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Abstract

This paper presents PeerCube, a DHT-based system aim-
ing at minimising performance penalties caused by high
churn while preventing malicious peers from subverting the
system through collusion. This is achieved byi) applying a
clustering strategy to support quorum-based operations;ii)
using a randomized insertion algorithm to reduce the prob-
ability with which colluding Byzantine peers corrupt clus-
ters, and; iii) leveraging on the properties of PeerCube’s
hypercube structure to allow operations to be successfully
handled despite the corruption of some clusters. In spite
of a powerful adversary that can inspect the whole system
and issue malicious join requests as often as it wishes, Peer-
Cube guarantees robust operations inO(logN) messages,
with N the number of peers in the system. Extended simu-
lations validate PeerCube robustness.

1 Introduction

Research on the development of efficient peer-to-peer
systems has recently received a lot of attention. This has
led to the construction of numerous structured peer-to-peer
overlays systems [16, 24, 19, 9, 14]. All these systems are
based on distributed hash tables (DHTs) which partition an
identifier space among all the peers of the system. Struc-
tured overlays enjoy numerous important properties. They
are efficient, scalable, and tolerant to benign failures. How-
ever, less investigation has been carried out for handling
both very high churn and collusive behaviour issues. As
pointed out by Locher et al. [13], most proposed peer-to-
peer overlays are highly satisfactory in terms of efficiency,
scalability and fault tolerance when evolving in weakly
dynamic environments. On the other hand, in the pres-
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ence of very frequent connections/disconnections of peers,
a very large number of join and leave operations are locally
triggered engendering accordingly multiple and concurrent
maintenance traffic. Ensuring routing tables consistency
quickly becomes unbearable, leading to misrouting, and to
possible partitioning of the system. The other fundamental
issue faced by any practical open system is the inevitable
presence of malicious peers [22]. Guaranteeing the liveness
of these systems requires their ability to self-heal or at least
to self-protect against this adversity. Malicious peers can
devise complex strategies to prevent peers from discovering
the correct mapping between peers and data keys. They can
mountSybil attacks[6] (i.e., an attacker generates numer-
ous fake peers to pollute the system), they can dorouting
table poisoning(also calledeclipse attacks[3, 22]) by hav-
ing good peers redirecting outgoing links towards malicious
ones, or they can simply drop or re-route messages towards
other malicious peers. They can magnify their impact by
colluding and coordinating their behaviour.

This paper presents PeerCube, a DHT-based system aim-
ing at avoiding high churn from impacting the performance
of the system and at the same time at preventing mali-
cious behaviour (coordinated or not) from subverting the
system. As many existing DHT-based overlays, PeerCube
is based on a hypercubic topology. PeerCube peers self-
organise into clusters whose interconnections form the hy-
percubic topology. Peers within each cluster are classified
into two categories, core members and spares, such that
only the former ones are actively involved in PeerCube op-
erations. Thus only a fraction of churn affects the overall
topology of the hypercube. Defences against eclipse attacks
are based on the observation that malicious peers can more
easily draw a successful adversarial strategy from a deter-
ministic algorithm than from a randomised one. We show
that regardless of the adversarial strategy colluders employ,
the randomised insertion algorithm we propose guarantees
that the expected number of colluders in each routing table



is minimal. Furthermore, by keeping the number of core
members per cluster small and constant, it allows to rely
on the powerful consensus building block to guarantee con-
sistency of the routing tables despite Byzantine peers. Fi-
nally, PeerCube takes advantage of independent and optimal
length paths offered by the hypercubic topology to decrease
exponentially the probability of encountering a faulty peer
with the number of independent paths [23].

To summarise, PeerCube brings together research
achievements in both “classical” distributed systems and
open large scale systems (Byzantine consensus, clustering,
distributed hash tables) so that it efficiently deals with col-
lusion and churn. To the best of our knowledge this work is
the first one capable of tolerating collusion by requiring for
eachlookup,put, join andleave operationO(logN)
latency and onlyO(logN) messages.

In the remaining of the paper, we discuss related work in
Section 2 and then present the system and adversary models
in Section 3. Description of the architecture is given in Sec-
tion 4, together with an analysis of the churn impact. Ro-
bustness against malicious behaviours (coordinated or not)
is studied in Section 5. Results of simulations are presented
in Section 6. We conclude in Section 7.

2 Related Work

In the following, we first review related work that fo-
cuses on robustness against malicious peers and then exam-
ine policies to handle high churn.

Regarding robustness to malicious behaviour, different
approaches have been proposed, each one focusing on a par-
ticular adversary strategy. Regarding eclipse attacks, a very
common technique, calledconstrained routing table, relies
on the uniqueness and impossibility of forging peers’ iden-
tifiers. It consists in selecting as neighbours only the peers
whose identifiers are closer to some particular points in the
identifier space [3]. Such an approach has been success-
fully implemented into several overlays (e.g., CAN, Chord,
Pastry). More generally, to prevent messages from being
misrouted or dropped, the seminal works on DHT routing
security by Castro et al. [3] and Sit and Morris [22] combine
routing failure tests and redundant routing as a solution to
ensure robust routing. Ravoaja and Anceaume extended this
approach to cope with colluders by constraining the result of
a query, which guarantees to reach the legitimate recipient
with high probability [17]. However, in both approaches,
the topological properties of their overlay do not guarantee
that redundant paths are independent. Fiat et al. [7] use the
wide paths technique initially proposed by Hildrum and Ku-
biatowicz [10]. All these solutions require all DHT nodes
to maintainO(log2N) links to other nodes, and require for
each operationO(log3N) messages.

With regard to churn, Li and al. [12] show through a

comprehensive performance evaluation that structured over-
lays (such as Tapestry, Chord, or Kademlia) can achieve
similar performance with regard to churn if their parame-
ters are sufficiently well tuned. However, these protocols
do not focus on reducing the frequency at which routing ta-
bles are updated. Such an approach has been proposed in
the eQuus architecture [13], in which nodes which are ge-
ographically close to each other are grouped into the same
cliques to form the vertices of the hypercube. EQuus offers
good resilience to churn and good data availability, however
relying on local awareness to gather peers within cliques
makes this architecture vulnerable to adversarial collusion
and geographically correlated failures.

3 Model

3.1 System Model

Peers are assigned unique random identifiers from an
m-bit identifier space when they join the system. Identi-
fiers (denoted ID) are derived by using the standard MD5
hash function [18], on the peers’ network address. We take
the value ofm large enough to make the probability of
identifers collision negligible. Each application-specific ob-
ject, or data-item, of the system is assigned a unique iden-
tifier, called key, selected from the samem-bit identifier
space. Each peerp owns a fraction of all the data items
of the system. Regarding timing assumption, we assume an
asynchronous model. Rational of this assumption is that it
makes difficult for malicious peers to devise strategies that
could have been exploited in a synchronous timing model,
such as DoS attacks [15].

3.2 Adversary Model

Some peers try to manipulate the system by not follow-
ing the prescribed protocols and by exhibiting undesirable
behaviours. Such peers are calledmalicious. Malicious
peers can drop messages or forward requests to illegitimate
peers. Malicious peers may act independently or may be
part of acollusion group. A peer which always follows the
prescribed protocols is said to becorrect. We assume that
there exists a fractionµ, (0 ≤ µ < 1), of malicious peers
in the whole system. Malicious peers are controlled by a
strong adversary. The adversary can issue join requests for
its malicious peers in an arbitrary manner. At any time it
can inspect the whole system and make its malicious peers
re-join the system as often as it wishes. We assume the exis-
tence of a public key cryptography scheme that allows each
peer to verify the signature of each other peer. We also as-
sume that correct peers never reveal their private keys. Peers
IDs and keys are part of their hard coded state, and are ac-
quired via a central authority [5]. When describing the pro-



tocols, we ignore the fact that messages are signed and re-
cipients of a message ignore any message that is not signed
properly. We also use cryptographic techniques to prevent
a malicious peer from observing or unnoticeably modify-
ing a message sent by a correct peer. However a malicious
peer has complete control over the messages it sends and
receives. Note that messages physically sent between any
two correct peers are neither lost nor duplicated.

4 Architecture Description

As discussed before, our architecture is based on a hy-
percubic topology. The hypercube is a popular intercon-
nection scheme due to its attractive topological properties,
namely, low node degree and low network diameter. Be-
yond these properties, a hypercube offers two important
topological features, namely recursive construction and in-
dependent paths.

4.1 Background

This section presents some preliminaries related to the
hypercubic topology. For more details the reader is invited
to read Saad and Schultz [20]. Ad-dimensional hypercube,
ord-hypercube for short, consists of2d vertices, where each
vertexn is labelled by itsd-bits representation. Dimension
d is a fundamental parameter since it characterises both the
diameter and the degree of ad-hypercube. Two vertices
n0 . . . nd−1 and m = m0 . . . md−1 are connected by an
edge if they share the same bits but theith one for some
i, 0 ≤ i < d, i.e. if their Hamming distanceH(n, m) is
equal to1. In the following, the notationn = mi stands for
two verticesn andm whose labels differ only by their biti.

Property 1 (Recursive Construction [20]). A d-hypercube
can be constructed from lower dimensional hypercubes.

The construction consists in joining each vertex of a
(d − 1)-hypercube to the vertex of the other(d − 1)-
hypercube that is equally labelled, and by suffixing all the
labels of the vertices of the first(d − 1)-hypercube with0
and those of the second one with1. The obtained graph is a
d-hypercube. From this construction, we can derive a sim-
ple distributed algorithm for building ad-hypercube from a
(d−1) one which involves only2 messages per link updated
whatever the dimension of the considered system, and thus
has a message complexity ofO(d) per peer.

Property 2 (Independent Routes [20]). Letn andm be any
two vertices of ad-hypercube. Then there ared independent
paths betweenn and m, and their length is less than or
equal toH(n, m) + 2.

Two paths are independent if they do not share any com-
mon vertex other than the source and the destination ver-
tices. In ad-hypercube, a path from vertexn to vertexm is
obtained by crossing successively the vertices whose labels
are obtained by modifying one by onen’s bits to transform
n’s label intom’s one. Suppose thatH(n, m) = b. Then
b independent paths betweenn andm can be found as fol-
lows: pathi is obtained by successively correcting biti, bit
i + 1, . . ., bit (i + b− 1) mod b among theb different bits
betweenn andm. Note that theseb paths are of optimal
lengthH(n, m). In addition to these paths,d − b paths of
lengthH(n, m) + 2 can be constructed as follows: pathj
of lengthH(n, m) + 2 is obtained by modifying first bitj
on whichn andm agree, and then by correcting theb dif-
ferent bits according to one of theb possibilities described
previously, and finally by re-modifying bitj.

4.2 PeerCube in a Nutshell

We now present an overview of PeerCube features. Ba-
sically, our architecture has two main characteristics: peers
sharing a common prefix gather together intoclusters; and
clusters self-organise into a hypercubic topology.

4.2.1 Clusters

As stated before, each joining peer is assigned a unique ran-
dom ID from anm-bit identifier space. Assigning unique
random IDs to peers prevents the adversary from control-
ling a portion of the network, since peers are spread wide
over the network according to their identifier. Peers whose
ID share a common prefixgather together within the same
cluster. Each cluster is uniquely identified with alabel that
characterises the position of the cluster in the overall hy-
percubic topology1. The label of a cluster is defined as the
shortest common prefix shared by all the peers of that clus-
ter such that thenon-inclusionproperty is satisfied. The
non-inclusion property guarantees that a cluster label never
matches the prefix of another cluster label, and thus ensures
that each peer in PeerCube belongs to at most one cluster.

Property 3 (Non-Inclusion). If a clusterC labelled with
b0 . . . bd−1 exists then no clusterC′ with C′ 6= C whose label
is prefixed withb0 . . . bd−1 exists.

The length of a cluster label, i.e. the number of bits of
that label, is called thedimensionof the cluster. In the fol-
lowing, notationd-cluster denotes a cluster of dimension
d. Dimension determines an upper bound on the number of
links a cluster has with other clusters of the overlay, i.e. the
number of its neighbours. Peers of ad-clusterC maintain
a routing tableRT such that entryRT [i], with 0 ≤ i < d,
points to peers belonging to one of thed closest clusters

1Henceforth, a cluster will refer to both the cluster and its label.



to C. (Distance notion is detailed in Section 4.2.2.) Ref-
erences to clusters that point towardC are maintained by
C’s members in a predecessor tablePT . Note that main-
taining such a data structure is not mandatory, i.e. those
clusters can be easily found by the topological properties
of PeerCube. However, keeping this information makes the
maintenance operations more efficient. Regarding data, all
the peers of a cluster are responsible for the same data keys
and their associated data. As for most existing overlays, a
data key is placed on the closest cluster to this key. Placing
a data key on all the peers of a cluster naturally improves
fault tolerance since this increases the probability that this
key remains available even if some of the peers fail. To
keep this probability high, the size of a cluster must not un-
dershoot a certain predefined valueSmin which depends on
the probability of peers’ failures. Finally, for scalability rea-
sons, each cluster size is upper bounded by a constant value
Smax specified later on.

4.2.2 Hypercubic Topology

Clusters self-organise into a hypercubic topology, such that
the position of a cluster into the hypercube is determined by
its label. Ideally the dimension of each clusterC should be
equal to some valued to conform to a perfectd-hypercube.
However, due to churn and random identifier assignment,
dimensions may differ from one cluster to another. Indeed,
as peers may join and leave the system asynchronously,
clusterC may grow or shrink more rapidly than others. In
the meantime, bounds on the size of clusters require that,
whenever the size ofC exceedsSmax, C splits into clus-
ters of higher dimensions, and that, whenever the size ofC
falls underSmin, C merges with other clusters into a single
new cluster of lower dimension. Finally, since peers IDs,
and thus cluster labels, are randomly assigned, some of the
labels may initially not be represented at all. For all these
reasons dimensions of clusters may not be homogeneous.
To keep the structure as close as possible to a perfect hyper-
cube and thus to benefit from its topological properties, we
need adistancefunctionD that allows to uniquely charac-
terise the closest cluster of a given label. This is obtainedby
computing the numerical value of the “exclusive or” (XOR)
of cluster labels [14]. To prevent two labels to be at the same
distance from a given bit string, labels are suffixed with as
many bits “0” as needed to equalise their size tom.

Definition 1 (DistanceD). Let C = a0 . . . ad−1 and
C′ = b0 . . . bd′−1 be any twod (resp. d′) -clusters:
D(C, C′) = D(a0 . . . ad−10

m−d, b0 . . . bd′−10
m−d′

) =
∑m−1

i=0,ai 6=bi
2m−i

DistanceD is such that for any pointp and distance∆
there is exactly one pointq such thatD(p, q) = ∆ (which
does not hold for the Hamming distance). Finally, labels

that have longer prefix in common are closer to each other.
We are now ready to detail the content of a cluster’s routing
table. LetC = b0 . . . bd−1 andCi = b0 . . . bi . . . bd−1. Then,
C’s ith neighbour in PeerCube is clusterC′ whose label is
the closest toCi.

Property 4. Let C be ad-cluster. Then,∀i, 0 ≤ i < d,
entry i of the routing table ofC is clusterC′ such that for
each clusterC′′ 6= C′, D(Ci, C′) < D(Ci, C′′) holds.

By the distanceD definition, it is easy to see that if for
each clusterC in PeerCube the distance betweenCi and its
ith neighbour is equal to0 (with 0 ≤ i < d), then PeerCube
maps a perfectd-hypercube. From Property 4, we have:

Lemma 1. LetC = b0 . . . bd−1 be ad-cluster. Then∀i, 0 ≤
i < d, C’s ith neighbour is clusterC′ such thatC′ is prefixed
with b0 . . . bi if such a cluster exists. Otherwise,C′ = C.

This can be seen by observing that, by definition ofD,
C′ shares the longest prefix withCi, that is at least the prefix
b0 . . . bi. OtherwiseC would be the closest cluster toCi. We
exploit this property to construct a simple lookup protocol
which basically consists in correcting the bits of the source
towards the destination from the left to the right.

4.3 Leveraging the Power of Clustering

Dimensions Disparity As described before, clusters di-
mensions are not necessarily equal to each other. By sim-
ply settingSmax > log2N , we can make the dimensions
disparity small and constant. Indeed, observe that the di-
mension of a cluster is necessarily greater than or equal to
log2

N
Smax

. This follows from the fact that the minimum
number of clusters isN/Smax, which determines the min-
imum number of bits needed to code the label of a clus-
ter. Furthermore, by settingSmax > log2N , we can show
by using Chernoff’s bounds that the dimension of a clus-
ter is w.h.p.2 lower thanlog2

N
Smax

+ 3. Indeed, since la-
bels are uniformly randomly assigned, settingSmax to a
higher value decreases clusters dimension. Thus distance
δ between any two clusters dimensions is w.h.p. less than
or equal to3.3 Furthermore the number of non-represented
prefixes is at most23, which is very small with regard to the
total number of clustersN/Smax. Consequently, by setting
Smax > log2N , PeerCube is very close to a (log2

N
Smax

)-
hypercube, which guarantees PeerCube to enjoy the attrac-
tive topological properties of a perfect hypercube of diame-
ter log2

N
Smax

. HenceforthSmax is in Θ(logN).

2In the following, with high probability (w.h.p.) means withprobability
greater than1− 1

N
.

3Note that for a pure hypercube, the dimension disparity islog2N .



Limiting the Impact of Churn We have just shown that
by having peers self-organised in a hypercube of clusters
we get w.h.p. an overlay of diameterlog2

N
Smax

. We now
describe how peers take advantage of that clustering to limit
the impact of churn on the overall system. Specifically,
peers within a cluster are classified into two categories:core
andsparemembers. Only core members are in charge of
PeerCube operations (i.e. inter clusters message forward-
ing, routing table maintenance, computation of cluster view
membership, and keys caching). Size of the core set is equal
to the minimal size of a cluster, i.e. constantSmin. Core
members form a clique, i.e., they point to each other. View
of the core set is denotedVc. In contrast to core members,
spare members are temporarily inactive, in the sense that
they are not involved in any of the overlay operations. They
only maintain links to a subset of core members of their
cluster and cache the set of keys and associated data as core
members do. Within a cluster, apart from the core members
that maintain the viewVs of the spares set, no other peer
in the system is aware of the presence of a particular spare,
not even the other spares of the cluster. As a consequence,
routing tables only point to core members, that isSmin ref-
erences per entry are needed.

Achieving High Consistency By keeping the size of the
core set to a small and constant value, we can afford to rely
on the powerful consensus building block to guarantee con-
sistent routing tables among correct core members despite
the presence of a fractionµ of Byzantine peers among them.
Briefly, in the consensus problem, each process proposes
a value, and all the non-faulty processes have to eventu-
ally decide (termination property) on the same output value
(agreement property), this value having been proposed by
at least one process (validity property). Various Byzantine
consensus algorithms have been proposed in the literature
(good surveys can be found in [8, 4]). In PeerCube, we
use the solution proposed by Kotla et al. [11] essentially be-
cause it provides optimal resiliency, i.e. tolerates up ton−1

3
Byzantine processes in a group ofn processes, and guar-
antees that a value proposed only by Byzantine processes
is never decided by correct ones. Moreover, message com-
plexity is in O(n3) in the worst case, andO(n) in execu-
tions where Byzantine processes are not present. Note that
in our context,n = Smin.

4.4 PeerCube Operations

From the application point of view, three key opera-
tions are provided by the system: thelookup(k) operation
which enables to search for keyk, thejoin operation that
enables a peer to join the system, and theleave opera-
tion, indicating that some peer left the system. Note that the
put(x) operation, that enables to insert datax in the sys-

tem, is not described since it is very similar to thelookup()
operation. From the topology structure point of view, three
events may result in a topology modification: when the size
of a cluster exceedsSmax, this clustersplits into two new
clusters; when the size of a cluster goes belowSmin, this
clustermergeswith other clusters to guarantee the cluster
resiliency; finally, when a peer cannot join any existing clus-
ter because none of them matches the peer identifier prefix,
then a new cluster iscreated. For robustness reasons, a clus-
ter may have to temporarily exceed its maximal sizeSmax

before being able to split into two new clusters. This guar-
antees that resiliency of both new clusters is met, i.e both
clusters sizes are at least equal toSmin. A similar argument
applies to thecreate operation. For this specific opera-
tion, peers whose identifiers do not match any cluster label,
temporarily join the closest cluster to their identifier, and
wheneverSsplit ≥ Smin temporary peers share the same
prefix then they create their new cluster. ThresholdSsplit

is discussed in Section 4.4.2. These three additional op-
erations exploit the recursive construction property of hy-
percubes to minimise topology changes, and rely on the
Byzantine-consensus building block to achieve high consis-
tency among routing tables. For space reasons, description
of these operations are not presented in the paper. However,
each of them is detailed in the companion paper [1].

4.4.1 lookup Operation

In this section we describe how peerp ∈ C locates a given
key k through thelookup operation. Basically, locating
k consists in walking in the overlay by correcting one by
one and from left to right the bits ofp’s identifier to match
k. By Lemma 1 and by distanceD, this simply consists
in recursively contacting the closest cluster tok. In a fail-
ure free environment, this operation would be similar to a
typical lookup operation, except that if the originatorp of
the lookup was a spare member, thenp would forward
its request to a randomly chosen core member ofC. Then
the request would be propagated until finding either a peer
of a cluster labeled with a prefix ofk, or no cluster closer
to k than the current one. The last contacted peer would
return to the originating peerp either the requested data if
it exists, or null otherwise. Now, suppose that malicious
peers may drop or misroute requests they receive to pre-
vent them from reaching their legitimate destination. We
adapt thelookup operation by using thewidth pathap-
proach, commonly used in fault tolerant algorithms, which
consists in forwarding a request to sufficiently enough peers
so that at least one correct peer receives it. This is de-
scribed in Figure 1. Specifically, a request is forwarded to
⌊(Smin − 1)/3⌋+ 1 randomly chosen core members of the
closest cluster to the request destination, instead of onlyone
randomly chosen core member as in the basiclookup op-



Upon lookup(k) from the applicationdo
if (p.type 6= {core}) then
{q0 . . . q⌊(Smin−1)/3⌋} ← p.coreRandomPeer();
p sends (LOOKUP,k,p) to {q0 . . . q⌊(Smin−1)/3⌋}

else
C ← p.findClosestCluster(k);
p sends(LOOKUP,k,p) to a random subset of
⌊(Smin − 1)/3⌋ + 1 peers inC.coreSet;

enddo
Upon receiving (LOOKUP,k,q) from the networkdo
C ← p.findClosestCluster(k);
if (p.cluster.label= C) then

p sends (LOOKUP,k,q) to core members inC
if not already done;
data← k’s data if cached otherwise null;
sends (k,C,data) to the originatingq by using the reverse path;

else
p sends (LOOKUP,k,q) to a random subset of
⌊(Smin − 1)/3⌋ + 1 peers inC.coreSet;

enddo
findClosestCluster(k)

if (p.dim=0 orp.cluster.prefix(k)) then
C ← p.cluster;

else
C.label← RTp(0).label;
for (i = 0 to p.dim− 1) do

if (D(k,RTp(i).label) < (D(k,C.label))) then
C.label← RTp(i).label;

return C;

Figure 1. lookup Operation at Peer p

eration. In addition, in the last contacted clusterC, when
a core memberp ∈ C receives the request, ifp has not al-
ready sent it to all core members ofC then it does so and
returns the response through the reverse path. Hence, each
peer that forwarded the request waits for a quorum of re-
sponses (i.e.,⌊(Smin − 1)/3⌋ + 1) before propagating the
response back in the reverse path. When the originatorq
of thelookup request receives⌊(Smin − 1)/3⌋+ 1 simi-
lar responses (k,data,C) issued from peers whose ID prefix
matches the oneq initially contacted, thenq can safely use
the receiveddata. Otherwise,q discards it. It is easy to
see that if there are no more than⌊(Smin −1)/3⌋ malicious
core members per cluster crossed, then a lookup operation
invoked by a correct peer returns the legitimate response.

Lemma 2. Thelookup(k) operation returns the data as-
sociated tok if it exists, null otherwise. This is achieved in
O(logN) hops and requiresO(logN) messages.

For space limitations, proofs of lemmata are omitted
from the paper. However, they are available in [1].

4.4.2 join Operation

Recall that by construction each clusterC contains all the
core and spare membersp such thatC’s label is a prefix of
p’s ID, and that each peerp belongs to a unique cluster. To

Upon join(p) from the applicationdo
{q0 . . . q⌊(Smin−1)/3⌋} ← findBootstrap();
p sends (JOIN,p) to q ∈ {q0 . . . q⌊(Smin−1)/3⌋};

enddo;
Upon receiving (JOIN,q) from the networkdo;
C ← p.findClosestCluster(q.id);
if (p.cluster= C) then

if (p.cluster.prefix(q.id)) then
p broadcasts (JOINSPARE,C,q) to p’s core set;

else
p broadcasts (JOINSTEMP,C,q) to p’s core set;

else
p sends (JOIN,q) to a random subset of
⌊(Smin − 1)/3⌋ + 1 peers inC ’s core set;

enddo;
Upon delivering (JOINSPARE,C,q) from the networkdo;

Vs ← Vs ∪ q;
if (p.clusterIsSplit) then p.split();
N=p.findClosestCluster(q.id);
p sends (JOINACK,N ,state) to q;

enddo;
Upon delivering (JOINSTEMP,C,q) from the networkdo;

p.temp← p.temp ∪ q;
if (p.tempIsSplit) then p.create(p.temp);
C′=p.findClosestCluster(q.id);
p sends (JOINACK,N ,state) to q;

enddo;

Figure 2. join Operation at Peer p

join the system, peerp sends ajoin request to a correct
peer it knows in the system. The request is forwarded until
finding the closest clusterC to p’s ID. Two cases are pos-
sible: eitherC’s label matches the prefix ofp’s ID or the
clusterN p should be inserted into does not already exist
(C is only the closest cluster toN ). In the former case,p
is inserted intoC as a spare member. Inserting newcom-
ers as spare members prevent malicious peers from design-
ing deterministic strategies to increase their probability to
act as core member. In the latter case,p is temporarily in-
serted intoC until creation ofN is possible, i.e., predicate
tempIsSplit() in Figure 2 holds. This predicate holds
if there existSsplit temporary peers inC that share a com-
mon prefix. Note that temporary peers do not participate
in the cluster life (they do not even cache data, contrary
to spares), and only core members are aware of their pres-
ence. ThresholdSsplit is introduced to prevent the adver-
sary from triggering a “split-merge” cyclic phenomenon.
Indeed, a strong adversary can inspect the system and lo-
cate the clusters that are small enough so that the departure
of malicious peers from that cluster triggers a merge op-
eration with other clusters, and their re-joining activates a
split operation of the newly created cluster. Thus by setting
Ssplit − Smin > ⌊Smax−1

3 ⌋ with ⌊Smax−1
3 ⌋ the expected

number of malicious peers in a cluster, probability of this
phenomenon is negligible. In both cases, i.e. whetherp
is inserted as spare or temporary peer ofC, p’s insertion



leave(p) /* run by core memberp uponq’s departure*/
Upon (q’s failure detection)do

if (q ∈ Vs) then Vs ← Vs \ {q};
else
p choosesSmin random peersR = {r1, . . . , rj} in Vs ∪ Vc;
{s1, . . . , sj} ← run consensus onR amongVc members;
p.leavePredTable() ;
Vs ← Vs ∪ Vc \ {s1, . . . , sj};
Vc ← {s1, . . . , smin};
p sends (LEAVE,Vc) to all spare members∈ Vs;
p.leaveRoutingTable();

enddo;

Figure 3. leave Operation at Peer p

is broadcast to all core members. Thebroadcastprimitive
guarantees that if a correct sender broadcasts some message
m, then all correct recipients eventually deliverm once4.
Peerp’s insertion in a cluster is acknowledged top by all
correct core members ofp’s new cluster via a JOINACK
message which carries information (state) thatp needs to
join its cluster (whetherp is spare or temporary, and the re-
quired data structures, if any). In all cases, a constant num-
ber of messages are needed. Thus message complexity of a
join isO(logN) which is the cost of the lookup forC.

Lemma 3. Thejoin operation is insensitive to collusion.
That is if before a join operation inC the expected number
of malicious peers inC is µ.Smin, then after a join inC the
expected number of malicious peers is still equalµ.Smin.

4.4.3 leave Operation

The leave operation is executed when a peerq wishes
to leave a cluster or whenq’s failure has been detected.
Note that in both cases,q’s departure has to be detected by
⌊(2Smin +1)/3⌋+1 core members so that a malicious peer
cannot abusively pretend that some peerq left the system.
Thus, when core members detect thatq left, two scenarios
are possible. Eitherq belonged to the spare set, in which
case, core members simply update their spare view to re-
flect q’s departure, orq belonged to the core set. In the lat-
ter case,q’s departure has to be immediately followed by the
core view maintenance to ensure its resiliency (and thus the
cluster resiliency). To prevent the adversary from devising
collusive scenario to pollute the core set, the whole compo-
sition of the core set has to be refreshed. Indeed, replacing
the peer that left by a single one (even randomly chosen
within the spare set) does not prevent the adversary from
ineluctably corrupting the core set: once malicious peers
succeed in joining the core set, they maximise the benefit
of their insertion by staying in place; this way, core sets

4PeerCube relies on the asynchronous Byzantine-resistant reliable
broadcast of Bracha [2], whose time complexity is inO(1) and message
complexity is inO(n2). As for consensus, in our casen = Smin = cst.

are eventually populated by more than⌊Smin−1
3 ⌋ malicious

peers, and thus become – and remain – corrupted. This is
illustrated in Section 5. Thus each core member chooses
Smin random peers among both core and spare members,
and proposes this subset to the consensus. By the consensus
properties, a single decision is delivered to all core mem-
bers, and this decision has been proposed by at least one
correct core member. Thus core members agree on a unique
subset which becomes the new core set. Note that in addi-
tion to preventing collusion, refreshing the whole core set
guarantees that the expected number of malicious peers in
core sets, and thus the number of corrupted entries in rout-
ing tables is bounded byµSmin which is minimal:

Lemma 4. After a core member’s departure, the expected
number of malicious peers in that core is at mostµSmin.

Lemma 5. Upon a core member’s departure, for any ran-
domized algorithm, there exists an adversarial strategy such
that the expected number of malicious peers in the core is
at leastµSmin.

Remark that because of the asynchrony of the system,
some of the agreed peerssi may still belong to some views
while having been detected as failed or left by others, or
may belong to only some views because of their recent join.
In the former case, all the correct core members eventually
deliver the consensus decision notifyingsi’s departure, and
new consensus is run to replace it. Note that for efficiency
reason, each core member can ping the peers it proposes
before invoking the consensus. In the latter case,si’s re-
cent arrival is eventually notified at all correct core mem-
bers by properties of the broadcast primitive (seejoin op-
eration), and thus they insertsi in Vs. Then each core mem-
ber p notifies all the clusters that point toC (i.e. entries
of p’s PT table) of C’s new core set. Core members of
each such cluster can safely update their entries upon re-
ceipt of⌊Smin−1

3 ⌋ + 1 similar notifications. This is encap-
sulated into theleavePredTable() procedure in Fig-
ure 3. Similarly, all the peers{s1, . . . , smin} are safely no-
tified about their new state, and locally handle the received
data structures (invocation ofleaveRoutingTable()
procedure). Former core members only keep their keys and
the associated data. In all cases a constant number of mes-
sages are exchanged for aleave.

5 Handling Collusion

5.1 Thwarting Eclipse Attacks

An eclipse attack enables the adversary to control part
of the overlay traffic by coordinating its attack to infiltrate
routing tables of correct peers. As shown in the previ-
ous section, PeerCube operations thwart those attacks es-



sentially by preventing colluders from devising determin-
istic strategies to join core sets (i.e., newcomers are in-
serted as spare members) and by reaching agreement among
core members on any event that affects PeerCube topol-
ogy. Correctness of these operations relies on the hypoth-
esis that no more than⌊Smin−1

3 ⌋ malicious peers populate
core sets, that is the fraction of malicious peers in any core
set is no more than1/4. Probability that such an assump-
tion does not hold is now discussed. Let us first com-
pute the upper bound on the probability to corrupt a core
set. This holds when the clusters number is minimal (i.e.
equal to N

Smax
). Denote byXu the random variable de-

scribing the number of malicious peers in a cluster, and
by Yu the random variable describing the number of ma-
licious peers in a core. Clearly,Yu depends onXu. Since
identifiers are randomly chosen, inserting malicious peers
into clusters can be interpreted as throwingµ.N balls one
by one and randomly into N

Smax
bins. The probability that

x balls (malicious peers) are inserted into a bin (cluster)

is P (Xu = x) =
(

µ.N
x

) (

Smax

N

)x (

1 − Smax

N

)µ.N−x
. By

theleave operation, each departure from a core set is fol-
lowed by the rebuilding of this set withSmin randomly cho-
sen peers among theSmax peers of the cluster. This can
be interpreted as picking simultaneouslySmin balls among
Smax balls among whichx are black (malicious peers) and
Smax − x are white (correct ones). Thus, the probability
of havingy malicious peers inserted in the core, knowing
the number of malicious peersx in the cluster, is given by

P (Yu = y|Xu = x) =
(x

y)(
Smax−x

Smin−y)
(Smax

Smin
)

. Finally, the tight up-

per bound on the corruption probability is equal topu = 1−
∑⌊

Smin−1

3
⌋

y=0

∑µ.N

x=0 P (Yu = y|Xu = x)P (Xu = x). By
proceeding as above, the tight lower bound on the corrup-

tion probability ispl = 1 −
∑⌊

Smin−1

3
⌋

x=0 P (Xl = x), with

P (Xl = x) =
(

µ.N
x

) (

Smin

N

)x (

1 − Smin

N

)µ.N−x
.

We can now derive upper and lower bounds on the
probability that a request reaches its legitimate destina-
tion. The probability that the number of hops of a re-

quest beh is equal to
(

dmax

h

) (

1
2

)dmax , with dmax =

log2(
N

Smax
) + 3 the maximal dimension of a cluster. Such

a request is successful if none of theh clusters crossed
by this request are corrupted. Thus its probability of

success is at least
∑dmax

h=0

(

dmax

h

) (

1
2

)dmax
(1 − pu)

h, and

at most
∑dmin

h=0

(

dmin

h

) (

1
2

)dmin
(1 − pl)

h, with dmin =

log2(
N

Smax
).

Recall that the policy we propose to replace a left core
member is to refresh the whole composition of the core set
by randomly choosing peers within the cluster. We opposed
this policy to the one which consists in replacing the core
member that left by a single one randomly chosen in the
cluster (see Section 4.4.3). Figure 4 compares the lower

bound on the probability of successful requests with these
two policies according toSmax, for different ratio of mali-
cious peers in the system, and consideringN = 1, 000. The
first observation is that probability of success for the policy
we propose (labelled bywith randomisation in the
Figure) varies lightly withSmax value. This confirms that
settingSmax > O(logN) does not bring any additional ro-
bustness to PeerCube. The second observation is that for the
second policy (denoted byw/o randomisation), that
probability drastically decreases with increasing valuesof
Smax, even for small values ofµ. This corroborates the
weakness of such a policy in presence of a strong adversary.
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Figure 4. Probability of success of requests w.r.t.Smax

5.2 Robust Routing through Independent
Routes

We have just seen that because identifiers are randomly
assigned, the ratio of malicious peers in some clusters may
exceed the assumed ratioµ of malicious peers in the system,
and thus may impact the resilience of PeerCube. Since pol-
lution decreases withSmin a possible solution to increase
the resilience is to augmentSmin according toSmax, i.e. to
haveSmin in O(logN). However, because of the Byzan-
tine resistant consensus this makes maintenance operations
cost inO(log3N) or in O(log2N) because of the broad-
cast primitive. To circumvent this issue, we extend Castro
et al. [3] approach by sending a request over independent
routes. We adapt the independent routes construction algo-
rithm presented in Section 4.1 to match PeerCube features.
Essentially, the search is adapted to find the closest clus-
ter to the theoretical one when this latter one does not ex-
ist. Denote byb the number of bit differences betweenp’s
identifier, the source of the request, andq’s identifier, the
destination peer. Recall that theith route is obtained by
successively correcting bitspi, pi+1, . . . , p(i+b−1) mod b for
0 ≤ i ≤ b−1, with pi, pi+1, . . . , p(i+b−1) mod b the position
of theb bits that differ betweenp andq. We modify this pro-
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Figure 5. Probability of success of requests

cedure by invoking thelookup operation on keys obtained
by successively correcting bitspi, pi+1, . . . , p(i+b−1) mod b

for 0 ≤ i ≤ b−1. Other independent routes of non-optimal
length are found by modifying first, one bit on whichp and
q both agree (sayni), by looking for the closest cluster to
that key, then by finding independent routes from that clus-
ter by proceeding as above, and finally by re-modifyingni.

Lemma 6. The independent routes algorithm finds at least
log2

N
Smax

independent routes of lengthO(logN) w.h.p.

We now examine the probabilitypsucc for a request
issued by a correct peer to reach its legitimate destination
when that request is sent overr independent routes of length
h, with dmin ≤ r ≤ dmax. The request is successful if at
least one route does not contain any corrupted cluster. Letp
denote the exact probability that a cluster is corrupted, i.e.
pl ≤ p ≤ pu. The probability of success of a request using

r independent routes of lengthh is 1 −
(

1 − (1 − p)
h
)r

.

Thus probability psucc is lower bounded by
∑dmax+2

h=0

(

dmax+2
h

) (

1
2

)dmax+2
(

1 −
(

1 − (1 − pu)
h
)r)

and upper bounded by
∑dmin

h=0

(

dmin

h

) (

1
2

)dmin

(

1 −
(

1 − (1 − pl)
h
)r)

. Term

dmax + 2 in the first equation comes from the non-optimal
paths of the independent routing algorithm. Figure 5 shows
the remarkable increase in PeerCube robustness when
using independent routes w.r.t. to a single route. Note
also that whatever the percentage of malicious peers in
the system the probability of success degrades gracefully
(logarithmically) with respect toN .

6 Simulation

In this section, we present the results of an experimen-
tal evaluation of PeerCube performed on PeerSim a simu-
lation platform for P2P protocols. The simulation is event
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Figure 6. Benefit of hot spares in PeerCube is displayed
through the number of routing tables updates

based. The workload is characterised by the number of and
arrival/departure pattern of peers and by the distributionof
requests they issue. Each experiment uses a different work-
load.

Churn Impact In these experiments, we study the abil-
ity of PeerCube to greatly reduce the impact of high dy-
namics on peers load. In particular, we analyse the ben-
efit drawn from appointing newcomers as spare members
on the number of routing tables updates. In Figure 6, the
number of routing tables updates in a network of up to
10,000 peers is depicted. Bursts of joins and leave are cycli-
cally generated (every 500 simulation time unit, up to 500
peers issue join or leave operations).Smax = 13, and
Smin = 4. A failure-free environment is assumed. The
dotted curve shows the number of triggered routing tables
updates in a cluster-based hypercubic topology in which all
clusters members actively participate in the overlay oper-
ations (denoted byPeerCube without core/spare
classification in the figure), while the solid curve
depicts the number of routing tables updates generated in
PeerCube (denoted byPeerCube). As expected, using
newcomers as hot spares drastically reduces the number of
routing tables updates for both joins and departures events.
For instance, the burst of joins generated during simulation
time 27,000 and 27500 have triggered no routing tables up-
dates for PeerCube while it has given rise to 50,400 updates
for PeerCube without core/spare classification.

Robustness against Collusion In these experiments, we
test the ability of PeerCube to achieve a robust lookup op-
eration despite the presence of a strong adversary. As de-
scribed in the previous section, robust lookup is realized by
two techniques. First, by preventing malicious peers from
strategizing to get inserted within core sets; through the ran-
domization insertion algorithm, we minimize the ratio of
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malicious peers into routing tables. Second, by taking ad-
vantage of independent and optimal length paths offered by
the hypercubic topology to guarantee that a request sent by
a correct peer reaches its legitimate destination with prob-
ability close to 1. Figure 7 shows forN = 1, 000 peers,
the probability of successful requests sent by correct peers
w.r.t. to the ratio of malicious peers in the system. The main
observation is that experiments fully validate theoretical re-
sults. Namely, for up to15% of malicious peers,98% of the
requests issued from correct peers are successful, and for
25% of malicious peers, in average,90% of the requests are
successful, which clearly emphasises PeerCube robustness
to co-ordinated malicious behaviour.

7 Conclusion

In this paper we have presented PeerCube, a DHT-based
system that is able to handle high churn and collusive be-
havior. Many existing P2P systems exhibit some fault tol-
erance or churn resiliency. The main contribution of Peer-
Cube is to combine existing techniques from classical dis-
tributed computing and open large distributed systems in a
new way to efficiently decrease churn impact and to tolerate
collusion of malicious peers as shown analytically and vali-
dated through experimental simulation. For future work, we
are planning to study strategies against a computationally
unbounded adversary, that is an adversary, beyond being
able to inspect the whole system and issue join and leave
requests as often it wishes (as studied in this paper), can
carefully choose the IDs of the Byzantine peers, so that it
can place them at critical locations in the network [7, 21].
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