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Abstract ence of very frequent connections/disconnections of peers

a very large number of join and leave operations are locally
This paper presents PeerCube, a DHT-based system aimtriggered engendering accordingly multiple and concurren

ing at minimising performance penalties caused by high maintenance traffic. Ensuring routing tables consistency
churn while preventing malicious peers from subverting the quickly becomes unbearable, leading to misrouting, and to
system through collusion. This is achieved)gpplying a possible partitioning of the system. The other fundamental
clustering strategy to support quorum-based operatighs; issue faced by any practical open system is the inevitable
using a randomized insertion algorithm to reduce the prob- presence of malicious peels[22]. Guaranteeing the liveenes
ability with which colluding Byzantine peers corrupt clus- of these systems requires their ability to self-heal or astie
ters, and;iii) leveraging on the properties of PeerCube’s to self-protect against this adversity. Malicious peens ca
hypercube structure to allow operations to be successfully devise complex strategies to prevent peers from discayerin
handled despite the corruption of some clusters. In spite the correct mapping between peers and data keys. They can
of a powerful adversary that can inspect the whole systemmountSybil attackgd6] (i.e., an attacker generates numer-
and issue malicious join requests as often as it wishes; Peer ous fake peers to pollute the system), they camadning
Cube guarantees robust operations@f{logN) messages, table poisonindalso callececlipse attack§3, [24]) by hav-
with NV the number of peers in the system. Extended simu-ing good peers redirecting outgoing links towards malisiou
lations validate PeerCube robustness. ones, or they can simply drop or re-route messages towards

other malicious peers. They can magnify their impact by

colluding and coordinating their behaviour.

1 Introduction This paper presents PeerCube, a DHT-based system aim-

o ing at avoiding high churn from impacting the performance
Research on the development of efficient peer-to-peerys the system and at the same time at preventing mali-

systems has recen_tly received a lot of attention. This hasgjgys pehaviour (coordinated or not) from subverting the
led to the construction of numerous structured peer-ta-pee system. As many existing DHT-based overlays, PeerCube
overlays systems [16. P4.11€,[9.] 14]. All these systems arejs pased on a hypercubic topology. PeerCube peers self-
based on distributed hash tables (DHTS) which partition an 4ganise into clusters whose interconnections form the hy-
identifier space among all the peers of the system. Struc-percubic topology. Peers within each cluster are classified
tured overlays enjoy numerous important properties. Theyin, two categories, core members and spares, such that
are efficient, scalable, and tolerant to benign failuresvHo o)y the former ones are actively involved in PeerCube op-
ever, less investigation has been carried out for handlingerations, Thus only a fraction of churn affects the overall
bo_th very high churn and col!u3|ve behaviour issues. As topology of the hypercube. Defences against eclipse attack
pointed out by Locher et all[13], most proposed peer-to- gre hased on the observation that malicious peers can more
peer overlays are highly satisfactory in terms of efficiency easily draw a successful adversarial strategy from a deter-
scalability and fault tolerance when evolving in weakly ministic algorithm than from a randomised one. We show
dynamic environments. On the other hand, in the pres-iat regardless of the adversarial strategy colludersaynpl
*This work is partially supported by the CAPES / COFECUB pesgr  th€ randomised insertion algorithm we propose gu_arantees
497-05 that the expected number of colluders in each routing table




is minimal. Furthermore, by keeping the number of core comprehensive performance evaluation that structured ove
members per cluster small and constant, it allows to rely lays (such as Tapestry, Chord, or Kademlia) can achieve
on the powerful consensus building block to guarantee con-similar performance with regard to churn if their parame-
sistency of the routing tables despite Byzantine peers. Fi-ters are sufficiently well tuned. However, these protocols
nally, PeerCube takes advantage of independent and optimado not focus on reducing the frequency at which routing ta-
length paths offered by the hypercubic topology to decreasebles are updated. Such an approach has been proposed in
exponentially the probability of encountering a faulty pee the eQuus architecture[13], in which nodes which are ge-
with the number of independent pathsl[23]. ographically close to each other are grouped into the same

To summarise, PeerCube brings together researctcliques to form the vertices of the hypercube. EQuus offers
achievements in both “classical” distributed systems andgood resilience to churn and good data availability, howeve
open large scale systems (Byzantine consensus, clusteringelying on local awareness to gather peers within cligues
distributed hash tables) so that it efficiently deals with co makes this architecture vulnerable to adversarial calusi
lusion and churn. To the best of our knowledge this work is and geographically correlated failures.
the first one capable of tolerating collusion by requiring fo
eachl ookup, put,j oi nandl eave operationD(logN) 3  Model
latency and only)(log N') messages.

In.the remaining of the paper, we discuss related work in 73'1 System Model
Sectior® and then present the system and adversary models
in SectiorB. Description of the architecture is given in-Sec
tion[, together with an analysis of the churn impact. Ro-
bustness against malicious behaviours (coordinated 9r not
is studied in Sectiofll5. Results of simulations are presente
in Sectior[®. We conclude in Sectibh 7.

Peers are assigned unique random identifiers from an
m-bit identifier space when they join the system. Identi-
fiers (denoted ID) are derived by using the standard MD5
hash function[[18], on the peers’ network address. We take
the value ofm large enough to make the probability of
identifers collision negligible. Each application-sgaxbb-

2 Related Work ject, or data-item, of the system is assigned a unique iden-
tifier, calledkey, selected from the same-bit identifier

In the following, we first review related work that fo- space. Each pegrowns a fraction of all the data items
cuses on robustness against malicious peers and then exanef the system. Regarding timing assumption, we assume an
ine policies to handle high churn. asynchronous model. Rational of this assumption is that it

Regarding robustness to malicious behaviour, different makes difficult for malicious peers to devise strategies tha
approaches have been proposed, each one focusing on a pagould have been exploited in a synchronous timing model,
ticular adversary strategy. Regarding eclipse attackenya v~ such as DoS attacks [15].
common technique, callezbnstrained routing tablerelies
on the uniqueness and impossibility of forging peers’ iden- 3.2  Adversary Model
tifiers. It consists in selecting as neighbours only the peer
whose identifiers are closer to some particular points in the  Some peers try to manipulate the system by not follow-
identifier spacell3]. Such an approach has been successng the prescribed protocols and by exhibiting undesirable
fully implemented into several overlays (e.g., CAN, Chord, behaviours. Such peers are calieglicious Malicious
Pastry). More generally, to prevent messages from beingpeers can drop messages or forward requests to illegitimate
misrouted or dropped, the seminal works on DHT routing peers. Malicious peers may act independently or may be
security by Castro et al.][3] and Sit and Moriis[22] combine part of acollusion group A peer which always follows the
routing failure tests and redundant routing as a solution to prescribed protocols is said to berrect We assume that
ensure robust routing. Ravoaja and Anceaume extended thishere exists a fractiop, (0 < p < 1), of malicious peers
approach to cope with colluders by constraining the regult o in the whole system. Malicious peers are controlled by a
a query, which guarantees to reach the legitimate recipientstrong adversary. The adversary can issue join requests for
with high probability [17]. However, in both approaches, its malicious peers in an arbitrary manner. At any time it
the topological properties of their overlay do not guarante can inspect the whole system and make its malicious peers
that redundant paths are independent. Fiat etlal. [7] use thee-join the system as often as it wishes. We assume the exis-
wide paths technique initially proposed by Hildrum and Ku- tence of a public key cryptography scheme that allows each
biatowicz [10]. All these solutions require all DHT nodes peer to verify the signature of each other peer. We also as-
to maintainO(log®N) links to other nodes, and require for sume that correct peers never reveal their private keyssPee
each operatiod(log® N) messages. IDs and keys are part of their hard coded state, and are ac-

With regard to churn, Li and all[[12] show through a quired via a central authorit{[5]. When describing the pro-



tocols, we ignore the fact that messages are signed and re- Two paths are independent if they do not share any com-
cipients of a message ignore any message that is not signecthon vertex other than the source and the destination ver-
properly. We also use cryptographic techniques to preventtices. In ad-hypercube, a path from vertexto vertexm is

a malicious peer from observing or unnoticeably modify-

obtained by crossing successively the vertices whosedabel

ing a message sent by a correct peer. However a maliciousare obtained by modifying one by omés bits to transform
peer has complete control over the messages it sends and’s label intomm’s one. Suppose th&{(n,m) = b. Then
receives. Note that messages physically sent between any independent paths betweerandm can be found as fol-

two correct peers are neither lost nor duplicated.

4  Architecture Description

lows: pathi is obtained by successively correcting hibit
i+1,...,bit(i+b—1) mod bamong the different bits
betweenn andm. Note that thesé paths are of optimal
lengthH(n, m). In addition to these pathd,— b paths of
lengthH(n, m) 4+ 2 can be constructed as follows: pagth

As discussed before, our architecture is based on a hy-f |ength?(n, m) + 2 is obtained by modifying first bif

percubic topology. The hypercube is a popular intercon-
nection scheme due to its attractive topological propgrtie
namely, low node degree and low network diameter. Be-

yond these properties, a hypercube offers two important

topological features, namely recursive construction @ad i
dependent paths.

4.1 Background

on whichn andm agree, and then by correcting thelif-
ferent bits according to one of tléepossibilities described
previously, and finally by re-modifying bit

4.2 PeerCube in a Nutshell
We now present an overview of PeerCube features. Ba-

sically, our architecture has two main characteristicgrpe
sharing a common prefix gather together iokasters and

This section presents some preliminaries related to theclusters self-organise into a hypercubic topology.

hypercubic topology. For more details the reader is invited
to read Saad and Schuliz[20].AAdimensional hypercube,
or d-hypercube for short, consists 2 vertices, where each
vertexn is labelled by itsi-bits representation. Dimension

4.2.1 Clusters

As stated before, each joining peer is assigned a unique ran-

d is a fundamental parameter since it characterises both th&lom ID from anm-bit identifier space. Assigning unique

diameter and the degree ofdahypercube. Two vertices
ng...ng—1 andm = mg...mg_, are connected by an
edge if they share the same bits but e one for some
i, 0 < ¢ < d, i.e. if their Hamming distancé{(n,m) is
equal tol. In the following, the notatiom = m’ stands for
two verticesn andm whose labels differ only by their bit

Property 1 (Recursive Constructio [2Q])A d-hypercube
can be constructed from lower dimensional hypercubes.

The construction consists in joining each vertex of a
(d — 1)-hypercube to the vertex of the othéd — 1)-
hypercube that is equally labelled, and by suffixing all the
labels of the vertices of the firgtl — 1)-hypercube with)
and those of the second one withThe obtained graph is a
d-hypercube. From this construction, we can derive a sim-
ple distributed algorithm for building éhypercube from a
(d—1) one which involves onlg messages per link updated

random IDs to peers prevents the adversary from control-
ling a portion of the network, since peers are spread wide
over the network according to their identifier. Peers whose
ID share a common prefiyather together within the same
cluster. Each cluster is uniquely identified withl@bel that
characterises the position of the cluster in the overall hy-
percubic topologﬂ/. The label of a cluster is defined as the
shortest common prefix shared by all the peers of that clus-
ter such that theon-inclusionproperty is satisfied. The
non-inclusion property guarantees that a cluster labetmev
matches the prefix of another cluster label, and thus ensures
that each peer in PeerCube belongs to at most one cluster.

Property 3 (Non-Inclusion) If a clusterC labelled with
bg ...bg_1 exists then no clust&l withC’ # C whose label
is prefixed withbg . . . by_1 exists.

The length of a cluster label, i.e. the number of bits of
that label, is called thdimensiorof the cluster. In the fol-

whatever the dimension of the considered system, and thugowing, notationd-cluster denotes a cluster of dimension

has a message complexity©fd) per peer.

Property 2 (Independent Routes [20]).etn andm be any
two vertices of a-hypercube. Then there aflindependent
paths betweem and m, and their length is less than or
equal toH(n, m) + 2.

d. Dimension determines an upper bound on the number of
links a cluster has with other clusters of the overlay, he. t
number of its neighbours. Peers oflalusterC maintain

a routing tableRT such that entryRT'[i], with 0 < ¢ < d,
points to peers belonging to one of theclosest clusters

IHenceforth, a cluster will refer to both the cluster andatsdl.



to C. (Distance notion is detailed in Sectibn4]2.2.) Ref- that have longer prefix in common are closer to each other.
erences to clusters that point towafdare maintained by ~ We are now ready to detail the content of a cluster’s routing
C’s members in a predecessor talitd’. Note that main-  table. LetC = by . ..b4_1 andC’ = by...b;...bs—1. Then,
taining such a data structure is not mandatory, i.e. thoseC’s i*" neighbour in PeerCube is clust&rwhose label is
clusters can be easily found by the topological propertiesthe closest t@.

of PeerCube. However, keeping this information makes the

maintenance operations more efficient. Regarding data, allProperty 4. Let C be ad-cluster. ThenY¥i,0 < i < d,

the peers of a cluster are responsible for the same data keyentry i of the routing table of’ is clusterC’ such that for
and their associated data. As for most existing overlays, aeach clustet’” ¢/, D(C?,C’) < D(C?,C") holds.

data key is placed on the closest cluster to this key. Placing

a data key on all the peers of a cluster naturally improves By the distanceD definition, it is easy to see that if for
fault tolerance since this increases the probability thit t  gach cluste€ in PeerCube the distance betwerand its
key remains available even if some of the peers fail. To ;th nejghbour is equal to (with 0 < i < d), then PeerCube

dershoot a certain predefined valtig;,, which depends on

the probability of peers’ failures. Finally, for scalabjlrea- Lemmal. LetC = by ...bs—1 be ad-cluster. Thervi, 0 <
sons, each cluster size is upper bounded by a constant valug < ¢, C’s i** neighbour is cluste€’ such that’’ is prefixed
Smaa SPecified later on. with by . . . b; if such a cluster exists. Otherwis#, = C.

This can be seen by observing that, by definitiorDof
C’ shares the longest prefix WitH, that is at least the prefix
Clusters self-organise into a hypercubic topology, sueh th 7. OtherwiseC would be the closest cluster@. We
the position of a cluster into the hypercube is determined by exploit this property to construct a simple lookup protocol
its label. Ideally the dimension of each clusteshould be  \yhich basically consists in correcting the bits of the seurc

equal to some valué to conform to a perfeat-hypercube.  {gwards the destination from the left to the right.
However, due to churn and random identifier assignment,

dimensions may differ from one cluster to another. Indeed,
as peers may join and leave the system asynchronously,
clusterC may grow or shrink more rapidly than others. In
the meantime, bounds on the size of clusters require thatDimensions Disparity As described before, clusters di-
whenever the size af exceedsS,, .., C splits into clus- mensions are not necessarily equal to each other. By sim-
ters of higher dimensions, and that, whenever the size of ply settingSy,.. > log2IN, we can make the dimensions
falls undersS,,.;, C merges with other clusters into a single disparity small and constant. Indeed, observe that the di-
new cluster of lower dimension. Finally, since peers IDs, mension of a cluster is necessarily greater than or equal to
and thus cluster labels, are randomly assigned, some of théogzﬁ. This follows from the fact that the minimum
labels may initially not be represented at all. For all these number of clusters i&V/.S,,.., Which determines the min-
reasons dimensions of clusters may not be homogeneousmum number of bits needed to code the label of a clus-
To keep the structure as close as possible to a perfect hypetter. Furthermore, by setting,,... > log2N, we can show
cube and thus to benefit from its topological properties, we by using Chernoff’s bounds that the dimension of a clus-
need adistancefunctionD that allows to uniquely charac- ter is w.h.d@ lower thanloggﬁ + 3. Indeed, since la-
terise the closest cluster of a given label. Thisis obtalned bels are uniformly randomly assigned, settifig,, to a
computing the numerical value of the “exclusive or” (XOR) higher value decreases clusters dimension. Thus distance
of cluster labeld[T4]. To preventtwo labels to be at the samed between any two clusters dimensions is w.h.p. less than
distance from a given bit string, labels are suffixed with as or equal to3f Furthermore the number of non-represented

4.2.2 Hypercubic Topology

.3 Leveraging the Power of Clustering

many bits “0” as needed to equalise their sizeto prefixes is at mos2?, which is very small with regard to the
total number of clusterd’/S,,,.... Consequently, by setting

Definition 1 (Distance D) LetC = ag...aq—1 and Smaz > lOQQN, PeerCube is very close to B)-&QSN )-

C' = bo...by—1 be any twod (resp. d’) -clusters:  hypercube, which guarantees PeerCube to enjoy the attrac-

D(C,C") = Dlag...aq-10""%bg...by—10m" ") = tive topological properties of a perfect hypercube of diame

Z;’;‘O}a#bi 2m— terlogs z-—. HenceforthS, .., is in ©(log ).

Dls_tanceD is such that for any poing and d|stanc_e3 2|n the following, with high probability (w.h.p.) means wigitobability
there is exactly one point such thatD(p, q) = A (which greater thart — 2.

does not hold for the Hamming distance). Finally, labels  3Note that for a pure hypercube, the dimension disparitggs N.



Limiting the Impact of Churn  We have just shown that tem, is not described since itis very similar to trmok up()

by having peers self-organised in a hypercube of clustersoperation. From the topology structure point of view, three
we get w.h.p. an overlay of diametkrgs Srfw. We now events may result in a topology modification: when the size
describe how peers take advantage of that clustering to limi of a cluster exceedS,, .., this clustersplitsinto two new

the impact of churn on the overall system. Specifically, clusters; when the size of a cluster goes bekyy,,, this
peers within a cluster are classified into two categodese clustermergeswith other clusters to guarantee the cluster
andsparemembers. Only core members are in charge of resiliency; finally, when a peer cannot join any existingselu
PeerCube operations (i.e. inter clusters message forwardter because none of them matches the peer identifier prefix,
ing, routing table maintenance, computation of clustewvie then a new cluster isreated For robustness reasons, a clus-
membership, and keys caching). Size of the core set is equaler may have to temporarily exceed its maximal s$zg,,

to the minimal size of a cluster, i.e. constaf);,,. Core before being able to split into two new clusters. This guar-
members form a clique, i.e., they point to each other. View antees that resiliency of both new clusters is met, i.e both
of the core set is denotdd.. In contrast to core members, clusters sizes are at least equabi@;,,. A similar argument
spare members are temporarily inactive, in the sense thatpplies to thecr eat e operation. For this specific opera-
they are not involved in any of the overlay operations. They tion, peers whose identifiers do not match any cluster label,
only maintain links to a subset of core members of their temporarily join the closest cluster to their identifierdan
cluster and cache the set of keys and associated data as comheneverS,,;;; > S, temporary peers share the same
members do. Within a cluster, apart from the core membersprefix then they create their new cluster. Thresh®Jg,:

that maintain the view/, of the spares set, no other peer is discussed in SectidiZ}.2. These three additional op-
in the system is aware of the presence of a particular sparegrations exploit the recursive construction property of hy
not even the other spares of the cluster. As a consequencegercubes to minimise topology changes, and rely on the
routing tables only point to core members, thatis;,, ref- Byzantine-consensus building block to achieve high censis
erences per entry are needed. tency among routing tables. For space reasons, description
of these operations are not presented in the paper. However,
each of them is detailed in the companion paper [1].

Achieving High Consistency By keeping the size of the

core set to a small and constant value, we can afford to rely
on the pow_erful consensus building block to guarantee CON-y g ookup Operation
sistent routing tables among correct core members despite

the presence of a fractignof Byzantine peers among them. |, this section we describe how peeE C locates a given
Briefly, in the consensus problem, each process Proposegey k through thel ookup operation. Basically, locating

a value, and all the non-faulty processes have to eventuy, consists in walking in the overlay by correcting one by
ally decide (termination property) on the same output value gne and from left to right the bits gfs identifier to match
(agreement property), this value having been proposed by;.. By Lemmall and by distanc®, this simply consists

at least one process (validity property). Various Byzantin i recursively contacting the closest clusterktoln a fail-
consensus algorithms have been proposed in the literatur,e free environment, this operation would be similar to a
(good surveys can be found il [8, 4]). In PeerCube, we tynica| lookup operation, except that if the originatoof

use the solution proposed by Kotla et ALI[11] essentially be ¢ | ookup was a spare member, therwould forward
cause it provides optimal resiliency, i.e. tolerates up3eé its request to a randomly chosen core membef.oThen
Byzantine processes in a groupfprocesses, and guar-  the request would be propagated until finding either a peer
antees that a value proposed only by Byzantine processegs 4 cluster labeled with a prefix df, or no cluster closer

is never decided by correct ones. Moreover, message COMyg, . than the current one. The last contacted peer would

plexity is in O(n?®) in the worst case, an@(n) in exeCU-  returm to the originating pegr either the requested data if
tions where Byzantine processes are not present. Note thaf exists, or null otherwise. Now, suppose that malicious
in our contexty = Siin.- peers may drop or misroute requests they receive to pre-

vent them from reaching their legitimate destination. We
4.4 PeerCube Operations adapt thd ookup operation by using thavidth pathap-

proach, commonly used in fault tolerant algorithms, which
From the application point of view, three key opera- consists in forwarding a request to sufficiently enoughpeer
tions are provided by the system: theokup(k) operation so that at least one correct peer receives it. This is de-
which enables to search for kéythej oi n operation that  scribed in Figur€ll. Specifically, a request is forwarded to
enables a peer to join the system, and ltieave opera- | (Smin — 1)/3] + 1 randomly chosen core members of the
tion, indicating that some peer left the system. Note that th closest cluster to the request destination, instead ofamdy
put (z) operation, that enables to insert datén the sys- randomly chosen core member as in the basiokup op-



Upon | ookup(k) from the applicatiordo
if (p.t ype # {core}) then
{90---9((8,,:,—1)/3) } < p.cor eRandonPeer ();
p sends (LOOKUPk,p) to {qo - - - 4| (s,,;,—1)/3] }
else
C «— pfindC osestCl uster(k);
p sends(LOOKUPE,p) to a random subset of
[(Smin —1)/3| + 1 peersirC.cor eSet ;
enddo
Upon receiving (LOOKUP,q) from the networkdo
C «— pfindd osestd uster(k);
if (p.cl uster. | abel =C)then
p sends (LOOKUPE,q) to core members i@
if not already done;
data<— k's data if cached otherwise null;

sends k,C,datg) to the originatingg by using the reverse path;

else
p sends (LOOKUPE,q) to a random subset of
[(Smin —1)/3| + 1 peersirC.cor eSet ;
enddo
findd osest d uster (k)
if (p.di m=0 orp.cl uster. prefix(k))then
C—pcluster;
else
C.| abel «— RT,(0).| abel ;
for (i = 0 to p.di m— 1) do
if (D(k,RT,(z).l abel ) < (D(k,C.I abel )))then
C.l abel «— RTy (7).l abel ;
return C;

Figure 1.1 ookup Operation at Peer p

eration. In addition, in the last contacted clusferwhen
a core membep € C receives the request, jfhas not al-
ready sent it to all core members @fthen it does so and

Uponj oi n(p) from the applicatiordo
{90---9|(5,nin—1)/3]} < findBoot strap();
psends (JOIN)tog € {q0---9|(s,,;,~1)/3/ }}

enddg

Upon receiving (JOINg) from the networldo;

C «—pfindd osestCl uster(gq.id);
if (p.cl ust er=C) then
if (p.cl uster. prefix(gq.id))then
p broadcasts (JOINSPARE() to p’s core set;
else
p broadcasts (JOINSTEMPg) to p’s core set;
else
p sends (JOIN;) to a random subset of
[(Smin —1)/3] + 1 peers inC’s core set;
enddg

Upon delivering (JOINSPARE,q) from the networldo;
Vs —VsUgq;
if (p.clusterlsSplit)thenpsplit();
N=p.findC osestCluster(gq.id);

p sends (JOINACKN ,state to g;

enddg

Upon delivering (JOINSTEMR;,q) from the networlkdo;
ptenp—ptenpUg;
if (p.t enpl sSplit)thenp.create(p.tenp);

'=p.fi ndCl osest Cl uster(q.id);
p sends (JOINACK) ,state to q;
enddg

Figure 2. j oi n Operation at Peer p

join the system, peer sends g oi n request to a correct
peer it knows in the system. The request is forwarded until
finding the closest clustef to p’s ID. Two cases are pos-
sible: eitherC’s label matches the prefix gfs ID or the

returns the response through the reverse path. Hence, eactjyster A/ p should be inserted into does not already exist
peer that forwarded the request waits for a quorum of re- (C is only the closest cluster ). In the former casep

sponses (i.el,(Smin — 1)/3] + 1) before propagating the
response back in the reverse path. When the originator
of thel ookup request receiveS Syin — 1)/3] + 1 simi-
lar responsegi(dataC) issued from peers whose ID prefix
matches the onginitially contacted, therg can safely use
the receiveddata Otherwise,q discards it. It is easy to
see that if there are no more thgi$,,,;, — 1)/3| malicious

is inserted intaC as a spare member. Inserting newcom-
ers as spare members prevent malicious peers from design-
ing deterministic strategies to increase their probabibt

act as core member. In the latter casés temporarily in-
serted intaC until creation of\ is possible, i.e., predicate

t enpl sSplit () inFigurel2 holds. This predicate holds

if there existS,,;: temporary peers ig that share a com-

core members per cluster crossed, then.{;\ lookup operation,on prefix. Note that temporary peers do not participate
invoked by a correct peer returns the legitimate response. in the cluster life (they do not even cache data, contrary

Lemma 2. Thel ookup(k) operation returns the data as-
sociated tok if it exists, null otherwise. This is achieved in

O(logN) hops and require®(logN) messages.

For space limitations, proofs of lemmata are omitted

from the paper. However, they are availablelin [1].

4.4.2 j oi n Operation

Recall that by construction each clustecontains all the
core and spare membersuch thatC’s label is a prefix of
p’'s ID, and that each peerbelongs to a unique cluster. To

to spares), and only core members are aware of their pres-
ence. Threshold,,,;: is introduced to prevent the adver-
sary from triggering a “split-merge” cyclic phenomenon.
Indeed, a strong adversary can inspect the system and lo-
cate the clusters that are small enough so that the departure
of malicious peers from that cluster triggers a merge op-
eration with other clusters, and their re-joining actigate
split operation of the newly created cluster. Thus by sgttin
Septit — Smin > [2me==L] with | Zmee=1| the expected
number of malicious peers in a cluster, probability of this
phenomenon is negligible. In both cases, i.e. whether

is inserted as spare or temporary peeiCop’s insertion



| eave(p) /* run by core membep upong’s departure*/
Upon (¢'s failure detectiondo
if (g € Vs)then Vs «— Vi \ {q};

else
p choosesS,,;, random peer® = {r1,...,r;}in Vs UV,;
{s1,...,5j} < run consensus oR amongV, members;

p.l eavePredTabl e() ;

Vs = Vs UV {s1,...,8;}

Ve — {317 ) Smin};

p sends (LEAVE)V,) to all spare members V;
p.l eaveRout i ngTabl e() ;

are eventually populated by more thpﬁ%‘lj malicious
peers, and thus become — and remain — corrupted. This is
illustrated in Sectiol]5. Thus each core member chooses
Smin random peers among both core and spare members,
and proposes this subset to the consensus. By the consensus
properties, a single decision is delivered to all core mem-
bers, and this decision has been proposed by at least one
correct core member. Thus core members agree on a unique
subset which becomes the new core set. Note that in addi-

endd . . . .
a tion to preventing collusion, refreshing the whole core set

guarantees that the expected number of malicious peers in
core sets, and thus the number of corrupted entries in rout-
ing tables is bounded hysS,,.;», which is minimal:

Figure 3. | eave Operation at Peer p

is broadcast to all core members. Tiheadcastprimitive Lemma 4. After a core member’s departure, the expected
guarantees that if a correct sender broadcasts some messagémber of malicious peers in that core is at mest,,;,.

m, then all correct recipients eventually deliver oncd.
Peerp’s insertion in a cluster is acknowledgeddoy all
correct core members @fs new cluster via a JOINACK
message which carries informatiostdte) thatp needs to
join its cluster (whethep is spare or temporary, and the re-

quired data structures, if any). In all cases, a constantnum  Remark that because of the asynchrony of the system,
ber of messages are needed. Thus message complexity of §ome of the agreed peersmay still belong to some views

j 0i nis O(logN) which is the cost of the lookup fat. while having been detected as failed or left by others, or
may belong to only some views because of their recent join.
In the former case, all the correct core members eventually
deliver the consensus decision notifyisgés departure, and
new consensus is run to replace it. Note that for efficiency
reason, each core member can ping the peers it proposes
before invoking the consensus. In the latter cass,re-

cent arrival is eventually notified at all correct core mem-
bers by properties of the broadcast primitive (seé n op-
eration), and thus they insettin V. Then each core mem-
ber p notifies all the clusters that point © (i.e. entries

of p's PT table) ofC’'s new core set. Core members of
each such cluster can safely update their entries upon re-

Thus, when core members detect thaeft, two scenarios ~ CcPt Of | #24= + 1 similar notifications. This is encap-
' ’ sulated into thé eavePr edTabl e() procedure in Fig-

are possible. Eitheq belonged to the spare set, in which (3. Similarly. all th _ ol
case, core members simply update their spare view to re- cw- Simiarly, a the peergsi, . .., smin } are safely no-
flect ¢'s departure, og belonged to the core set. In the lat- tified about their new state, and locally handle the received

ter caseq’s departure has to be immediately followed by the data structures (invocation éfeaveRout i ngTabl e()

core view maintenance to ensure its resiliency (and thus thet[)r:ocedurg).thrcjm(tar clore Irlnembers only feetp theltr) key? and
cluster resiliency). To prevent the adversary from degisin € associated data. In afl cases a constant number of mes-

collusive scenario to pollute the core set, the whole compo-Sages are exchanged for eave.

sition of the core set has to be refreshed. Indeed, replacing

the peer that left by a single one (even randomly chosen5 Handling Collusion

within the spare set) does not prevent the adversary from

ineluctably corrupting the core set: once malicious peers5.1 Thwarting Eclipse Attacks

succeed in joining the core set, they maximise the benefit

of their insertion by staying in place; this way, core sets  An eclipse attack enables the adversary to control part
4peerCube relies on the asynchronous Byzantine-resistiable of the overlay traffic by coordinating its attack to infilteat

broadcast of Brachd[2], whose time complexity i<¥f1) and message routing t?-bles of correct peers. As shown in the previ-
complexity is inO(n?). As for consensus, in our case= Sy, = Cst. ous section, PeerCube operations thwart those attacks es-

Lemma 5. Upon a core member’s departure, for any ran-
domized algorithm, there exists an adversarial strategjsu
that the expected number of malicious peers in the core is
at leastu.S,in-

Lemma 3. Thej oi n operation is insensitive to collusion.
That is if before a join operation id the expected number
of malicious peers i€ is 1.Sin, then after a join inC the
expected number of malicious peers is still equal,,,;,, .

4.4.3 | eave Operation

The | eave operation is executed when a peewishes

to leave a cluster or wheg's failure has been detected.
Note that in both caseg;s departure has to be detected by
[(2S,:n+1)/3] + 1 core members so that a malicious peer
cannot abusively pretend that some pegéeft the system.




sentially by preventing colluders from devising determin- bound on the probability of successful requests with these
istic strategies to join core sets (i.e., newcomers are in-two policies according t&,, .., for different ratio of mali-
serted as spare members) and by reaching agreement amorjpus peers in the system, and considefing- 1,000. The

core members on any event that affects PeerCube topolfirst observation is that probability of success for the @oli
ogy. Correctness of these operations relies on the hypothwe propose (labelled bwi t h r andom sati on in the

esis that no more thah%J malicious peers populate Figure) varies lightly withS,, .. value. This confirms that
core sets, that is the fraction of malicious peers in any coresettingS,,,... > O(logN) does not bring any additional ro-
set is no more thath/4. Probability that such an assump- bustness to PeerCube. The second observation s that for the
tion does not hold is now discussed. Let us first com- second policy (denoted by/ o r andoni sat i on), that

pute the upper bound on the probability to corrupt a core probability drastically decreases with increasing valoks
set. This holds when the clusters number is minimal (i.e. S;,.., even for small values ofi. This corroborates the
equal to %). Denote byX, the random variable de- weakness of such a policy in presence of a strong adversary.
scribing the number of malicious peers in a cluster, and

by Y, the random variable describing the number of ma-

licious peers in a core. Clearly;,, depends onX,,. Since o randomisaton mmmm

identifiers are randomly chosen, inserting malicious peers

into clusters can be interpreted as throwjngv balls one

by one and randomly inte"— bins. The probability that

o
=

x balls (malicious peers) are inserted into a bin (cluster)
1 . max x max u.-N—z
is P (X, =a) = (") (34=)" (1 %)™ . By

x
thel eave operation, each departure from a core set is fol-
lowed by the rebuilding of this set withl,,;,, randomly cho-

sen peers among th&,, .. peers of the cluster. This can

(Iog scale)

o
Y
2
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be interpreted as picking simultaneously;,, balls among R R S S N N S S R OO O
. L RSN RSy RN, Ny, ey,
Smaz balls among whiclr are black (malicious peers) and e medme meise meavh messh

Smaz — « are white (correct ones). Thus, the probability

of havingy malicious peers inserted in the core, knowing Figure 4. Probability of success of requests W.6tnas
the number of malicious peessin the cluster, is given by

x Smax—=
P(Yy = y|Xa = 2) = WELEZ)  Finany, the tight up-

5.2 Robust Routing through Independent

Smin . .
per bound on the corruption probability is equapto= 1— Routes

Simin—1

Lot SN P(Y, =y X, =2) P (X, =x). By

proceeding as above, the tighg |QWEV bound on the corrup- e have just seen that because identifiers are randomly

tion probability isp, = 1 — 2.2 1 P (X, = 2), with assigned, the ratio of malicious peers in some clusters may

P(X, =1)= (“;CN) (%)w (1- SLNM)N-N—I_ exceed the assumed rapm)fmgllcmus peersinthe system,

and thus may impact the resilience of PeerCube. Since pol-

We can now derive upper and lower bounds on the |ytion decreases witls,,;,, a possible solution to increase

probability that a request reaches its legitimate destina-ihe resilience is to augmest,:, according taSy,az, i.e. to

tion. The probability that the number of hops of a re- haves,,;, in O(logN). However, because of the Byzan-

. d 1 dmaz . . . . . .
quest beh is equal to (“;e=) (3)""*", with dmee =  tine resistant consensus this makes maintenance operation
loga(32—) + 3 the maximal dimension of a cluster. Such cost in O(log®N) or in O(log>N)) because of the broad-

a request is successful if none of theclusters crossed cast primitive. To circumvent this issue, we extend Castro
by this request are corrupted. Thus its probability of et al. [3] approach by sending a request over independent
success is at |ea§:'fj§‘5’ (d";fz) (%)dmw (1 —p,)", and routes. We adap_t the in_dependent routes construction algo-
at mostzd”im (dmm) (l)dmm (1 —pz)h, With d.. — rithm p_resented in Schm.l to match PeerCube features.
N h=0 L n A2 men Essentially, the search is adapted to find the closest clus-
loga(5,)- ter to the theoretical one when this latter one does not ex-
Recall that the policy we propose to replace a left core ist. Denote by the number of bit differences betwegis
member is to refresh the whole composition of the core setidentifier, the source of the request, agisl identifier, the
by randomly choosing peers within the cluster. We opposeddestination peer. Recall that th& route is obtained by
this policy to the one which consists in replacing the core successively correcting bits, i1, - - -, P(i4+5—1) mod » fO
member that left by a single one randomly chosen in the 0 < i < b—1, withp;, pi11, ..., D(i+b—1) mod » the position
cluster (see Sectidn 4.2.3). Figlide 4 compares the lowerof theb bits that differ betweep andg. We modify this pro-
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Figure 5. Probability of success of requests Figure 6. Benefit of hot spares in PeerCube is displayed
through the number of routing tables updates

cedure by invoking theookup operation on keys obtained

by successively correcting bits, pii1, - - -, P(i+b—1) mod b
for0 < i < b— 1. Other independent routes of non-optimal Pbased. The workload is characterised by the number of and

length are found by modifying first, one bit on whigtand arrival/departure pattern of peers and by the distribugibn

q both agree (say:;), by looking for the closest cluster to requests they issue. Each experiment uses a different work-
that key, then by finding independent routes from that clus- load.

ter by proceeding as above, and finally by re-modifying

6. The ind q laorithm find | Churn Impact In these experiments, we study the abil-
Lemma 6. The independent routes algorithm finds at least ity of PeerCube to greatly reduce the impact of high dy-

log?% independent routes of lengt(logV) w.h.p. namics on peers load. In particular, we analyse the ben-

efit drawn from appointing newcomers as spare members

We now examine the probabilitys,cc for a request ~ ©N the number pf routing tables updates. In Fiddre 6, the

issued by a correct peer to reach its legitimate destination?Umber of routing tables updates in a network of up to

when that request is sent oveindependent routes of length 10,000 peers is depicted. Bursts of joins and leave are-cycli

hy With dpin < 7 < dpmas. The request is successful if at cally g_enerat_e(_j (every 500 S|mul_at|on time unit, up to 500
least one route does not contain any corrupted clustep Let PE€rS issue join or leave operationsjmaz = 13, and

denote the exact probability that a cluster is corrupted, i. 7" = 4. A failure-free environment is assumed. The
p < p < pa. The probability of success of a request using dotted curve shows the number of triggered routing tables
.

. . h updates in a cluster-based hypercubic topology in which all
r independent routes of lengthis 1 — (1 —(1-p) ) ' clusters members actively participate in the overlay oper-
Thus  probability psucc is lower bounded by  ations (denoted bfPeer Cube wi t hout cor e/ spare

draat2 (dmaat2) (1)dmast? (1 —(1-q@ —pu)h) ) cl assification in the figure), while the solid curve
and upper bounded by depicts the number of routing tables updates generated in

dumin (dimin) (1\dmin R\ PeerCube (denoted eer Cube). As expected, using

h=0 ( h ) (5) (1 B (1 ~(1-n) ) ) Term newcomers as hot spares drastically reduces the number of

dinaq + 2 in the first equation comes from the non-optimal oyting tables updates for both joins and departures events
paths of the independent routing algorithm. Fidure 5 shows oy instance, the burst of joins generated during simutatio

the_ re_markable increase in PeerCubg robustness whegme 27,000 and 27500 have triggered no routing tables up-
using independent routes w.r.t. to a single route. Note yates for PeerCube while it has given rise to 50,400 updates

also that whatever the percentage of malicious peers ingg, peerCube without corel/spare classification.
the system the probability of success degrades gracefully

logarithmically) with respect tov. . . .
(log y) P Robustness against Collusion In these experiments, we

) ) test the ability of PeerCube to achieve a robust lookup op-
6 Simulation eration despite the presence of a strong adversary. As de-
scribed in the previous section, robust lookup is realized b
In this section, we present the results of an experimen-two techniques. First, by preventing malicious peers from
tal evaluation of PeerCube performed on PeerSim a simu-strategizing to get inserted within core sets; throughme r
lation platform for P2P protocols. The simulation is event domization insertion algorithm, we minimize the ratio of
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(5]
malicious peers into routing tables. Second, by taking ad-
vantage of independent and optimal length paths offered by
the hypercubic topology to guarantee that a request sent by [6]
a correct peer reaches its legitimate destination with prob
ability close to 1. Figur&l7 shows fa¥ = 1,000 peers,
the probability of successful requests sent by correctypeer
w.r.t. to the ratio of malicious peers in the system. The main
observation is that experiments fully validate theorétiea
sults. Namely, for up ta5% of malicious peers)8% of the
requests issued from correct peers are successful, and forpg
25% of malicious peers, in averag#)% of the requests are
successful, which clearly emphasises PeerCube robustness
to co-ordinated malicious behaviour. [10]

(7]

(8]

7 Conclusion [11]

In this paper we have presented PeerCube, a DHT-based2]
system that is able to handle high churn and collusive be-
havior. Many existing P2P systems exhibit some fault tol-
erance or churn resiliency. The main contribution of Peer- 13
Cube is to combine existing techniques from classical dis-
tributed computing and open large distributed systems in a;, ,
new way to efficiently decrease churn impact and to tolerate
collusion of malicious peers as shown analytically and-vali
dated through experimental simulation. For future work, we [15]
are planning to study strategies against a computationally
unbounded adversary, that is an adversary, beyond being
able to inspect the whole system and issue join and leave
requests as often it wishes (as studied in this paper), ca 16
carefully choose the IDs of the Byzantine peers, so that it

can place them at critical locations in the netwark 4, 21]. [17]
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