equation with a small right hand side of order O(¢7/~1!). Then, applying
the Agmon-Douglis-Nirenberg estimates [1] to this difference ug; — W, we get the
following estimates:

IW — dio; || 3 (0)) = O(e”7?),

||u§J) — o] magagoy = O(e”7?),
and so,
IV @s” = o))l ¢y, = O ),
and
J) -~ -
192 (" = o)l gy = 0”7
And so, taking J > 4, we see that
Pl GO Y P N
||VU’0J||C(Q(0)) = ||Vuj ||C(Q(0))+O(5) = 0(55 )—0(5)a
2~ 2, (D — 5—2_i
IVl cmmy = IV20 o, +0E) = 0% =0(=).
The same calculations for u; give
Vi, ——01 V2, ——O1 =1
” u]”c(Q(j)) = (5) s ” U’J”C(Q(j)) = (5)’]— yeeey M.

4.3. Estimates for «;,5;, j=1,...,n. Let get the estimates for «;, 5;.
Rewrite (P,) in the form of a system AU = B with block matrices A, B defined

by
M C B1
A= D I, ,and B = [BQ

and B1, B2 are the n X 1—columns.

]. The matrices M,C, D are of dimension n x n
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Denote 6;, = 1if k= j and O else, j = 1,...,n, and define M = (Mjk)1<j k<n With

Tk J; e
Mj,=-"2 - —2 _ifjk=1,..,n—1
g (20 = 1)y
n—1
Tji oo .
(4.10) =— Lifj=1,.,n—1,k=n
2
(7 1

gy k= L

C= (Cjk)lﬁj,kgn with

Cir="2ifjk=1,...,n—1

Tjj

n—1
Tji .o .
(4.11) = — Lifj=1,.,n—1,k=n
27,
=0ifj=nk=1,...,n

D= (Djk)lgj,kgn with

4.12 D, =d;idi, j,k=1,... d; = =1,..
( ) ik j05ks J» y ooy Ty J (26—17)t77j sy eeey 10
Bl = (Blj)1§j§n and B2 = (B2j)1§j§n with

(6 " 0.
(4.13) B1; = J(H), j=1,..,n—1, and Blnzzeiﬁ;(d)

Rz i=1 "

v(l; — 6
(4.14) B2; = —%(;—),j =1,..,n
J

We still denote o = (ay, ...,a,) and BT = (B4, ..., Bn).

B MB+ Ca = Bl (M —CD)B =Bl —CB2
AU_B‘:’{DﬂJra:BQ {a:B2—D6
Present M — CD in the form M — CD = Ay + §A; where Ag = (Aojk)K]. p<n and
A = (Aljk)lgj,kgn defined by

Ao = 25 i j k=1,..,n—1
-

17
n—1
(4.15) =Y Difj=1,n-Lk=n
= T
0y 1
% L k=1,
en(26—lk)1] n, yeeey 10
05 Tik 1
SALk = — J - = ifj,k=1,..n—1
1k 26—y, 1y 20—t oot
n—lru 1
— _Jv — if7 = —_ —
(4.16) = (; Tjj) @it ifj=1,..n—1,k=n

=0ifj=nk=1,...,n
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1
We deduce from the above asymptotic analysis that r;;, = O <5> sk =1,...,n; we
prove that ri = O((5),tl =0(4),j=1,...,n. So Ay = 0(1),4; = O(1),B1 = O(1)
77 J
because of its n* component, and B2 = O(§). We have C = O(1), D = O(9).
Ag is a regular matrix. Indeed, if we add the n** column of the determinant of Ay,

to the sum of the previous ones, we obtain
1
no_ 2
2=t 0n 26 — 1

det(A()) =

I det(R) with R = Tik)q s .
T11722...Tp—1,n—1 (R) (r; )ISJ’kS"_l
Ag is a regular matrix if and only if R is regular too i.e., if and only if RX = 0 =
X =0. Set X7 = (21, ...,5_1), denote v = 22;11 TrUor and mention that v satisfies

the following problem

Av =0, onQ(0)

'U|,Y; = xj, ] = ]_, ey — 1’,U|’qu1 =0
4.17 ov N
(10 on 0, on 092(0)\(Uj_y 7;)

Iy iy =S apbiersr = 0,5 =1,.on — 1

Now, we have the identity:
Jog) v2v =0= = Jo IVo]|* + Joo0) vGedy, so
-1
fQ(o) [Vo]? = 2?21 fV; "Ug_:jld’Y = Z?:l T f,% g—:’ld’y =0

p 7
So, v is a constant function on Q(0), and necessarily we have X = 0.

This proves Ay is a regular matrix. Since ¢ tends to 0, we can assume [|§A45 4| < 1
and obtain the estimate for 5.

B=(Ag+0A1)" (B1—-CB2)= (I, + 6A;'A;) ' A; ' (B1 — C B2)

= (X (—1)Fe%(Ag 1 Ar)F) Ay (B1 — C B2). We conclude that

o0 _ _ 1
1811 < (2o 0% 145 Av[[*) |45 (B1 — C B2)| <

—  _||A;}(B1-CB2
So 8 =0(1) but « = B2 — D = O(4).

5. Numerical scheme. In this section we solve (P;), j=1,...,n, by a 1D-finite
volume method, solve (150.7) and (15]-), j=1,...n, by a 2D-finite volume method, and
finally solve the algebraic system (3.8).

The finite volume method is often applied to obtain solution of some elliptic
and parabolic problems [19]. Though the method was first apply to solve hyperbolic
equations, corresponding to some conservation laws (see for instance [18]).

In [22], the author presents a general framework to discretize elliptic problems by
applying two different finite volume schemes in two different subdomains. In [23], the
authors study asymptotic model of fracture flow in a bidimensionnel porous medium :
the fractures are reduced to sharp interfaces when the fracture aperture goes to zero,
and the model finally consists in a coupling between a 2D elliptic problem and a 1D
equation on the sharp interfaces. This approach differs from the MAPDD because it
studies the problem obtained after some complete dimensional reduction, while the
MAPDD ”makes a zoom” at the boundary layer zones.

5.1. Numerical approximation of (P;). In order to compute a numerical
approximation ;7 of 7;, let us define a mesh of the interval (J,{; — J) on the axis
Oz%,j =1, ...,n. For each value of j=1,...,n, we choose N; € IN*, and N, + 1 distinct
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and increasing values ﬂcz+1/2, =0,...,,N;, such that a:i’/Q =9, a:je\’,'jJrl/Q =1l; — . De-
), and hy’ =z} Nj.

i €5 .
note ;7 = (z i—1/2’xi+1/2 12~ Tl =1
Set h¢ =maz(h;’,i = 1,...,N;) the step of the mesh.
Then we choose N points z;’,i = 1,..., N;, such that 2}’ € I;”. Set 25’ =6, x?\’,'ﬁl =

—0. hzfl—l/Z

Con81der the finite volume 1D scheme for problem (I_Dj), j=1,....,n. This scheme is
obtained by the integrating o/ = f; on each cell I;”,i = 1, ..., N;. The numerical flux

— % € 5 _ .
rhq — 2,1 =0,...,Nj.

Fiy1/2 is an approximation of 53(90511 /2) of finite difference type; v;; is an approxi-
mation of v;(z;’),i = 0,..., N; + 1. This yields

Fit12— Fi 1/2—h f7i=1,...,N;
T v . _ _
Fii1/2 = %, 1=0,.. -,Nj;vj,o =75 N;+1 =0,
(5.1) (Sle) i+1/2
) 1 ziil/? )
fie-7 =5 |, filx)dr ,i=1,...,N;
¢ xiil/2

If W is a piecewise constant function, that is W (2% ) = W, , 2% € I’

Nl w2
., INj, then we will denote by ||W||;,7 = E (WHé W) —|— -
’ h,” h a2
i—1 i+1/2 1/2 N 12

that can be seen as a discrete norm in Hg (6,1, — 6).

Denote by ||.|| £2(s,1,—s) the discrete norm in L?(6,1;,—6), i.e., |[W{|L2(5,1,—6) = (Z h W2

i=1
Define ;7 (2%) = vj,2% € If'j ;i =1,...,N;, and the error g7 by €;7(z%) =
vj(x) —v;4,2% €17, i=1,...,Nj.
In [19] the estimate [[€;7];,7 < ¢; he7 is proved, and it implies

(52) HEJ — ﬁjT”Lz(é,lj—é) S thej ,j = 1, ey ny

where Cj is a constant independent of ¢ and .

5.2. Numerical approximation of (Py;) and (P;). Let us construct an ad-
missible mesh 7; over €(j), j=0,...,n. Remind that such mesh consists of subsets K
(called control volumes) such that either K is a polygonal domain of IR? | or it is an
intersection of a polygonal domain and Q(j) (such control volumes are situated near
the curved part of the boundary).

Let £ be the family of edges o of the control volumes, and P be a family of points
T chosen in each control volume K.

)2.



ERROR ESTIMATE FOR THE MAPDD IMPLEMENTATION 17

T; satisfies the following properties

1) the closure of the union of all the control volumes is (7).

2) for any K € 7; , there exists a subset Ex of £ such that

0K = |J 7 and |J éx=¢.

oefk KeT;

3)V(K,L) € ’7;2 , K # L, one of three following assertions holds:

either K N L is the empty set, or X N L is a common vertex of K and L,
(5.3) or KNL isacommon edge of K and L denoted by ox/r.

4) Let P = (zk)keT,. We assume zg € K, for any K € T;.

V(K,L)eT?, if K # L, thenzk # x1, and the straight line going

through = x and zis orthogonal to ok /.

5)Vo € &, if o CON(j) , 0 € Ex and xk ¢ o, then the orthogonal

projection of zx on the straight line containing the edge o, belongs to

this edge o

Denote by Einy = {0 € £,0 ¢ 9Q(j)}. Denote by d, the distance between zx and zp,
if o = okyp, for any (K, L) € 7}2 (K # L) , and d, stands for the distance between
zx and o, if 0 € Ek and if o C OQ(j), for any K € T;.

Let m(K) be the area of K, for any K € 7T;.

Let m(o) be the length of o, for any o € £.

Let h; be the size of the mesh 7;. Moreover, we assume

(5.4) 3¢ >0,Vje{l,..,n}, Vo Cnj, de > Cho and Vo C v, dy > Chy

where ( is independant of h;, j € {0,...,n}.

Consider first Fy;,7 = 1,...,n and a numerical approximation ug;7 of up;. As in
the 1D case, the finite volume scheme is obtained by integrating the first equation
Atg; = 0 over each control volume K € Ty and by approximating the fluxes by
corresponding differential quotients. Let tg;x be an approximation of @y;(zk), K €
To. Then for instance, the flux F , through the edge oy, from the cell K to the
8&0]' ’I’I’L(O’ )

on

cell L, will be approximated as follows: /

OK/L

dy = (wojr. — Uojk ). Here

m(c) is the length of o.
A 2D - finite volume scheme with the unknown function tug;7 can be defined by
the following set of equations:

Y Fro=0,YKeTp

o€fK
m(o) - - .

Fro = éa) (o1, — tojK ), Vo € Eipu, if 0 = OK/L

: D2 7 _
(5:5) (50iD2) Frko, = md(o) (1 —gjk),VYo C v}, 0 € Ek
m(o), - .

- d( )(—UOjK),VO'C")/]/c, k#j, 0€&k
=0, Vo C 9Q(0)\(Uj_y 7}), 0 € &k

The flux Fk , is an auxiliary unknown, and after its elimination, we obtain a linear
system with as many unknowns as equations (card(7p)).
We define w7 (z,y) = tojk, (z,y) € K, K € To,j=1,...,n.
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Remark 5.1. Denote D =1 — Z?Zl toj7 and Dg =1 — Z;'l=1 tojx, K € To. D

satisfies

> Fro=0,YKeT

o€EEK
(5.6) Frg o, = md(o) (D — Dp), Vo € Einy, ifo =0k,
Fr o= %DK, if o C(Uj_17}), 0 €€k, and O else

Let us take the sum for K € 7y and reorder the summation over the set of edges, that
gives

Y Y Feobe=0= Y "Dpeopypy Y Mp

KeTooelk 0=0k/LEEint oC(Ur_; 75)

So, Di = 0,VK € 7o, that is to say Z?=1 ugjT = 1.

Now consider problem 13].’ j = 1,...,n and consider a numerical approximation
u;r of u;. Integrate the first equation Au; = 0 over each control volume K € T;
and approximate the fluxes by difference quotients as above. Denote by u,;x an
approximation of 4;(zk), K € 7;. The finite volume scheme is given below.

Z FK,O':O7 VKGT]
o€l
FK,o— = m(a) (ﬁ]L - a]K)v Vo € g’intv ifo= UK/L
(5.7) (SjD2) Fro = md(”) (1—u;k),Yo Cf , o€k
- md(a) (—iijx), Vo C B5, 0 € Ex
—0, Vo COQ)\(v) U B5), o € Ex

Define u;r(z,y) = Uk, (z,y) e K, K€ T;,5=1,...,n.

We study the error estimates for 130j and Jgj, 7 =1,...,n, in section 6.

5.3. Numerical approximation of u¢. We consider an approximate value of

’U,d, solution of (22) defined by u%l—(:c,y) _ { UjT(x, y) ) (SC,?/) € Q(])’J =0,...,n

viT(2%) , (w,y) € B, % € (0,15 —0),j =1

with

UiT = U5 -l-lﬁﬂ'@‘o +a;r,j=1,...,n
(5.8) uor = 2252 (a7 + Bi7) — (QnT + But)) UojT + AnT + Bat
UjT = ajTﬂjT,j = ]., N
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where (517, .., BnT, Q1T .-y Q) 18 solution of the system

n—1

1 m(o -
0 Z T + i) = (AT + BaT)) D dL)(f%k — UokK)

9 k=1 cEEK 7

oC;j
BiT Uil
—2511‘:”{—]_1,3:1, ,n—1
(5.9) (Sa) U
DA B L - A
= 0,20 -1 L 0n kY,

1 m(o) - BiT Uj N,
T Q5T —(].—U]K)+ = €; 73_17‘ , 1
0]‘8 UGZgK do— 25 — lj th+1/2

aCy

Let us prove that (S,) has a single solution.

19

We first write the system in a more symmetric way using ug,7 = 1 — Z;:l Ug;T

(Remark 5.1).
So that ugyr = Z?zl (a7 + BijT)) UozT -

It is easy to see that ugy is solution of

Y Fro,=0,YKeTp
o€fK
FKU_ ) VO’Egint, ifO':O'K/L
(5.10) =1
Fr. m(Za +8 —Uojk), Vo CHf, o €EE
d 3T ]T 05K )y » Yk > K
o j=1
=0, Vo C OU0)\(UI_y 7)), 0 € &

Using the above expression of Fi , in Z Z Fr , =0 we get

KeTooelk
SO okt +Ber) Y 7 (Ojk — tokx) = 0.
J=lk=1 o€k 7

oCY;

This yields the system (S7,)) below, equivalent to (Sg).
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n m(o) ~ BiT0;e
Zk:l (ak:'T + ﬂkT) Z T((sjk — uOk:K) — m
o€lK
oC;j
Vj1 .
(5.11)S’a){ = héj 02,5 =1,.n
1/2 ) 6 9 B
m\o ~ iTU € UFAG .
CLDY d( (=) + 55— = o —05ed = Ln
oEEK 7 - N;+1/2
oCyy

Denote uox = Y5y (a7 + Bj7)) Uojrc, K € To.
Using the expression (5.10) for Fi , and taking into account that

> Y Froux =0

KeTooe€lk

=— X magj) (wor — uox)” + Z > md(;r) (a7 + Bj7) — wok)) uox
0=0k/LEEint J=loCH!

We deduce

(5.12) S5 ™9 (agr + Byr) — wow)) (agr + Byr) > 0

d
j=locv; 7

Then applying the maximum principle for solution u;7 (5.7) to problem (SjD2) we
prove that Vj = 1,...,n, VK € To, 0 < u;x < 1. This yields

(5.13) 3 md(a) (1—x)>0,j=1,...,n

a

o€EEK
oCyy

Mention that (S,) is a linear system of the form A%-Ur = B/ with UF = (817, ..., Bu7, 0175 ovy Q7).
(S4) has a unique solution if and only if (5',) has a unique solution, i.e. if and only
if ALUr =0 = Ur = 0. We set again T' = [ % ‘jr—" ]
n
UT =0= (TUT)TA'TUT =0
m(o)
= Y17 + B7) X (kT + BiT) Y djk — UokK )

oc€EK
O'C’Y;

0
Sy + T I +Z R L AT

o€lk

O'C’Yj
Ojca
+Z] 1 ]Tf}JT 0
J
Estimates (5.12) and (5.13) prove that (I'U7)" A%-Ur is a sum of non-negative terms,
and so, all these terms are equal to zero: a7 = B;7 = 0,7 = 1,...,n, that is to say
Ur = 0. This proves that (S,) has a unique solution.
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5.4. Hybrid equivalent numerical scheme for the solution of the par-
tially decomposed problem. In the previous sections we have constructed the nu-
merical finite volume scheme for every auxiliary problem (SjD1),SjD2),(S0jD2) and
(S4) and then constructed the approximate solution according to formula (3.1), while
one can discretize directly the partially decomposed problem (2.2). Such discretiza-
tion will be constructed in the present section. It is equivalent to the separate and
independent discretization of the auxiliary problems and the combination of their
solution by (3.1).

Introduce the following notations for the values of ;7 and v;r :

’U’]T(xvy) = UjK, (.’L’, y) %_Kere T]v] = 07 ey 1
v (2%) = vy, 2% € (xiil/Q,xiil/Q),i =1,.,N;,j=1,..,n.

Here ujk is an approximation of u;(zk), K € T;,7 = 0,...,n; and vj;; is an approxi-
mation of v;(x;),i =0,...,N; + 1,5 = 1,..., n, satisfying

Fliyyg=F p=09f7 i=1.,N;j=1..n
Flly= w i=0,...,Njj=1,..n
i+1/2
o 1 w:iuz
fiJ:T/v file)dr, i=1,...,N;,j=1,..,n
hei x?il/z
> Fl,=0,YKeT;,j=0,.n
oc€€fK
J m(o) . .
Fy o, = 7 (ujr — ujk), Vo € Eint , if o =0g/1,j =0,...,n
o2
m(o )
FO —d( )(’Uj()—’LL()K) ,VO‘C’Y;, ce€lk,j=1,..,n
K,o o
50 0 Vor C ORON(Uja)
m(o .
%(Uj,Nj_Fl —ujk) Vo Cvi,0€&k,j=1,.,n
j_ ¢ R
Fio = %(—uﬂ() Vo CB5, 0 €&k, j=1,...,n
0 ) Vo < 0\ (v U B5)
Vi1 — V50 1 m\o .
Jhe% = 9_ Z d (”jO - UOK)’j = 17"'7”
1/2 i€ o
og€fK
oCY;
Uj,N;j+1 — Uj,N; 1 m(o) :
Jhej—] = —% Z d—(’l}j’Nj_H — UjK),j =1,...,n
Nj+1/2 ’ o€k
oCvf

Mention that this numerical scheme (5.14) is equivalent to the scheme constructed
in the previous sections, where the solution has been compiled with help of the aux-
iliary problems, i.e.,
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_ ~ e; ~ e; _ ~ e;
Vi = Vji + a0y Uj0(x,”) + ayrvs5(;”) = Uje + Birvjo(z,’) + oy,
i=0,...,Nj+1,j=1,..,n

n n—1
5.15 - -
( ) UK = ZQOjTUOjK = Z(aojT — QT )UK + ConT
=1 j=1

UjK = OéjTﬂjK,K S 73,] =1,...,n

where ag;7 = a;7 + B7, j=1,...,n.

6. Error estimate. The goal of the section is an error estimate for |u? —
u‘%—” r2(0.)- Let us express this norm in the following way

n n
d_ ,dj2 2 7
lu? = |, = D llus = wirllTaey + D Oillvs = 07l
=0 j=1

and get an estimate for it using (3.5) (or (3.1) ) and (5.8). To this end let us evaluate
195 = jrllL2.,-8)> 15 — Wirll2ee)), to; — Uo7l L2(00)); then | oy — a7 |, and
finally, | B; — B57 |, L.e. | 2w — a7 |5 j=1,...,0.

Denote h = max(h;,j =0,...,n;h%,j =1,...,n).

Assume that % —0ase—>0and h — 0, ie. that
(6.1) h—o(i) (c = 0)
’ — \ine/’ ’

6.1. Error estimate for (S0jD2) and (SjD2). Consider problems Py; and
P,j=1,..,n.

Apply the discrete maximum principle, satisfied by the scheme, in order to per-
form the error estimate (see [15]). It gives |[uojT| =) < 1,5 = 1,...,n, and,
w7l Lo (@) < 1,5 = 1,...,n. We deduce that

(6.2) oyl 20wy = O(Ved), |urlreyy = O(Ved), j=1,..n

First, let us obtain an error estimate (as in [19]) for (SjD2). Define the spaces
H={ve Hl(Q(j)),vLy,_,UBAE_ =0},j=1,...,n, and the associated discrete norms.

For any piecewise constant fonction W defined on Q(j) such that W (z,y) = Wk, (z,y) €
/

1/2
K, K € T;, denote |[W||2(q(;)) = (Z m(K)W%) and
KeT

1/2

mio mio
Wlar=| ¥ "oy —were Y 2wz
0=0k /1 EEint 7 cCEx 7

UCW;’UB]E-
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~ " 1
From the asymptotic analysis of P;, we see that ||VQUj||Loo(Q(j)) =0 <5_6>

The consistency error of the flux is defined by

1 O .
(6.3) Rk, = (o) </a a—nd’Y - FK,U>

for all ¢ € €k and for all K € 7;. Here Fj; , is the expression obtained from (5.7)
replacing u;x by u;(zk).

h;

So, the order of Rk s is hy X || V2| o)), and so |Rk o] = 0(5)

Writing the flux balance for any K € 7;, we get :

(6.4) > /%d’y— > Fro=0

o€EK VT o€€K

Define ej7, a function from €(j) to IR, constant over each control volume : e;r(x,y) =
ek, (x,y) € K, with e;x = u;(zx) — U;xk, for all K € 7;.

Then one can write (6.4) in terms of Rk, and e;x. Multiply this last equation
by e;jkx. Taking the sum of all equations for K € 7;, reorder the summation over
the set of edges and use the Cauchy-Schwarz-Bunyakovskii inequality. This yields

h
llej7 || e m = O —%) . Then applying the discrete version of the Poincaré inequality
€

[15] we get [lejT|[L2(;) = O(hy)-
To conclude, let us write u; — u;7 in terms of e;7. The bound of the first derivatives

of u; is O (%) and so,

(65) ”ﬂJ - ﬂjT”LQ(Qj) = O(hj)»J =1,.,n

Now, we are going to obtain an error estimate for (S0jD2) in the same manner.
For any piecewise constant function W defined on Q(0) and such that W(x,y) =
Wk, (z,y) € K, K € Ty, denote

1/2
m\o ~ m\o
Wier=| Y " wer ey S Mg
0=0k,EEint g k=1 cEEK g
oCp

Define as above eg;7, the function from 2(0) to IR, constant over each control volume
:eoiT(x,Y) = eojk, (T,y) € K, with egjx = toj(zk) — Uojk, for all K € To.

h
As above, we prove that ||eg;7 | m7 = O (—%) . Applyig again the discrete version

of the Poincaré inequality we get |eo;7||L2(0(¢j)) = O(ho), and so,

(6.6) ||ﬂ0j — ’IAJ()jTHL2(Q(O)) = O(ho),] = 1, ey
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6.2. Estimate for | o; — a;7 | and | 3; — B;7 |, j=1,...,n. Consider system
(3.8) rewritten in the form of the system AU = B, where A, B are the block matrices
defined in Section 4.3 and UT = (31, ..., Bn, @1, ..., ) . This system is approximated
by (5.9) (Sa):

A7Ur = Bt
where U = (B17, .. BT @17, -o; 7). Let us evaluate ||U — Ur||. In Section 4.3
matrix A was presented in the form A = MoC , and B = Bl . Here
D I, B2
we do the same with respect to A7 and By; they are the block matrices defined

by A+ = [ ]\;‘;T g;: ], and Br = [ g;: ] The matrices M+, Cy,D,G+ have

dimension n x n and the vectors Bls, B2+ have dimension n x 1.
Define M7 = (M7;jk), < <> Where

Mjk djk .
Mpjp=—"2— —2"  _ifjk=1,..,n—1
T (20— 1)y
n—1
(6.7) =S =1 Lk=n
i1 19
o 1

= —7.fb: k:]. ee
on(26—lk)l .7 n7 ? 7n’

1 m(o ~ .
mjk:% Z d(a)((sjk_uokK)vjakzlv7n_17

o€k
aC;

Cr = <CTjk)1§j,k§n with

Crje = 2k ifj e =1,..,n—1
Tjj
n—17nu
(6.8) = - Pifj=1,..n—1,k=n
> -
i=1 '

=0ifj=n,k=1,...,n

G7 = (GTjk)1<j p<n> Where

(6.9) Grijk = %(%k, 3 k=1..,n,
J
1 m(o) ~
= 7 1-— ) = 17 9 Iy
g] 0]‘5 Z da‘ ( U]K) J n
o€EK
oCvy

Blr = (Bl7j) <<, and B27 = (B27;), <, Where

n
; 0; Ui
; ,Jj=1.,n—-1, andBln:E — =
h)aTis 22§, 1S,

(6.10) Bly; = —222
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Uj,N;

hY

(6.11) B2r; =

,i=1..n

We have Ar(Ur —U) + (A7 — A)U = Br — B.
Mr—M Cr-C

0 Gr—1,
(the nt" line is always zero). Let us evaluate the order of size of |My — M]|| and
|G — I,]|. We have

Let us mention that A7 — A = , with M — M = Cy —C

mjk — Tjk

Mrpjp — My, = =22 22 it jk=1,..,n—1
Tjj
(6.12) =-y L —Lifj=1,..n-Lk=n
e
i=1 3

=0ifj=n,k=1,...,n

(6.13) Grjk — Injk = 9 ; Lok, Jk=1,..,n,

J

These two quantities are of the same order. Let us study for instance just the order
of the second one.

1 m(o) - o0u;
gj—th@ > T(l—ujx)—/wa—njd’y

o€EEK
oCyf
1 m(o) ~ ou;
;e Z ( dy (=) /0 on dﬁy)
o€EK
oCy
1 m(o) ~ ou; 1 m(o)
- 1 — s _ | ZZig il .
0]‘5 Z ( da_ ( U](fI}K)) /o- an 7) + 0]8 Z da. e]K
o€EK o€k
aCy oCry
1 1 m(o)
= — — R o B e
9]‘5 Z ( m(U) K ) + 9‘7'5 Z da‘ €K
oc€€K oc€€K
aCy oCy

where Ri, has been defined in (6.3) and e;x just few lines below (6.3). So the first
hs

term of the sum is O (j) Let us study the second term. The Cauchy-Schwarz-

Bunyakovskii inequality and (5.4) yield

1/2
<

1 m(o) 1 m(o) T
_ . < — e .
0;¢ Z d. EiK| = 9j€||6JT||H,T Z d. Chjeje”eﬂ”H’T

1"
cEEK oCY;
O'C’Y;/
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We have seen in Section 6.1 that |le;7| #,7 = O (h—]> . So the second term of the
Ved
sum is of order O (1 &> .
eV o
1 ; Vhjd
Since ol 0(0), we have | Gk — Inji |= O(h?]) +0 ( 5] ), and in the same
J
h Vhod
way | Mg, — My |= O(2) +0 < - )

We conclude from above that | M7 — M| and ||G1 — I, || are O(g) +0 (@)

Denote ok = (ay7,...,an7) and BE = (Bi7, ..., Bn1). We have

Ar(Ur -U)+ (Ar — A)U =By —B
o | M7r(Br —P)+ Crlar —a) = Bly — Bl — (M7 — M)(a + ) = Rl
D(Br — B) + Gr(ar —a) = B2 — B2 — (G1 — I)a = R2,
where R1 and R2 are the right hand sides. G is a regular matrix. Indeed, G+ =

h Vhé

I,,+G7—1I, and due to condition (6.1) - and — tend to zero, and so |Gr—1I,| <1

as h, e tend to zero.

Let us write G+ — I, in the form G+ — I, = gAg + Th(sAg, where the matrices As
and Az are O(1). So G+' = 3202 ((—1)* (gAg + ?h(SAs) = In + R, where R is a

h Vhé

matrix satisfying ||R| = O(E) +0 (T) Of course, |G| = O(1).

The previous system can be so written in the form

(6.14) { (M7 — CrGF'D)(Br — B) = R — CrG7' R2

ar —a =G R2— G'D(Br — B)

Consider now R1 and R2. We have, for instance, for j=1,...,n-1

_ Vj1
r51(Blr — Bl);| = [5(8) — &

1/2
- €j . 5 .
< 52(5) _ Uj(xlh)ej ’U]( ) + |};Jj1| _ O(\/E)
1/2 1/2

This proves that |(Bl7 — B1);| = O(6v/h), j=1,...,n-1. But |(Bl7 — B1),| = O(/h).
So that || Bl7—B1|| = O(v/h). In the same manner, we obtain || B27—B2|| = O(6v/h).

We deduce: R1 = O(vh) + O(g) + 0 (@) and R2 = O(6v/h) + O(h?(s) +
o(+4)

Now, let us return to equation (6.14). Matrix My — C’7—G7_—1D is regular. Indeed,
we have
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Mr - CrG7'D = (M7 — M)+ M — (Cr — C+ C)G+'D

— M —CD + (Mg — M) — (Cr — C)G7'D — CRD = Ay + 64, + §A4+ @As,

where A4 and A5 are O(1), and Ag, A; have been defined in (4.15) and (4.16). Since
Ay is regular, with (6.1), we conclude that My — C’TG}lD is regular. And so,

k
_ ~ _ h o _ Vhé _
(M7 —C7G'D)™! = (zkzo(—uk <5A0 YA+ —4g A+ —4 1A5> ) Ayl =
Agt+V

where V' is a matrix such that ||V] = O(0) + O(g) +0 (@) This yields that

Br — B = (A" + V)(RL — C7G7' R2) has the same order than R1 so that

167~ 8l = O(/R) + O(2) + 0 (@) -0 <@>

[

and we conclude

lar — al| = O(VR) + O(h;) +0 <5m> -0 (5@)

€
6.3. Error estimate : the main result. Consider once more the norm

n n
d_,d|2 2 i
!~ w20y = D s = usr s +& D 03llos = 7 l3acsa,-s)
=0 j=1
Consider ag; and agjr, j = 1,...,n. We see that | ao; —aoj7 [=[ a;j+8— a7 —B;7 |=

Vhé

O] So. luo — uorlr2(00)) < > lawsll[do; — Tos7ll 200y + =1 lo; —

o7 || @07 L2 (20))

h
and [Jug — uoT||L2(0(0)) = O (\/;5>

Then, for j = 1,...,n, we have
luj —wiTllzzu)) < logllli; — irlleeoiy) + oy — airlllagr e i) -

So, we deduce that |u; —ujr| L2(0@) = O (\/§52>.

Then, for j=1,...,n, we have

[vj = viTllLei;—6) < 105 =057l L2(s.0;—6) + 185 — BiTlIIVjoll 26,1, —s) + vy — 7| and
vV hé

we deduce that ||v; — vjr|£2(s,,-5) = O (—)

€

Finally, we have

h hé hé
d_ ,d 2 _ 2 _
|E% —u7-||L2(QE)—O <E5 ) +€O<€2> —()<6>.

ie.,

ho
lu? = uf | r2o.) = O ( ?) '
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So we have the following

THEOREM 6.1. Let K be a positive number. There exists K independent of ¢ and
. h|l
h, such that, if 6 = Kel|ln(e)| and hiin(e)| tends to zero, then the approximate finite
€

volume solution u%l- of the partially decomposed problem converges to the solution of
the Poisson equation u. set in a thin finite rod structure Q., as the mesh step h and
€ tend to zero. The estimate holds:

hé
(6.15) e — w200y = 0(\/?)+0(6K)
Remark 6.1. ||’LL6 — uc7l'||L2(QE) = O(\/g) because h?(s _ O( hllz(€)|\/g)
and w tends to zero.

7. Numerical experiment. Consider the domain

2
- _E 5 ueE s 2, .25
Qe = (0,1) x (~5,5)U (=5,5) x (0,) U{a® +3° < 7}
9 ., €2 ¢ €
U{(z —e)* 4+ (y—¢) > g << §<y<.€},

represented in the Figure 7.1. It differs from the defined earlier because it is not
smoothened in the neighborhoods of the points O1 = (1,0) and Oy = (0,1). It mens
that the domains w; and ws are removed from Qe; Here according to the introduced
notations, n = 2, 01 =60y = 1, 11 =lo =1, ={r =1, y € (—5,5)}, and
Po={y=1 z€(-5,5}

Consider problem (2.1) set in this domain with the right hand side

1080(3z —2) ifz>0.5
(7.1) fla,y) =< 1080(3y—2) ify>05
0 else

In this case the exact solution is known and is equal to
540(x® — 22%) + 13552 — 1) if x > 0.5
ue(z,y) = 540(y> — 29%) +135(5y — 1) if y > 0.5
0 else
In the Figure 7.1, we represent the approximate solution u.7 of u. obtained with
the standard 2D finite volume scheme [19] for the Laplace equation. The mesh is a
classical admissible triangular mesh, the size of the mesh is A = 0.025.

The partially decomposed problem is the associated 1D-2D hybrid problem set
in the domain obtained by the truncation of Q. at x = § and y = §. We choose
¢ = § = 0.2. Compare the results obtained by application of the 1D-2D correspond-
ing finite volume scheme which gives an approximation for u?, with the exact solution
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’ D fnite volume sol

. Y . 2D finite volume solution

1
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Fi1G. 7.1. The initial domain and finite volume solution with h=0.025

a) orror versus h . ) error versus epsilon . ©) one branch

10" E|
€

*n

(A=

107 , 107 n 107" n
107 107% 10” 107 10° 10° 107 10° 10°

-€

Fi1a. 7.2. Error between the 1D-2D approximate solution and the exact solution a) as a function
of h b) as a function of € ¢) and d) special case one branch

of (2.1). This last scheme is constructed with the same admissible mesh as above for
the 2D-region (z < 0,y < §), and by using a regular 1D-finite volume scheme with
a 1D-mesh of the same size when x > § or y > §. Denote T the described 1D-2D
mesh. The 1D-2D approximation is denoted as usual u%—, where u%— => KkeT u%—Kl K
and u%—K = ug if K is in the 2D-region, and u%—K = ;3,7 € {1,2}, if ¢ is such that
TK € If’. Denote u$ =3 g Ue(Tr)1k.

In the figure 7.2 a) (curve marked with squares), we give the error Hu%l— — US—H L2(0)
as a function of the mesh size h, for a family of admissible meshes. The mesh step h
is taken equal to 0.1 (coarse grid), 0.05, 0.025, 0.0125 and finally 0.00625 (fine grid).
The slope of the line gives the order of convergence versus h of the 1D-2D scheme
(logarithmic scale). The order is slightly below h? (the slope is 1.9996) in L? norm.
This superconvergence is classically observed for finite volume schemes in 2D for the
Laplace equation [4]. We observe the same order of convergence for the 1D-2D hybrid
finite volume scheme.

The numerical order of convergence is often better than the theoretical one. For
finite volume schemes in 2D, with an admissible mesh, for the Laplace equation, a
first-order convergence is proved [19]. The observed numerical superconvergence (see
the figure 7.2 a) may come from the regularity of the solution. To have more elements
to answer this question, we solve the problem (2.1) associated to another functions as
the right hand side f. In these cases, the exact solution being unknown, we compare
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the approximate solution computed with a size of the mesh h with the approximate one
computed with a size of the mesh h/2. Doing so, of course, we obtain again a second
order convergence if f is given by (7.1). But we no longer observe superconvergence,
for instance, for the following test cases, (respectively cases 2, 3, and 4):

10°sin(z — 0.3)(z — 0.7)% if 0.3<2>0.7
(7.2) f(@,y) =< 10%sin(y — 0.5)(y — 0.9) if 0.5 <z >0.9
0 else

10%sin(z — 0.2)(x — 0.7)* if 0.2 <z >0.7
(7.3) f(@,y) =4 10°sin(y —0.5)(y —0.9)* if 0.5 <z >0.9
0 else

10%sin(z — 0.2)(x — 0.7)" if 0.2 <z > 0.7
(7.4) flz,y) =< 108sin(y — 0.5)(y —0.9)7 if 0.5 < x> 0.9
0 else

In the figure 7.3, on the right, we show the convergence order obtained in these four
cases (the first case is (7.1)). The dashed line stands for the case 1, ¢ for the case
2, % case 3 and + case 4. We give in the table 7.1 the slopes step by step. We
conclude, according to the examples, the order may be just one. This result is in
better adequation with the theoretical prevision for the convergence rate.

h/2 and h casel | case2 | case3 | cased
0.05 and 0.1 - - - -
0.025 and 0.05 2.0846 | 1.9965 | 1.9578 | 1.7906
0.0125 and 0.025 | 2.0204 | 1.6515 | 1.0236 | 1.4873
0.00625 and 0.0125 | 2.0120 | 1.2633 | 1.3428 | 2.5784

TABLE 7.1
Convergence rate of the 1D-2D finite volume scheme in four cases.

In the figure 7.2 b), the error Hu‘%— — u%—H £2(0.) is presented for a family of admis-

sible meshes of the same mesh size h = 0.005 as a function of ¢ (¢ takes the values
: 0.05,0.08,0.1,0.2,0.3). Some shapes of domain ). are shown on the figure 7.3.
Here, the 1D-2D scheme approximates the associated 1D-2D hybrid problem set in
the domain obtained by the truncation of Q. with § = ¢ | In(¢) |. As above the slope
of the line in the Figure 7.2 b) gives the order of convergence of the 1D-2D scheme
versus €. The order of convergence is £€%-°?87 in the L? norm, and it corresponds to
the theoretical result.

In the Figure 7.2 c¢) and d), the order of convergence of the 1D-2D scheme versus
¢ is presented in the case of one branch (a channel-like domain €2, see [15]) . The
order of convergence is 0.5170 in the L? norm and it corresponds to the theoretical

prediction of order O(\/gé), proved in [15]. We observe that the error is of the same

order independently of the number of branchs of .. However, this observation is not
yet confirmed theoretically.
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Fic. 7.3. Domain Q< with e = 0.05,0.1,0.2. Convergence order for tests case 2 ¢, 3 x, 4 +.

€ 0.2 0.2 0.2 0.2 0.05 0.2
1) 0.2 0.2 0.2 0.2 0.15 0.32
h 0.1 0.025 | 0.0125 | 0.00625 | 0.005 0.005
L?>norm | 0.1653 | 0.0151 | 0.0099 | 0.0042 | 0.0043 | 0.0013
TABLE 7.2

Relative error in L2 norm between the 2D and 1D-2D finite volume schemes

At last, we compare the results obtained with the 2D standard finite volume
scheme [19] and with the hybrid 1D-2D finite volume scheme.

At the figure 7.2 a), we notice that the error curves versus h for the 2D standard
finite volume scheme (¢) and for the 1D-2D scheme (curve marked with squares) are
almost parallel to a line of slope 2. Moreover, the figure shows that the precision is
approximately 2 times better for the hybrid scheme than for the standard 2D scheme.
We notice the four points obtained with the 2D-scheme are not in a line. Indeed, the
fourth point obtained with h = 0.00625 with the 2D-scheme is not in a good position.
This comes from numerical imprecision because the matrix is close to singular or
badly scaled. On the contrary, there is no stability problem with the 1D-2D scheme,
probably since the real 2D part of the numerical solution is limited.

Table 7.2 shows the relative error between the 2D approximate solution and the
1D-2D approximate solution in the L? norm. We see that the error between the 2D
and 1D-2D finite volume schemes is very small (except for column 1 because the space
step is very large, h = 0.1). So the partial asymptotic domain decomposition is a very
efficient method, and the proposed above hybrid finite volume scheme allows to ob-
tain numerical results as accurate as those obtained with the standard finite volume
scheme.

8. Conclusion. The previous result on the finite volume implementation of the
MAPDD [15] is generalised for an arbitrary 2D rod structure. The numerical tests
confirm the theoretical convergence rate.

This approach may be useful in the context of coupling the models of different dimen-
sion implemented in some codes : it gives theoretically justified interface conditions
at the common boundaries.
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