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Incentive-based Robust Reputation Mechanism
for P2P Services

Emmanuelle Anceaume and Aina Ravdaja

IRISA, Campus Universitaire de Beaulieu, Rennes, France
{anceaune, aravoaja}@risa.fr

Abstract. In this paper, we address the problem of designing a robpatagon
mechanism for peer-to-peer services. The mechanism wegeachieves high
robustness against malicious peers (from individual olusdle ones) and pro-
vides incentive for participation. We show that the quadityhe reputation value
of trustworthy and participating peers is always bettenttiee one of cheating
and non participating ones. Finally we formally prove tlaten when a high
fraction of peers of the system exhibits a collusive behadaorrect peer can
still compute an accurate reputation mechanism towardsvarsat the expense
of a reasonable convergence time.
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1 Introduction

With the emergence of e-commerce in open, large-scaléllittd marketplaces, repu-
tation systems are becoming attractive for encouragirg émnong entities that usually
do not know each other. A reputation system collects, tisteis, and aggregates feed-
back about the past behavior of a given entity. The derivpdtetion score is used to
help entities to decide whether a future interaction witit #ntity is conceivable or not.
Without reputation systems, the temptation to act abugifeglimmediate gain can be
stronger than the one of cooperating. In closed environspeaputation systems are
controlled and managed by large centralized enforcemetitutions. Designing repu-
tation systems in P2P systems has to face the absence ofsgelahd recognizable but
costly organizations capable of assessing the trustwmsisiof a service provider. The
only viable alternative is to rely on informal social mectsans for encouraging trust-
worthy behavior [9]. Proposed mechanisms often adopt tineipie that "you trust the
people that you know best”, just like in the word-of-moutktgm, and build transitivity
trust structures in which credible peers are selected [1P-+Hbwever such structures
rely on the willingness of entities to propagate informatiBacing free-riding and more
generally under-participation is a well known problem exgeced in most open infras-
tructures [2]. The efficiency and accuracy of a reputaticstesy depends heavily on the
amount of feedback it receives from participants. Accagdima recognized principle
in economics, providing rewards is an effective way to inverfeedback. However re-
warding participation may also increase the incentive fowjaling false information.

* Aina Ravoaja is partially supported by a grant from Brittaegion
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Thus there is a trade-off between collecting a sizable siifofmation and facing un-
reliable feedback [7]. An additional problem that needseddred with P2P systems,
is that peers attempt to collectively subvert the systener$?may collude either to
discredit the reputation of a provider to lately benefit frivrifbad mouthing), or to ad-
vertise the quality of service more than its real value toease their reputation (ballot
stuffing). Lot of proposed mechanisms break down if rateliside [8].

In this paper we address the robust reputation problem.niiahle this problem
aims at motivating peers to send sufficiently honest feeklbaP2P systems in which
peers may free-ride or be dishonest. This work has been atetioy a previous one in
which the proposed architecture is built on top of a supéargieverlay made of trusted
peers [3]. The mechanism we propose achieves high robssimestacks (from indi-
vidual peers or from collusive ones), and provides incentdr participation. This is
accomplished by an aggregation technique in which a boundatber of peers ran-
domly selected within the system report directly observddrimation to requesting
peers. Observations are weighted by a credibility factcally computed. Incentive for
participation is implemented through a fair differentiahgce mechanism. It relies on
peer’s level of participation, a measure of peers’ contrimuover a fixed period of
time, and on the credibility factor, assessing the confideme has in a peer.

Our results are promising: We prove that through sufficiedtonest cooperation,
peers increase the quality of their reputation mechanismskéw that the reputation
estimation efficiently filters out malicious behaviors in asaptive way. Presence of
a high fraction of malicious peers does not prevent a copeet from computing an
accurate reputation value, at the expense of a reasonamergence time. Further-
more, the trade-off between the sensitivity of the mechari@eing up malicious peers
and the duration of the computation is tuned through a simglat parameter. These
properties, combined with the incentive scheme, makes eghanism adapted to P2P
networks. Finally, we provide a full theoretical evaluatiof our solution. For space
reasons proofs of correctness are given in the full versidheopaper [4].

The rest of the paper is organized as follows. In Section&edlwork is reviewed.
Section 3 presents the model of the environment, and théigpdion of the robust rep-
utation problem. Section 4 presents the incentive-basethaméism. Section 5 analyses
its asymptotic behavior, its resistance to undesirablatiehand its convergence time.

2 Related Work

There is a rapidly growing literature on the theory and aggions of reputation sys-
tems, and several surveys offer a large analyze of the stat# io reputation systems
[15,11, 8]. According to the way ratings are propagated agrntities and the extent
of knowledge needed to perform the needed computationstatpn systems fall into
two classes, namely centralized or distributed. An indregasumber of online commu-
nities applications incorporating reputation mechanibased on centralized databases
has recently emerged. The eBay rating system used to findriratlows partners to
rate each other after completion of an auction. Despiteritsifive reputation system,
ebay is the largest person-to-person online auction witrertttan 4 millions auctions
open at a time [16]. Regardless of this success, centradipptbaches (see for exam-
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ple, [21, 18]) often pay little attention to misbehavingiges by assuming that entities
give honest feedback to the requesting entity. More impaistathey rarely address
non-participation and collusive behaviors.

Regarding decentralized p2p architecture, several relsesdudies on reputation-
based P2P systems have emerged. Among the first ones, Aler&espotovic [1]
propose a reputation mechanism in which trust informatsostored in P-Grid, a dis-
tributed hash table-based (DHT) overlay. Their mechangsmade robust by guaran-
teeing that trust information is replicated at differenepe and thus can be accessed
despite malicious entities. However, the efficiency of theg@proach relies on peers
propensity to fully cooperate by forwarding requests talfde P-Grid overlay. Addi-
tionally, as for most of the DHT-based approaches, peers tuestore data they are not
concerned with. Thus, malicious peers may discard it to pavate resources, leading
to a loss of information. Other systems relying on the treestgitivity approach face
false ratings by assuming the presence of specific faithfdlteustworthy peers (e.g.
[13]), or by weighting second-hand ratings by senders’ibigty [7, 19, 20]. Opposed
to the aforementioned works, Havelaar reputation syst&j €kploits long-lived peers
by propagating reports between sets of well defined peensifigel through hash func-
tions. A report contains the observations made during theentiround, the aggregated
observations made by the predecessors during the prewaousirand so on for the
last r rounds. By relying on such an extensive aggregation, fagerts hardly in-
fluence the overall outcome. Furthermore by using hash ifumetollusion is mostly
prevented. The efficiency of their approach mainly reliegtenreadiness of peers to
store and propagate large amount of data, and to remain isytem for relatively
long periods of time. To motivate peers to participate, dwaned Faltings [12] propose
an incentive-compatible mechanism by introducing paynfienteputation. A set of
brokers, the R-agents, buy and sell feedback informationertity can receive a pay-
ment only if the next entity reports the same result. Weakmésuch an approach is
the centralization of the whole information at R-agents] #és robustness against ma-
licious R-agents. Finally, Awerbuch et al. [5, 6] give lowsyunds on the costs of the
probes made by honest peers to find good objects in eBayytiterss, and propose
algorithms that nearly attain these bounds.

In contrast to these works, we propose a fully distributedmaaism based on lo-
cal knowledge that provides malicious and non-particigagntities an incentive for
participation and honest behavior.

3 Model

3.1 AP2P Service Model

We consider a P2P service system whaerice providergor server$ repeatedly offer
the same service to interestpders We assume that the characteristics of a server
(capabilities, willingness to offer resources, etc) agragated into a single paramefer
called type. This type influences tefort exerted by the server through a cost function
c. The effort determines the Quality of the Service (QoS) mted by the server. We
assume that the effort exerted by a server is the same fdreapeers that solicit him
and takes its value within the intervial 1].
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Definition 1 (Effort). The effort of a service provideris a valueg! that determines
the quality of the service offered to the peers that intevéttt s.

After each interaction with server each client (or peer) has an imperfect observation of
the effort exerted by. Peers may have different tastes about a server QOS. Batligsi
these observations are closely distributed aratmdffort. Thus, we reasonably assume
that an observed quality of service takes its value with@ittierval|0, 1] and follows

a normal distribution of meagit and variance?.

Definition 2 (Observed Quality of Service Level).The Observed Quality of Service
Level of a service provides observed by peep at timet is a valueobs;(t) which

is drawn from a normal distribution ove, 1] with meang?*. The valuel (resp.0)
characterizes the maximal (resp. minimal) satisfactiop.of

Estimation of the expected behavior of a server is basedaadent past behavior, that
is, its recent interactions with the peers of the systemh@uestriction is motivated by
game theoretic results and empirical studies on ebay tloat et only recent ratings
are meaningful [8]. Thus, in the following, only interaai®that occur within a sliding
window of width D * are considered. This approach is also consistent with 8¥iapi
work [17] in which it is proven that in an environment whereepecan change their
effort over time the efficiency of a reputation mechanisméimized by giving higher
weights on recent ratings and discounting older ratingmdJs sliding time window is
approximately equivalent to this model. Every time a peédesires to interact with a
servers, p asks for feedback from peers that may have directly intetaeith s during
the lastD time units. We adopt the terminologyitnessto denote a peer solicited for
providing its feedback. IP;(¢) represents the set of pedrsvhose feedback has been
received by pees by timet, then the reputation value of a server is defined as follows:

Definition 3 (Reputation Value). The reputation value, (t) of servers computed by
peerp at timet is an estimation of the effort! exerted bys based on the feedbacks
provided by the peers iR ().

3.2 Specification of Undesirable Behaviors

In practice, peers may not always reveal their real ratitgaiaother peers. They can
either exaggerate their ratings (by increasing or deangabiem), or they can simply
reveal outright ratings to maximize their welfare. This &ebr is usually calleanali-
cious and can either be exhibited by a node independently fronbéhavior of other
peers, or be emergent of the behavior of a whole group. Byigiruy false ratings,
malicious peers usually try to skew the reputation value sémver to a value which
is different from its true effort. Leg be this value, and be the distance between the
true effort of the server and the false rating=€ |¢* — g|). Then, we characterize the
behavior of a peer by; = 1 — d%, with « a positive real value which represents the
sensitivity ofw; to the distance between the effort and the expected obgemgiven
by ¢q. A malicious peer tries to skew the reputation valug by sending ratings that are
distributed around.

1 D can have any pre-defined length of time, i.e., a day, a weekmorh. In the sequel, we
suppose thab is insensitive to clock drift.
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Definition 4 (Malicious). A peerp is called malicious if it lies on the reputation of
peers or createss’s reputation out of thin air. Formally :

B(obss (1) =7 # a7, V.

Definition 5 (Collusive Group). A group of peers is called a collusive group if all the
peers of this group behave maliciously towards a same gaainé&lly, the seC is a
colluding group if :

E(obs;(t)) =9 # q;,Vt, k € C.

Another common behavior in P2P systems is peers non-gaation. There are two
main reasons why peers may not participate: either bechagdelieve that their work
is redundant with what the others in the group can do, andttirisparticipation can
hardly influence the group’s outcome, or because they leelieat by not contribut-
ing they maximize their own welfare (note that informati@tention could be another
pretense of not participating, however this is out of thepgcof the paper). The latter
behavior depicts what is typically calldégbe-riding while the first one is described in
the Collective Effort Model (CEM) asocial loafing[14]. Note that although effects of
both behaviors are similar, i.e., “non-participation’githdeep cause is different. Peers
exhibiting one of these two behaviors are called in the failhgy non-participatingpeers
and are characterized as follows:

Definition 6 (Non Participating). A peer is callednon participatingf it exerts less
effort on a collective task than it does on a comparable iisidial task or consumes
more than its fair share of common resources.

A peer is calledcorrectif during the time it is operational in the system it is neithe
malicious nor non-participating. Note that a maliciousrmeay not participate, on the
other hand, a non participating one is not malicious.

3.3 Specification of the Robust Reputation Problem

Within this context, we address the problem of evaluatirgrputation of a service
provider in a dynamic environment in which peers are not s&aey correct. This prob-
lem is referred in the sequel as ttedust reputation problenA solution to this problem
should guarantee the following two properties. The first stages that eventually cor-
rect peers should be able to estimate the reputation vala¢asfet server with a good
precision. The second one says that with high probabildyext peers have a better
estimation of the reputation value of a target server thanamorect ones. Formally:

Property 1 (Reputation ValueAccuracy) Eventually, the reputation of servereval-
uated by any correct peer reflests behavior with precision. That is, let3 €]0, 1] be
some fixed real, called in the sequel confidence level, then:

Jt s.t.Vt > t, Prob(|rp(t) —qi| <€) >1-p

Let|E(r,(t))—q;| be the bias of the reputation valugt) estimated by peer. Suppose
that two peer andq interact with the same target servers at the same timeijtdblc
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same witnesses, and get the same feedbacks at the samehehés ffom the point of
view of their interactiorp andq are indistinguishable. Howeveris correct whileg is
not. Then, we have:

Property 2 (Incentive-CompatibilityEventually, the bias of the reputation value of
servers estimated by is greater than or equal to the one estimated by pe€hat is,
for a given level of confidencg, we have:

Jt s.t.Vt > 1, Prob(|E(ry(t)) — 5| = [E(rg(t)) —¢) 21— 8

4 The Reputation Mechanism

We propose a distributed reputation service which buildscéasnetwork among peers.
Briefly, every peer records the opinion about the late expess it has had with a tar-
get server. Peers provide their information on request fpemrs willing to interact
with that server. Providing a feedback based on direct @asens (also called first-
hand observations) prevents thanorsphenomenon, i.e., the propagation of opinions
about others, just because they have been heard from somlserj29], however is bet-
ter adapted to applications with modest churn. Upon recdifgnough” feedback, the
reguesting peer aggregates them with its own observatibasy) to estimate the rep-
utation of the target server, and provides this estimatdtstapplication. Information
is aggregated according to the trust the requesting peeinttas received feedback.
Pseudo-code of the reputation mechanism is presented oritkigh 1. The efficiency
of the reputation mechanism fully dependsiptihhe number of received feedbacks (i.e.,
aggregating few feedbacks is not meaningful and thus ngfiigl andii) the quality
of each of them (i.e., the trustworthiness of the feedbadkg.contribution of this work
is the design of a reputation mechanism that enjoys bothepties. The analysis pre-
sented in Section 5 shows the importance of each factor oodimeergence time and
accuracy of the reputation mechanism.

The solution we propose is a reputation mechanism, andfthherndependent of
the rewarding strategy used by the application built on toghis mechanism. That is,
the willingness of a peer to interact with a server resulisifthe application strategy,
not from the peer’s one. Clearly, the strategy of the appiiods greatly influenced by
the reputation value but other factors may also be takensiotount.

4.1 Collecting Feedbacks

When a peer decides to evaluate the reputation value of @egmovider, it asks first-
hand feedback from a set of witnesses in the network. Finiegight set of witnesses
is a challenging problem since the reputation value dependtheir feedback. Our
approach for collecting feedbacks follows the spirit of fmdution proposed by Yu et
al [20], in which feedbacks are collected by constructingieh of referrals through
which peers help one another to find witnesses. We adopt théngaorinciple. How-

ever, to minimize the ability of peers to collude, withesaesrandomly chosen within
the system. We assume, in the following, that the networkdgmilar. Specifically, our
approach is based on a random walk (RW) sampling technigeeus¥ the random
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walk technique as shown in Algorithm 1. Functiqoner y is invoked by the request-
ing peer that wishes to solicit withesses through random walks bounded b#t!
steps. The requesting peer starts the random walks at atsafbige neighbors, and
runs them forttl steps. Each peer involved in the walk is designated as witness,
and as such sends back to the requesting peer its feedbaeh ®peely receives

a request fromp to rate serves, it checks whether during the last sliding window
of length D, it has ever interacted witk. In the affirmative,p sets its feedback to
F3(t) ={(obs,(to), to), - -, (0bsy(t1), )} with obs; (t;) the QoS ofs observed at time
t;, wheret; € [max(0,t — D), ] In casep has not recently interacted with p sends
back toq a default feedback;(t) = {(0bsmaz,L)}. As will be shown later, this
feedback prevenisfrom being tagged “non participant” hy

Because of non-participation (volunteer or because of shgraandom walks may
fail: it suffices that one of the peers in the walk refuses tdigipate or crashes to
prevent the walk from successfully ending. If we assumedhatng itsd neighbors, a
fraction . of them do not participate, then among thimitial peers that start a random
walk, the expected number of peer that may "fail” their ramdealk is ... Then during

the next stepy (1 — u)r walks may "fail”, and so on until the TTL value is reached. In

Consequence onlyfeedbacks may be received, with= Zfll(l w)tr. By settingr

to W the requesting peer is guaranteed to receive at fefesidbacks (see line

5 in Algorithm 1). In addition to its feedback, each peer setudthe requesting peer

p (through thewitness message, see lines 19 and 46) the identity of the next patenti
witness on the walk, i.e., the peer it has randomly chosemarite neighbors. Sending
this piece of information allowsg to know the identity of all potential witnesses. As will
be shown in Section 4.4, this allows to detect non partidipéhany) and so to motivate
their participation through a “tit-for-tat” strategy. Asrffeedbacks, non participation
may prevent the requesting peer from receiviritmess messages. A similar analysis to
the preceding one shows thatifandom walks are initiated then= ‘;t:lgl (1—p)tr
witness messages will be received.

Note that a requesting peer can adapt its collect policyradaeg to its knowledge
of the target server, or of its neighborhood. Specificatlygétx witnesses, a peer can
either increaset! and restrictr, or increase- and lowertt/ (assuming that > ud
holds). Enlargingt! would be more sensitive to colluding peers that bias theaand
walk. However, this technique would increase the set of Edwitnesses, and thus
would afford new peers the opportunity to be known by oth@rpend consequently
to increase both their participation and their credihil@pnversely, enlarging would
crawl only peers in the neighborhood of the requesting géewever, this technique
would increase the chance to find a path that does not corghinling peers.

2 Remark that selecting peers according to their creditsliguld be more efficient in the sense
that only “highly” credible peers would be selected, howerewcomers may be penalized by
this filtering. Furthermore, the resilience of the crawlteghnique to collusion highly relies
on the way the graph of witnesses is constructed. Studyiesgtissues is part of our future
work.
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4.2 Reputation of a Server

Estimation of the reputation value of a target server is thasethe QoS directly ob-
served at the server (if any) and on the feedbacks receivedgdthe collect phase.
The accuracy of the estimation depends on the way thesemat@ns are aggregated.
The aggregation function we propose answers the followingjitative and quantita-
tive preoccupations: First, to minimize the negative inficeof unreliable information,
feedbacks are weighted by the credibility of their sendBriefly, credibility is eval-
uated according to the past behavior of peers and reflectsahiidence a peer has
in the received feedback. Credibility computation is présd in the next subsection.
Second, to prevent malicious nodes from floodingith fake feedback and thus from
largely impacting the accuracy of its estimatiprkeeps only a subset of each received
feedback. More precisely, among the set of observationstgeeach witness over
the lastD time units, only the lasf ones are kept, withf the size of the smallest
non-empty set of non-default feedbacks receivegtfiye., f = mingep: ) (|F) (1)])
with ¢t € [max(0,¢t — D), t]). Finally, if among all the witnesses (including none
has recently directly interacted with(i.e., f = 0), thenp affects a maximal value
obsq. 10 s'S reputation value. Affecting a maximal value reflects tleg koncept of
the Dempster-Shafer theory of evidence which argues thatétis no causal relation-
ship between a hypothesis and its negation, so lack of biie$ not imply disbelief”.
In our context, applying this principle amounts in fixingampriori high reputation to
unknown servers, and then updating the judgment accordisgtisequent interactions
and observations [20].

We can now integrate these principles within the aggregdtinction we propose.
Let us first introduce some notations: LEf (¢) be the union of the lasf non-default
feedbacks received fromduring the lastD time units ¢ € [max(0,¢ — D), t]); P, (t)
be the set of witnessésfor which F; (¢) is non emptyyp; (t) represent the mean value
of the observations drawn frotf; (¢); andc; , (¢) the credibility formed by at timet
aboutk regardings. Then, at time, p estimates’s reputation value as follows:

sip Zkepsi) O] 2keps (o) G ()-PR (@) I f 70
Tp (t) - P . (1)
0bSmaz otherwise
with, PR(t) = F 2 obsg ) 4 e 2 1) ObSR(E)

4.3 Trust in Witnesses

In this section, we tackle the issue of malicious peers. Asar&ed in the Introduc-
tion, malicious peers may alter the efficiency of the repatainechanism by sending
feedbacks that over-estimate or sub-estimate the obs@uo8df a server to inflate or
tarnish its reputation. This is all the more true in case diis@on. We tackle this issue
by evaluating peers credibility. Credibility is a [0,1]duad function which represents
the confidence formed by pegrabout the truthfulness afs ratings. This function is
local and is evaluated on the recent past behavior of pahd g peers. It is locally
used to prevent a false credibility from being propagatetthiwithe network. Specif-
ically, peerp estimates at time how credibleq is regarding serves as a decreasing
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function of the distance betweeits feedbacks or’s effort andp’s direct observations
on s's QoS. As for the reputation value computation, the distaisccomputed on the
last f observations made by bophandg during the lastD time units. Note that in case

p has not recently observe® QoS, then credibility of all its witnesses are set to a de-
fault valuecy. Indeedp cannot evaluate the distance between its own observatiahs a
those observed by withesses. Determinipgalue needs to solve the following trade-
off: by affecting a high value to the default credibility oimereases the vulnerability
of the system to thevhitewashingphenomenon, that is, the fact that peers change their
identity in order to reset their credibility to the defauétlve. However, by setting this
variable to a low value the mechanism tends to filter out netnegises and thus, loses
the benefit of the potential information a new peer can affattuich clearly decreases
the usefulness of the reputation mechanism. In order to wdfethat, we sety to

the value of a decreasing function of with ¢ an estimation of the number of white-
washers in the network. By adopting the notations of Equdtie;, ,(¢) represents the
credibility formed byp at timet aboutq regarding the target serverand is given by:

1ot = { L7V 3O 120 o

C .
P co otherwise

where|p;(t) — p,(t)|* represents the distance betweeandp's observations. Note
thata is the variable introduced in Section 3. Then we have thevotlg lemma:

Lemma 1. (Credibility Accuracy) Eventually, credibility of a peey evaluated by any
correct peerp reflectsq’'s behavior with a precisior. That is, letg €]0, 1[ be some
fixed real, there existssuch that, for allt > %,

Prob(|cs () — wi(t)| <€) > 1— 8.

4.4 Incentive for Participation

Non participation may jeopardize the efficiency of the ration mechanism. A cer-
tain amount of participation is required before reputatian induce a significant level
of cooperation. Facing non-participation in the reputagwoblem is challenging and
has deserved few attention [20]. To motivate peers to sesid fdredback we adopt a
“tit-for-tat” strategy. We introduce the level of partigipion notion as the propensity of a
peer for replying to a rating request. It is described by fiomd> = such that; (t) rep-
resents the percentage of timgprovided its feedback tp's queries regarding server
s's QoS over the lasD time units, withl; (¢t = 0) = lp = 1. Its computation is per-
formed aftenp’s collect phase (see line 10 of the algorithm. Note thaidiagtprevents
correct peers from being penalized by walking breaks.).

We apply the tit-for-tat strategy during the collect phasthen a peep receives a
rating request fos from peerg, then with probabilityl; . (¢) p provides its feedback
to ¢, otherwise it sends a default feedbadk () to preventp from being tagged as
non-participant. By providing this default feedbagKets ¢ knows that its recent non-
participation has been detected. Consequently, by noicjpeating, requesting peers
drive correct witnesses providing them worthless feedpatiich clearly makes their
reputation mechanism useless. Hence there is a clear inedat non participating
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peers to change their behavior. The following lemma praovasgarticipation decreases
the bias of the reputation value. As previously, let us abersiwo peerg andq such

that both peers are indistinguishable from the point of vidthe servers with which
they interact, that is both andq observe the same QoS from these servers at the very
same time, solicit and are solicited by the same set of pééns aame time; However,

p is correct whileg is non participating. Then we claim that:

Lemma 2. Participation decreases the bias of the reputation vallmatTs,

[E(ry(t) — gz < [E(rg(t) — ¢

4.5 Incentive for Truthful Feedbacks

We now address the problem of motivating peers to send trufeédbacks. So far
we have presented strategies aiming at improving the guaflithe reputation value
estimation by aggregating more feedbacks and by weighéiaddack according to the
credibility of their sender. We have shown that by using lstthtegies, utility of correct
peers increases. However, none of these solutions havepatimn the effort devoted
by a witness to send a truthful feedback. To tackle this isgsaeuse the credibility
as a way to differentiate honest peers from malicious onasfoA non-participating
peers, when pee@r receives a request to rate sergdrom a requesting peerthenp
satisfiesq’'s request with probability:; (¢). By doing so,p satisfiesg's request if it
estimates thag is trustworthy, otherwise it notifieg of its recent faulty behavior by
sending it thg L, 1) feedback. As previously, by cheating, a malicious peer jzz®m
itself by pushing correct witnesses to send meaninglesibéexks to it, leading to its
effective isolation. We claim that this social exclusioaskd strategy motivatesto
reliably cooperate.

Lemma 3. High credibility decreases the bias of the reputation vallieat is,
[E(ry (1) — g;| < [E(rg(t) — gzl

Finally, to elicit sufficient and honest participation, battrategies are combined,
i.e., upon receipt of a rating request from peewith probabilitymin(c,, ,(t), I ,(t))
p provides its feedback, otherwise it sends the default faeldpl, L) (see line 31 in

Algorithm 1).

Theorem 1. The reputation mechanism described in Algorithm 1 is Ingen€ompatible
in the sense of Property 2.

5 Analysis

Computing the reputation of a peer reduces to estimatinthérstatistical sense, its
effort. Our algorithm falls into the category of robust asttion algorithms. Indeed,
robust estimation techniques consider populations wheomanegligible subset of data
deliberately pollute the system. This analysis describesasymptotic behavior of the
reputation mechanism and its convergence time accordingdesirable behaviors. In
the following, we assume that a fractigrof withesses are malicious.
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Fig. 1.Bias fora = 1 andn = 10 . Fig. 2. Bias fory = .5 andn = 10 .

5.1 Asymptotic Behavior

In this section we determine the accuracy of the reputatiechanism with respect to
parametersx ande. Thus for the purpose of this analysis, we assume that théoaum
of aggregated feedbackfis infinite. Recall thatu, denotes the characterization of
¢'s behavior, withw, = 1if ¢ is correct, andv, = 1 — d* otherwise. By Lemma 1,
¢y 4(t) = wy, whent — oo. Moreover, the expected number of correct witnesséls-is

~v)n+1 while the expected number of malicious onesnis with n the expected number
of witnesses (Figures are plotted for= 10). Thus, by replacing; ,(t) with their
asymptotic values in Equation 1, the expected reputatituevaf a servek estimated
by a correct pees whent — oo is given by Equation 3:

1 1
S tmoo = ——— [ (1 - —)q 1-d*)q|. 3
rp(b)e 1—7da+%<( 7+n)q +( )Q) ©)
The bias of the reputation value, wher- o is given by the following equation:
1—a”
Stsoo — qh]| = yd——. 4
|y () 4l = T (4)

Figures 1 and 2 show the bias of the reputation value wither@gpd for increas-
ing values ofy (resp. increasing values a). Recall thatl = |¢ —{g| reflects colluders’
behavior. Unlike mean-based reputation value estimatowhich the bias linearly in-
creases withl (as shown by the crossed curves in Figure 1), our algorithamés the
power of colluders whatever their percentage (dotted @)riedeed, witnesses’ ratings
are weighted by a decreasing functiondof/hich filters out false ratings.

Figure 2 shows the impact of on the bias of the reputation value. As can be ob-
served, the bias decreases with decreasing valuesreflecting the sensitivity of the
reputation value to the distance between direct obsenstimd received feedbacks.
Thus, decreasing values afmakes the reputation mechanism very sensitive to false
feedbacks.

Theorem 2. The reputation value is-accurate, withe > PydTJrr

From the above, assuming an upper bound dvy setting the maximal bias taand
solving the corresponding equation one can derive an uppandona under which
the reputation value converges to the true effort with amesry level ofe. Hence, for
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a with o < @, the reputation value converges to the true effort with ayueacy level
of ¢, with @ given by:

yn

In <n+1—\/(1—7)712+(2—'y)n+1>

a =

5

In(e) ®)
To conclude, one can always find a valuexasuch that eventually the reputation value
is accurate. This parameter, however, significantly infb@srthe convergence time of
the algorithm. The next Section addresses this issue.

5.2 Convergence

In this section, we study the convergence time of the rejmutamechanism. To do so,
we assume that the ratings of a malicious peer are drawn frasrmaal distribution with
meang and varianc& over [0, 1]. This assumption includes a wide range of possible
behaviors. Indeed, a small valuedfiepicts peers that try to rapidly skew the reputation
value tog by giving reports tightly distributed arourd In contrast, a high value &
depicts peers that try to hide their mischievous behaviother peers by giving sparse
reports. While the first behavior is easily detected, theosdoone hardly skew the
reputation value tq@.

Recall that the reputation value is estimated by aggregéalie lastf interactions
witnesses have had with the target server during a sliding tvindow of lengthD.
Finding the optimal value ab is important. Indeed, it determines the resilience of the
mechanism to effort changes and the confidence level in ti@agsn. The optimal
value of D is the one for which the estimation is at mesfar from the true effort
with a given confidence thresholgl To determine such a value, let us first assume
that f is known, and determine a lower bound Brob(|r,(t) — ¢i| < €) Vt € D.
Suppose that the credibility (¢) is €’-far fromws; for all the witnesses. Then, because
of Bayes' Theorem, we know thdtrob(|rs(t) — qi| < €) > Prob(|ry(t) — ¢i| <
6||cZ(t)7wZ(t)|§6/,Vk€79;(t)) - Prob(|ci.(t) — wi(t)| < €.Vk € P;(f)) Remark that,
assuming that the witnesses’ credibility afefar from wj, the probability that- (¢)
is e-far from ¢ is maximal under the following condition (C): credibilityf correct
witnesses is minimal, i.e., equal to— ¢/, and the one of malicious ones is maximal,
i.e., equal ta. Then, we have:

Prob(|rp(t) — ¢;| < €) > Prob(|r;(t) — ¢5| < €l(c))-
PI‘Ob(Cz (t) Z 1-— €/|kcorrect)(1_7)n : PI‘Ob(Cz (t) S €/|kmalici0us)’yn (6)

By Lemma 1, the probability that the witness’s credibiliyait most’-far fromw; con-
verges tol whent, and thusf, increase. Thus, this bound approacResb(|r; (t) —
q%| < €) whenf increases. Knowing the probability distribution of thewe, deriving
a closed form of the lower bound can be done. Then, given asdesdnfidence thresh-
old g for @ > @, solution of Equation 7 provides two threshold valueg ¢fi1 andd2
on Figure 2) beyond which the false reports are eliminated:

1—d* I
€= ydﬁ within [0, 1]. (7
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Fig. 3. Confidence level fory = .5, n = Fig. 4. Confidence level fooe = 3, n = 10,
10,e=.1,d=1,0% = .2, ands = .2. e=.1,d=1,0; =.2,ande = .2.

Using Equation 6, we can see the effectadn the convergence time of the reputa-
tion mechanism to reach the exact effort exerted by the s3ge Figure 3). Decreasing
values ofa significantly increases the convergence time while it desee the bias of
the reputation mechanism as shown in Figure 2. Thus a trlidedsts between the
robustness of the mechanism and its convergence time. Bygs#ite value ofD, the
application designer may derive the corresponding minimuahber of interactiong
and finally tune the value af such that the desired confidence level is achieved within
f steps through Equation 6. The resulting reputation esiimés less sensitive to false
reports, but still eliminates peers that try to skew the tafion of the server to a value
that is far from the true effort, by filtering out extreme vedofd (see Figure 2).

Finally, Figure 4 shows the impact of malicious peers on tievergence time. As
can be seen, a relatively small percentage of maliciousspgiees a minor impact on the
convergence time since the number of correct feedbackgdyhafluenced by false
ones. On the other hand, whenever a requesting peer hasta facge proportion of
malicious peers, it can only rely on its own feedback to esténthe effort exerted by
the target server which clearly takes longer than when lddbgecorrect witnesses. The
same result applies for non-participating peers.

6 Conclusions

In this paper we have proposed a reputation mechanism thasvas high robustness
to attacks and provides incentive for participation. Thigachieved by an aggregation
function in which a subset of the information provided bydamly chosen peers is
kept and weighted by a confidence factor locally computedh@ve proposed a simple
and local incentive mechanism that guarantees a betteityqohthe reputation value
estimation. Lessons learned from simulations are twofalst, decreasing values of
guarantees a greater sensibility of the mechanism to fatsegs. It however increases
the number of required feedbacks as well, and thus the timgettan accurate estima-
tion of the effort exerted by the target server. Second, tkegnce of a large number
of malicious and non-participating peers does not prevemniechanism from being
accurate, however has an impact on its convergence time.
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input : p: requesting peex: target serverz: expected number of feedbacks
output: r,: estimation ofs reputation value

re s Ve Xite (L)'

ttl — default valuet <« getTime(); letD be the the time interval [max(t-D,0),t];
query(p,stthr ;

wait until ((F; (¢) messages are received franpeers) and@itness(s, w,t) messages
are received frony peers))

P?(t) — |J {q such that a feedback message is received frpm

7 FP(t) — U {Fst)forallg e P(t)};

8 W?(t) — | {w for all witness(s,w, t) that have been receivgd

10 foreachk € W (t) do

s o Sren (PR @) _
11 pk(t) — mm(zi?,\iw“:(t)\(l — ) + w.lo, 1);

12 end
13 return r;(t) to application;

a w N P

(2]

14 query(p,s.tthr,) begin
15 New « pick a random subset afpeers fronp’s neighbors;

16 forall (next € New) do

17 send aw (p, s, ttl — 1,t) message taext;

19 send awitness (s,next,t) message t@;

21 if p has interacted withs at timeto, . . . , ¢; in the lastD time unitsthen
22 F;(t) <« {(obsy(t0),t0), ..., (obsy(t1), t1), p};
23 else

24 F;(t) — {(Obs’male-)?p};

25 end if

26 sendF;, (t) to p;

27 end

28 end

29 upon (receipt of arw (p,s,ttl,t) message at peep) do
31 with (probabilitymin(l; ,(t), c;.(t)) do

33 if ¢ has interacted with at timeto, .. ., ¢; in the lastD time unitsthen
34 F3(t) < {(obsg(to), o), - - ., (obsg(tr), t1), q};

35 else

36 F7(t) — {(obsmazx, L), q};

37 end if

38 otherwise

39 Fy(t) —{(L, 1),q}

40 end do
41 sendF; (t) to p;
42 if (¢tl # 0) then

43 next <« pick one ofg’s neighbor with probability%, d = ¢'s neighbors #;
44 send aw (p,s,ttl — 1,t) message taext;

46 send awitness (s,next,t) to p;

47 end if

48 end do

Algorithm 1: Estimation of the reputation value of serveby peerp
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