
HAL Id: hal-00916690
https://hal.science/hal-00916690

Submitted on 16 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unreliable Distributed Timing Scrutinizer to Converge
toward Decision Conditions

Emmanuelle Anceaume, Eric Mourgaya, Philippe Raïpin-Parvédy

To cite this version:
Emmanuelle Anceaume, Eric Mourgaya, Philippe Raïpin-Parvédy. Unreliable Distributed Timing
Scrutinizer to Converge toward Decision Conditions. Studia Informatica Universalis, 2008, 6 (2),
pp.23–50. �hal-00916690�

https://hal.science/hal-00916690
https://hal.archives-ouvertes.fr

Unreliable Distributed Timing Scrutinizer

to Converge toward Decision Conditions

Observateurs de temps distribués, conditions de décision

E. Anceaume — E. Mourgaya — P. R. Parvédy

ABSTRACT. In this paper, we propose to extend the condition-based approach introduced

and developed by Mostéfaoui et al. in 2001 by characterizing V
n

f , the set of all the possible

input vectors containing the values proposed by n processes. The condition-based approach

consists in identifying sets of input vectors for which the consensus is directly solvable (i.e., in

one communication step) in a pure asynchronous model despite up to f crashes. We focus on

all the other input vectors. Among them, we identify those that allow to solve the consensus

problem in two communication steps still in a pure asynchronous model. For the other ones, we

rely on a distributed oracle that enables the input vectors to converge toward a good patterned

vector with probability one. We specify a protocol that benefits from this approach to solve the

consensus problem very simply and efficiently.

RÉSUMÉ. Nous proposons d’étendre l’approche conditionnée, introduite et développée par

Mostéfaoui et al. en 2001, par caractérisation de l’ensemble V
n

f de tous les vecteurs entrants

possibles contenant les valeurs générées par n processus. L’approche conditionnée consiste à

identifier les ensemble de vecteurs entrants pour lesquels le consensus est directement résoluble

(c-a-d en une seule étape) dans un modèle asynchrone pur en dépit de f crashes. Nous nous

intéressons aux autres vecteurs entrants parmi lesquels nous identifions ceux qui permettent de

résoudre le consensus en deux étapes de communications dans un modèle asynchrone pur. Pour

les autres vecteurs, tout dépend d’un oracle distribué qui fait converger les vecteurs vers un

vecteur bien conditionné avec probabilité 1 . Nous spécifions un protocole qui tire avantage de

cette approche pour résoudre simplement et efficacement le consensus

KEYWORDS: Asynchronous systems, condition-based approach, converging-based approach,

consensus problem.

MOTS-CLÉS : Système asynchrone, approche conditionnée, Problème d’agrément, consensus

distribué, crashes, oracle

Studia Informatica Universalis.

26 Studia Informatica Universalis.

Distributed Timing Scrutinizer 27

1. Introduction

Agreement problems are unavoidable in distributed systems. Such

problems arise whenever the processes of the system have to reach a

common decision, or to share a view of the computation progress. All

the agreement problems can be reduced to the same basic problem,

namely the consensus problem (Shostak et al., 1981). In this prob-

lem, processes propose a value and must unanimously and irrevocably

decide on the same value that is related to the proposed values. Un-

fortunately, Fisher, Lynch, and Paterson (Fisher et al., 1985) demon-

strated that whenever the distributed system is both asynchronous and

prone to crash failures there is no deterministic solution to the consen-

sus problem (in the following, this result is referred as the FLP result).

Several approaches have been proposed to circumvent this impossibil-

ity result (Randomized protocols have been proposed (e.g., (Ben-Or,

1983)), weaker specifications of the problem have been given leading

for example to the k-set agreement (Chaudhuri, 1993), or to the approx-

imate agreement (Dolev et al., 1986), or properties have been given in

the failure detection quality (Chandra et al., 1996)). Recently, another

approach based on conditions has been investigated (Mostéfaoui et al.,

2001a, Mostéfaoui et al., 2001b, Mostéfaoui et al., 2001c, Mostéfaoui

et al., 2002). Contrary to the former one, this approach does not try

to circumvent the FLP result (Fisher et al., 1985). Rather it finds re-

strictions on the set of input vectors (the i-th entry of an input vector

contains the value proposed by process pi, with V the set of possi-

ble values) for which the problem becomes solvable. In MostÈfaoui et

al (Mostéfaoui et al., 2001a, Mostéfaoui et al., 2001b, Mostéfaoui et al.,

2001c, Mostéfaoui et al., 2002), the authors focus on conditions C that

identify sets of vectors of V n that allow n processes to directly solve

the consensus problem in spite of up to f crashes in the standard asyn-

chronous model. Such conditions are called f -acceptable conditions,

and denoted C
[e]
f with e the distance between these vectors (Mostéfaoui

et al., 2001a). These conditions have to meet constraints that are defined

in terms of a predicate P and a function S. Both P and S have to satisfy

some termination, agreement and validity properties that guarantee that

for any two input vectors satisfying an f -acceptable condition, then the

consensus problem is solved. As shown in (Mostéfaoui et al., 2003),

28 Studia Informatica Universalis.

this approach is very efficient when the probability of process crashes

is low (a common fact in practice).

Clearly among all the input vectors belonging to V n, only a subset

of them belongs to f -acceptable conditions. Otherwise, it would con-

tradict the FLP result (Fisher et al., 1985). For the other ones, consen-

sus protocols need to rely on any combination merging random oracle,

leader oracle or unreliable failure detector to guarantee the termination

property (Mostéfaoui et al., 2002).

In this paper, we focus on those input vectors that do not satisfy f -

acceptable conditions. Clearly, among them, some are very close to

good patterned vectors while the others are not. Specifically, informa-

tion contained in the former ones is sufficiently significant to guaran-

tee that with a high probability all the correct processes highlight the

same value from the received input vector. Thus, by proposing this

value as new input value, all the processes converge very quickly to-

ward the same decision value. By relying on such a property, one can

build very simple and efficient consensus protocols that decide in two

rounds of computation despite up to f crash failures, and without any

help (i.e., without any oracles). This paper proposes a characterization

of this set of vectors. In the following, this set of vectors is denoted

C
[e],s
f . For all the other vectors, denoted hereafter C

[e],w
f , that is, those

which are far from the good patterned ones, it is necessary to enrich or

refine their information. Possible solutions are to wait for more input

values (i.e., more than n − f input values) or to propose a new input

value that has some chance to be proposed by other processes. Clearly

the first solution is impossible in a pure asynchronous model essentially

because one cannot make the difference between a very slow process

and a crashed one. Concerning the second solution, the probability that

all correct processes propose the same new input value is very low sim-

ply because their input vectors may be different. Our idea is to combine

both solutions. To this end, we rely on a timing oracle, the unreliable

distributed timing scrutinizer (Anceaume et al., 2002), that provides in-

finitely often the actual time needed to receive x messages provided

that x processes have not crashed, with x ≥ n − f . By relying on

this mechanism, each process may enrich the information contained in

its input vector, and thus, can refine the value returned by the decision

Distributed Timing Scrutinizer 29

function S (Mostéfaoui et al., 2001a). By proposing this value as new

input value, the probability to converge toward a good patterned vector

(i.e., a vector that satisfies an acceptable condition) increases to eventu-

ally be equal to 1. Clearly, one could have relied on any oracle (random

oracle, leader oracle or unreliable failure detector) as in MostÈfaoui

et al. (Mostéfaoui et al., 2002). However, their approach guarantees

an eventual termination or a termination with probability 1, while the

UDTS mechanism ensures infinitely often a termination in a bounded

number of steps. We show in this paper that there exists for a given

e ∈ [0, f] a strict partition of the set of all the possible vectors V n
f in

C
[e]
f , C

[e],s
f and C

[e],w
f .

We present experimental results that emphasize the interest of the

proposed approach. For a given f -acceptable condition C
[e]
f and a given

V , we present the distribution of vectors in C
[e]
f , in C

[e],s
f , and in C

[e],w
f .

These results show that for a binary consensus, the ratio of vectors that

satisfy C
[f]
f decreases with increasing values of n (e.g., for n = 3, 40%

of vectors satisfy C
[f]
f , while for n = 9, 5% of them satisfy C

[f]
f). This

result is reversed for the vectors that satisfy C
[f],s
f (for n = 3, 45% of

vectors satisfy C
[e],s
f , while for n = 9, 53% of them satisfy C

[f],s
f).

The contributions of this paper are as follows:

– We propose, for a given acceptable condition C
[e]
f and a probabil-

ity k ∈ (0.5, 1], a characterization of the set V n
f . This characterization

includes the set of vectors that satisfy C
[e]
f defined by MostÈfaoui et

al. (Mostéfaoui et al., 2001a, Mostéfaoui et al., 2001b, Mostéfaoui et

al., 2001c, Mostéfaoui et al., 2002), and the two above sets of vectors

C
[e],s
f and C

[e],w
f . The set C

[e],s
f contains all the input vectors for which

the probability to converge toward a good patterned vector is greater

than or equal to k. The set C
[e],w
f contains all the vectors whose in-

formation is not significant enough to deterministically highlight some

value.

– We illustrate our approach by providing, for a given f -acceptable

condition, the distribution of vectors in each of the classes C
[f]
f , C

[f],s
f

30 Studia Informatica Universalis.

and C
[f],w
f , according to n and |V |.

– We specify a deterministic consensus protocol that benefits from

the condition-based approach together with the characterization of V n
f

to augment the number of input vectors that lead to a decision value ei-

ther directly (condition-based approach) or very quickly (in two rounds

of protocol). For all the other vectors, the protocol relies on the UDTS

oracle to decide in a bounded number of steps.

The remaining of the paper is organized as follows. Section 2 de-

scribes the computational model and the consensus problem. Sec-

tion 3 outlines the condition-based approach. Section 4 presents the

convergence-based approach, the approach we propose. Section 5

presents the deterministic consensus protocol. Section 6 concludes.

2. The Distributed Computation Model and the Consensus

Problem

2.1. The Distributed Computation Model

The system consists of a finite set Π of n > 1 processes, namely,

Π = {p1, . . . , pn}. We denote by 〈ij〉, the link from pi to pj . Processes

communicate and synchronize by sending and receiving messages. The

network can be represented as a complete graph structure G = {Π, E},

where E = {〈ji〉, i, j ∈ [1, n]2}. For each process pi we denote by

Gi = {Π, Ei} the sub-graph defined by a central node pi and the set

Ei = {〈ji〉, j ∈ [1, n]}. In the following we call this sub-graph structure

a star-graph (example in Figure 1).

2.1.1. Failure Model

The execution of a process might stop prematurely (crash failure), or

can fail to process some code in a timely manner (performance failure).

A crashed process does not recover, contrary to a process that suffers

from performance failures. By definition, a correct process is a process

that never crashes, while a faulty one is not correct. The maximum num-

ber of faulty processes is denoted f . Both correct and faulty processes

can suffer from performance failures.

Distributed Timing Scrutinizer 31

!"

Figure 1: star-graph of pi

The datagram service is assumed to be completely controlled by an

adversary which has all freedom to delay (but not to drop or to corrupt)

messages. In other words, the datagram service has a performance fail-

ure semantic (i.e., it can fail to deliver messages in a timely manner).

Finally, we assume that each non-crashed process has access to a

correct hardware clock Hp, i.e., with a known and finite drift rate. This

assumption simplifies applications since they have to deal with crash

failures anyhow but they do not have to deal with faulty clocks like

“fast” or “slow” clocks (Cristian et al., 1999). Note that this hypothesis

is not unrealistic even in large networks. For example, GPS (Global Po-

sitioning System) clocks are becoming affordable, and they can provide

clocks whose drift is very small and known (Verissimo et al., 2000). In

case the knowledge of local drifts cannot be ensured, it is possible to

use past heartbeat messages to get accurate estimates of the expected

arrival times of future heartbeats, and then to use them to synchronize

processes. Using past heartbeat messages does not involve any addi-

tional overhead in messages.

2.1.2. Behavior of the Communication Links

The behavior of communication links follows the one described

in (Anceaume et al., 2002) (example in Figure 2). Briefly, transmission

32 Studia Informatica Universalis.

delays are modeled by a random variable X . The behavior of com-

munication links is encompassed by the covering and locality proper-

ties (Anceaume et al., 2002). The covering property guarantees that the

behavior of message transmission delays over the communication link

can always be approximated by a sequence of probabilistic laws. While

the locality property guarantees that any two consecutive elements of

this sequence are similar. More precisely, since X does not follow

a known classical probabilistic law, we cover the history of message

transmission delays by a sliding window on which X follows a known

classical probabilistic law.

t

window

delay

Figure 2: example of transmission delays of a particular link according

to time

A communication link is stable if it satisfies the locality and covering

properties. In the following, we assume that the network is stable, i.e.,

any link connecting any two correct processes is stable.

2.1.3. The Unreliable Distributed Timing Scrutinizer

The unreliable distributed timing scrutinizer (UDTS) is defined

in (Anceaume et al., 2002). This mechanism captures the state of the

network and, based on its observation, estimates messages transmission

delays. This is a distributed module such that each process has access

to a local UDTS. The local UDTS associated to process pi is denoted

UDTSi. Upon pi request, UDTSi predicts an estimate ∆i of the wait-

ing time needed to receive a given number of messages over Gi. Due

to the possible unpredictable but transient fluctuations over Gi, ∆i can

be temporarily under-estimated or over-estimated. However, by peri-

Distributed Timing Scrutinizer 33

odically updating its estimate, UDTSi quickly and easily adapts to Gi

behavior. It is implementable and by capturing the network properties,

one may determine the waiting time that minimizes the number and/or

the duration of computational rounds of the agreement protocol (An-

ceaume et al., 2002), or may simply compute the waiting needed time

to receive m, m + 1, ..,m′ messages, with 1 ≤ m, m′ ≤ n. This is

this latter feature that we use in this paper. More precisely, when pi

queries UDTSi with an interval of values [⌈k0n⌉, n] with ⌈k0n⌉ the

smallest number of messages needed to guarantee the safety property

of the agreement protocol run by pi
1, UDTSi returns a vector TimEsti

of estimated waiting times. This vector contains n − ⌈k0n⌉ + 1 en-

tries. TimEsti[k] is an estimation of the waiting time needed to receive

k messages over Gi if UDTSi is able to compute this time, that is if

at least the k corresponding links are stable, otherwise TimEsti[k] is

equal to ⊥. An Unreliable Distributed Timing Scrutinizer (UDTS) is

completely defined by the Completeness property. This property char-

acterizes the detection of stable links, and is defined as follows. For all

i ∈ [1, n]:

– Completeness property: all stable links of Gi are detected.

As previously said, the UDTS oracle is unreliable in the sense that

its estimations can be temporarily under-estimated or over-estimated.

However, by the stable network and the completeness properties, the

returned estimation is infinitely often correct (Anceaume et al., 2002).

So the greatest non ⊥-value of vector TimEsti allows infinitely of-

ten the receipt of all the messages sent to pi. The proposed consensus

algorithm relies on such a property to make any input vector in C
e,w
f

converge to C
e,s
f . This is detailed hereafter.

2.2. The Consensus Problem

The consensus problem can be informally defined as follows : Each

process that executes the consensus proposes a value, and all the correct

processes must eventually decide on the same initial value. Formally

the consensus problem satisfies the following three properties :

1. Typically, ⌈k0n⌉ is equal to ⌈n+1
2

⌉ or to ⌈ 2n+1
3

⌉ in agreement protocols

34 Studia Informatica Universalis.

– Termination: Every correct process eventually decides exactly one

value.

– Validity: If a process decides v, then v was proposed by some pro-

cess.

– Agreement: If a process decides v, then all correct processes even-

tually decide v.

We introduce the Finite Termination property. This property guaran-

tees that correct processes terminate infinitely often in a bounded num-

ber of computation steps.

3. The Condition-Based Approach

As said in the Introduction, this work relies on the condition-based

approach which has been introduced and developed by MostÈfaoui and

al.(Mostéfaoui et al., 2001b), (Mostéfaoui et al., 2001c), (Mostéfaoui et

al., 2001a). This section outlines this approach.

3.1. The Approach

The condition-based approach consists in considering conditions that

make the consensus problem solvable, despite up to f crashes. More

precisely, it consists in identifying sets of input vectors for which it is

possible to design a protocol that does not require additional assump-

tions, i.e., a pure asynchronous environment. An input vector I is a size

n vector, whose i-th entry contains the value proposed by process pi, or

⊥ if pi did not take any step in the execution. The set of values that can

be proposed by the processes is denoted V . Note that ⊥ *∈ V . If at

most f processes can crash, at most f entries are equal to ⊥. These in-

put vectors are called views. For I ∈ V n, with V n the set of all possible

input vectors with all entries in V , then If denotes the set of possible

views J such that I agrees with J in all the non ⊥-entries of J . By ex-

tension, V n
f denotes the set of all possible vectors with at most f entries

equal to ⊥. To solve consensus, a condition has to meet constraints that

are defined in terms of a predicate P and a function S. Both P and S
have to satisfy a termination, validity, and agreement properties. Infor-

mally, these properties say that predicate P allows a process pi to test

Distributed Timing Scrutinizer 35

whether a decision value can be computed from its view, while function

S applied on a valid view allows pi to get as decision value an initial

value.

– TC→P (Termination property): I ∈ C ⇒ ∀J ∈ If : P (J)

– VP→S (Validity property): ∀J ∈ If : P (J) ⇒ S(J) = a non-⊥
value of J

– AP→S (Agreement property): ∀J1, J2 ∈ If : (J1 ≤ J2) ∧
P (J1) ∧ P (J2) ⇒ S(J1) = S(J2)

The latter one introduces the ordering property (J1 ≤
J2) for J1, J2 ∈ V n

f which is defined as follows:

∀k : J1[k] *= ⊥ ⇒ J1[k] = J2[k]. This ordering property strongly

relies on the invocation to the snapshot primitive. This primitive is

assumed to be available to all the processes in a standard asynchronous

shared-memory system. However in a message-passing model, as

assumed in this paper, there is no snapshot-like primitive. However,

in such a model, one can easily implement the comparison ordering

property J1 ∼e J2. This ordering property can be defined as follows:

Let J1, J2 ∈ V n
f be any two input vectors. Let e ∈ [0, 2f] with f < n

2
.

Definition 1 J1 is e−comparable to J2, denoted J1 ∼e J2, iff for all

i ∈ [1..n] we have

(J1[i] = J2[i] ∨ J1[i] = ⊥ ∨ J2[i] = ⊥) and at most e t-uplets

(J1[i], J2[i]) with J1[i] = ⊥∨ J2[i] = ⊥.

Clearly the comparison property J1 ∼e J2 is weakest than the order-

ing property (J1 ≤ J2) ∨ (J2 ≤ J1). Hence we need to weaken, as

MostÈfaoui and al. (Mostéfaoui et al., 2001c), the agreement property

of an acceptable condition as follows :

– A
[e]
P→S (e-Agreement property): ∀I ∈ V n : P (J1) ∧ P (J2) ∧

(J1 ∼e J2) ⇒ S(J1) = S(J2)

A condition is f -acceptable if there exists a predicate P [e] and a func-

tion S satisfying the Termination, Validity and e-Agreement properties.

MostÈfaoui et al. (Mostéfaoui et al., 2001a) characterize the largest set

of conditions that allows to solve the consensus problem. Henceforth,

36 Studia Informatica Universalis.

#$!%"&'()

#*!%"&'()

#+!%"&'()

#,!%"&'()

#-!%"&'()

.&'(/

#0!%"&'()
.

&'(/vector of

.

&'(/vector of

Figure 3: Characterization of V n
f for a Given Condition C

[e]
f and

for a given k

we consider only f -acceptable conditions. We denote these conditions

by C
[e]
f where e can be seen as the degree of asynchrony of the system.

3.2. The Condition-based Module

The condition-based module is a distributed module which im-

plements the condition-based approach, more precisely the accept-

ability parameters P [e] and S of the given acceptable condition

C
[e]
f (Mostéfaoui et al., 2001a). Processes exchange their estimate val-

ues to define their current views Vi of proposed values, and then ap-

ply predicate P to Vi, and accordingly function S returns the decision

value if predicate P returns true, otherwise S returns a ⊥-value, that

is a non-decision value. To guarantee the termination of a condition-

based consensus protocol, one needs to associate the condition-based

module with any combination merging random oracle, leader oracle or

unreliable failure detector oracles (Mostéfaoui et al., 2001a).

Distributed Timing Scrutinizer 37

4. The Convergence-based Approach

One can depict V n
f as a collection of decision sets isolated from each

other by a non-decision area. Each isolated decision set contains all

the input vectors J that satisfy predicate P [e] and such that S(J) = a.

The non-decision area V n
f /C

[e]
f contains all the input vectors J ′ such

that ¬P [e](J ′). This is illustrated in Figure 3. As briefly presented in

the Introduction, our approach, that we call the convergence-based ap-

proach, consists in characterizing this non-decision area. Clearly due

to FLP result (Fisher et al., 1985), V n
f /C

[e]
f is a non-empty set. Thus

the convergence-based approach consists in characterizing the set V n
f /

C
[e]
f with f ≥ 1. For a given f -acceptable condition, and a value

k ∈ (0.5, 1], we propose to split the non-decision area V n
f /C

[e]
f into

two sub-areas C
[e],s
f and C

[e],w
f . Informally, the former one, that we call

the strong agreement area, contains all the input vectors such that with

a high probability converge toward a perfectly determined value, while

the second one contains vectors such that with a low probability con-

verge toward a perfectly determined value. Note that in the following

we use indifferently the term convergence area and convergence set.

4.1. Notations and Definitions

Given e ∈ [0, 2f], k ∈ (1
2
, 1], and an input vector J ∈ V n

f , predicate

P
[e]
k (J) allows a process pi to test whether for any e-comparable input

vector J1 ∈ V n
f , the probability that S(J) = S(J1) is greater than or

equal to k :

– P
[e]
k (J) : ∀J1 ∈ V n

f /J ∼e J1, P r[S(J) = S(J1)] ≥ k
where Pr[X] denotes the probability that event X occurs.

Within this context, we can define the notions of strong agreement set

C
[e],s
f and weak agreement set C

[e],w
f as follows :

Definition 2 Given an f -acceptable condition, we have:

– C
[e],s
f (Strong convergence set) = {J ∈ V n

f /P
[e]
k (J) ∧ ¬P [e](J)}

– C
[e],w
f (Weak convergence set) = {J ∈ V n

f /¬P
[e]
k (J) ∧ ¬P [e](J)}

38 Studia Informatica Universalis.

Lemma 4.1 C
[e]
f ∩ C

[e],s
f = C

[e]
f ∩ C

[e],w
f = C

[e],s
f ∩ C

[e],w
f = ∅

Proof We only prove the first part of the lemma, i.e., C
[e]
f ∩ C

[e],s
f = ∅,

since the proof of the other two parts are very similar.

The proof is done by contradiction. Suppose that there exists some

vector I ∈ C
[e]
f ∩ C

[e],s
f . Then, by definition of C

[e],s
f and C

[e],w
f , vector

I satisfies P [e](I) and ¬P [e](I) ∧ P
[e]
k (I). Clearly, this is impossible.

Thus vector I does not exist, and C
[e]
f ∩ C

[e],s
f = ∅. ✷Lemma 4.1

The following lemma shows that {C
[e]
f , C

[e],s
f , C

[e],w
f } is a partition

of V n
f , for a given e ∈ [0, f] and k ∈ (0.5, 1].

Lemma 4.2 V n
f = C

[e]
f ∪ C

[e],s
f ∪ C

[e],w
f and C

[e]
f ∩ C

[e],s
f ∩ C

[e],w
f = ∅

Proof By lemma 4.1, the assertion C
[e]
f ∩C

[e],s
f ∩C

[e],w
f = ∅ is trivially

true.

We now prove that V n
f = C

[e]
f ∪ C

[e],s
f ∪ C

[e],w
f . By definition, we

have C
[e]
f ⊂ V n

f , C
[e],s
f ⊂ V n

f and C
[e],w
f ⊂ V n

f . Thus C
[e]
f ∪ C

[e],s
f ∪

C
[e],w
f ⊆ V n

f . Let I ∈ V n
f . If P [e](I) then I ∈ C

[e]
f , otherwise we

have ¬P [e](I). If P
[e]
k (I) then I ∈ C

[e],s
f otherwise I ∈ C

[e],w
f . Thus

I ∈ C
[e]
f ∪ C

[e],s
f ∪ C

[e],w
f . ✷Lemma 4.2

4.2. Properties

Given an acceptable condition C
[e]
f with P [e] and S satisfying the

properties TC→P , VP→S and A
[e]
P→S , we define the property A

[e]
Pk→S . This

property guarantees the agreement among all vectors in C
[e],s
f :

– A
[e]
Pk→S (Strong Convergence Agreement property) :

∀I ∈ V n : ∀J1, J2 ∈ If , P
[e]
k (J1)∧P

[e]
k (J2)∧(J1 ∼e J2) ⇒ S(J1) =

S(J2)

Distributed Timing Scrutinizer 39

Definition 3 A strong agreement area is acceptable iff property A
[e]
Pk→S

is guaranteed.

A first consequence of this property is that C
[e],s
f can be partitioned

in |V | subsets C
[e],s,a
f such that

C
[e],s,a
f = {J ∈ C

[e],s
f /S(J) = a} with a ∈ V . We have

C
[e],s
f =

⋃
a∈V

C
[e],s,a
f with

⋃
a $=b∈V

(C
[e],s,a
f ∩ C

[e],s,b
f) = ∅. The

second consequence is that if for some vector J1 validating predicate

P [e] and such that the decision value is S(J1) then for any other

comparable vector J2 validating predicate P
[e]
k , then J2 converges also

to S(J1) :

– A
[e]
Pk,P→S (Convergence Agreement property) :

∀I ∈ V n : ∀J1, J2 ∈ If , P
[e](J1)∧P

[e]
k (J2)∧(J1 ∼e J2) ⇒ S(J1) =

S(J2)

4.3. The Condition-Based+ Module

The condition-based+ module is an extension of the condition-based

module (see Section 3.2). It implements for a given f -acceptable

condition C
[e]
f the predicate P [e] and function S as in MostÈfaoui et

al. (Mostéfaoui et al., 2001c) and predicate P
[e]
k . Figure 4 describes the

algorithm of the condition-based+ module. In addition to the imple-

mentation of the predicates P [e] and P
[e]
k and function S, this module

computes the distance which separates vector Vi from the nearest vec-

tor J ∈ C
[e]
f if Vi ∈ C

[e],s
f and from the nearest J ∈ C

[e],s
f if Vi ∈ C

[e],w
f .

The distance which separates vector Vi from the nearest vector J in C
[e]
f

or in C
[e],s
f is equal to the minimum number of estimates needed to pos-

sibly decide or strongly converge. This distance is used by pi to estimate

whether it is worth waiting for more estimates or not. The distance from

Vi to a set F is computed as follows:

d(Vi, F) = min({distance(Vi, J), J ∈ F}) with distance(Vi, J) the num-

ber of couples (Vi[j], J [j]) that contain exactly one ⊥-value.

40 Studia Informatica Universalis.

Function GetCond
+(V)

(1) if ¬(P
[e]
k (V) ∨ P [e](V)) then

(2) return PutCond
+(S(V), d(V, C

[e],s
f), false, false);

(3) else

(4) return PutCond
+(S(V), d(V, C

[e]
f), P [e](V), P

[e]
k (V));

Figure 4: The Condition-based+ Module Run by Process pi

4.4. Some Experimental Results

This section provides a quantitative evaluation of the proportion of

vectors within the decision, the strong convergence and the weak con-

vergence areas. This evaluation is done by considering the f -acceptable

condition C 2
[f]
f proposed by MostÈfaoui et al (Mostéfaoui et al.,

2001c). Since we assume a message passing model we need to consider

f -comparable input vectors, with f < n
2
. Predicate P2

[f]
f and func-

tion S2f are respectively defined as follows. Let J be an input vector

belonging to V f
n . Then, P2

[f]
f (J) ≡ #1st(J)−#2nd(J) > f + f−#⊥(J)

(with #1st(J) and #2nd(J) denote the occurrence number of the most

common value and second most common value of vector J , respec-

tively), and S2f (J) = a such as #a(J) =#1st(J). These experimental

results mostly show the proportion of input vectors that satisfy C 2
[f]
f and

those that satisfy C 2
[f],s
f . These results have been obtained as follows.

All the vectors in V n
f have been generated for different values of n and

of V . First, the number of input vectors in C 2
[f]
f has been enumerated.

Then, for each input vector J not in C 2
[f]
f , we have made an inventory

of all the input vectors J1 ∈ V n
f such that J1 ∼f J . Let |J1 ∼f J | be

this number. We have then evaluated the ratio rJ=
|J1∼f J |∧(S(J1)=S(J))

|J1∼f J |

to calculate the number of input vectors in C 2
[f],s,S(J)
f . We have

C 2
[f],s,S(J)
f = {J ′ ∈ V n

f /¬P [f](J ′) ∧ (rJ ′ ≥ k) ∧ (S(J) = S(J ′))}.

Finally, the proportion of input vectors belonging to C 2
[f],s
f is equal

to r=
|
S

S(J)∈V
C 2

[f],s,S(J)
f

|

|V n
f
|

. The lessons learned from these experimental

results are consistent with the intuition. These results are shown in Fig-

Distributed Timing Scrutinizer 41

ure 5. This figure depicts two graphs. The left graph of the figure plots

the ratio of input vectors belonging to C 2
[f]
f (y axis) against the number

n of processes (x axis) for |V | = 2 and 3. From this graph, we observe

that this ratio strongly decreases with increasing values of n (this ratio

decreases to 0.3% for n = 9 and |V | = 3). This confirms the fact that

favoring the value that appears the most often in an input vector despite

up to f crashes and the presence of any other value is more difficult to

attain when n increases. The right graph of the figure plots the ratio of

input vectors belonging to C 2
[f],s
f (y axis) against the number n of pro-

cesses (x axis) for |V | = 2 and 3. This ratio is obtained with k = 0.7.

Contrary to the left one, both curves are less sensitive to increasing val-

ues of n, and the ratio remains above 30% of the total number of input

vectors.

Figure 5: Ratio of Decision and Strong Convergence Vectors Against

the Number of Processes

5. The Consensus Protocol

5.1. Principles of the Protocol

This section presents a distributed algorithm that solves the consen-

sus problem described in Section 2.2. This algorithm implements the

convergence-based approach. We assume a set of n processes connected

42 Studia Informatica Universalis.

by stable links such that among them strictly less than ⌈k0n⌉ = n
2

pro-

cesses may crash. Processes proceed in asynchronous and consecutive

rounds. In contrast to several existing protocols, the protocol we pro-

pose is neither based on the rotating coordinator nor on the leader-based

paradigms. Rather, all the processes have a symmetric role, and at each

round any process is likely to determine the decision value. The proto-

col is described in Figure 6. A process pi starts a consensus execution

by invoking the function Consensus(v), where v is the value pi pro-

poses. This function is made up of four concurrent tasks T1, T2, T3,

and T4. The statement return(esti) returns to pi the decision value esti
which terminates pi consensus execution.

Task T1 is in charge of building pi input vector Vi and querying the

condition-based+ module. Whenever pi has received ⌈k0n⌉ propose

messages, and at each new receipt, pi queries its condition-based+ mod-

ule with its local view Vi as parameter (lines 5-6).

Task T2 is the main task of the protocol. At the beginning of a

new round, pi queries UDTSi to obtain its vector of time estimations

TimEsti (line 10). As previously said in Section 2, the kth entry of

TimEsti provides the time needed for pi to receive ⌈k0n⌉ + k pro-

pose messages. Process pi first initializes an alarm clock with the

time needed to receive ⌈k0n⌉ propose messages, that is, TimEsti[0]
(line 13). Then it broadcasts its proposed value to all the processes and

enters a waiting loop. Process pi exits this waiting loop either when it

times out, or when its input vector Vi satisfies either C
[f]
f (decide=true)

or C
[f],s
f (strong=true). During this waiting loop, pi receives at least

⌈k0n⌉ propose messages. Clearly, if the proposed values satisfy the f -

acceptable condition (implemented within the condition-based+ mod-

ule), then pi directly decides the value returned by this module, i.e., est

(line 24). In that case, pi exits from the wait until loop, reliably broad-

casts the decision value to all the processes, and returns est (lines 16-

18).

Task T3 analyzes the result returned by the condition-based+ mod-

ule. First, pi updates its estimate with S(Vi) (line 23). Then it checks

whether it is worth waiting for more estimates or not. This is imple-

mented by testing whether nbvalue ≤ k + ⌈k0n⌉ − #(¬⊥)Vi
is true. If

Distributed Timing Scrutinizer 43

this is true, this means that the receipt of nbvalue more estimates guar-

antees pi either to decide (if Vi already belongs to a strong convergence

area) or to converge toward a strong convergence area (if Vi belongs to

a weak convergence area) (see Section 4.3). In both cases, pi contin-

ues to wait in the wait until loop. If the above test is not satisfied, then

pi searches in TimEst, the smaller waiting time corresponding to the

receipt of nbvalue estimates (line 26). If this waiting time exists (i.e.,

UDTSi is able to determine the time needed to receive nbvalue mes-

sages, that is at least nbvalue processes are still non-crashed), then pi

updates its alarm clock accordingly, and continues to wait in the wait-

ing loop with this new delay. Otherwise, pi cannot wait for any more

estimates. Then it tests whether its input vector belongs to a strong con-

vergence area. In the affirmative, it exits from the waiting loop, and

enters the next round. Indeed, waiting for more estimates is not neces-

sary since the distance of Vi to the closest decision vector is too large

to be reached. Otherwise (lines 33 34), pi strives to converge toward a

strong convergence area. To this end, it updates its alarm clock with the

time needed to receive the greatest number of estimates, and continues

to wait in the waiting loop with this new delay.

Task T4 is a decision task.

5.2. Proof of the Consensus Protocol

Lemma 5.1 Infinitely often if 2∆ has elapsed then ∆ =
Sup{TimEst[i], i ∈ [1, n]}.

Proof The proof is by contradiction. Let Vi be the input vector

of process pi. Suppose that 2∆ time units have elapsed and ∆ *=
Sup{TimEst[i], i ∈ [1, n]}. Thus there exists some k such that

k = Min(e ∈ [0, ⌈k0n⌉)|nbvalue ≤ e + ⌈k0n⌉ − #(¬⊥)Vi
) (line 26).

From the property of UDTSi, infinitely often ∆ allows the receipt

of at least nbvalue messages before t + 2∆. By construction of the

condition-based+ module, Vi is such that distance(Vi, C
[f]
f) = nbvalue

if V ∈ C
[f],s
f , or distance(Vi, C

[f],s
f) = nbvalue if V ∈ C

[f],w
f . At each

new receipt of a propose message two cases are possible :

44 Studia Informatica Universalis.

Function Consensus(ν)

(1) r ← 0; esti ← ν; Vi[1..n] ← ⊥
decision ← false; Decide ← false; Strong ← false;

(2) % ReadTime() : returns the local time system

Task T1:

(3) upon receipt of propose(r, estj)
(4) Vi[j] ← estj;
(5) if (#(¬⊥)Vi

≥ ⌈k0n⌉) then

(6) GetCond+(Vi);
(7) endif

endTask

– case 1: the received propose message does not decrease nbvalue.

Thus nbvalue ≤ k + ⌈k0n⌉ − (#(¬⊥)Vi
+ 1), that is, nbvalue ≤

(k − 1) + ⌈k0n⌉ − #(¬⊥)Vi
. By definition of k, this is impossible.

– case 2: the received propose message decreases nbvalue. Thus,

progressively, nbvalue decreases down to 0 before time t + 2∆ time

units. Thus either decide=true or strong=true before t + 2∆ time units

have elapsed, which contradicts the assumption of the lemma.

This ends the proof of the lemma. ✷Lemma 5.1

Lemma 5.2 Infinitely often at the end of a round r, all non crashed

processes have the same estimate.

Proof Let us consider any two processes pi and pj . Several cases are

considered.

– pi decides. In this case, three sub-cases are possible:

- pj decides : Due to the acceptability of the condition,

we have S(Vi) = S(Vj) leading by construction of the algorithm to

esti = estj .

Distributed Timing Scrutinizer 45

- pj strongly converges : Due to the Convergence Agreement

property we have S(Vi) = S(Vj). Thus by construction of the algo-

rithm, we have esti = estj .

- pj weakly converges : By construction of the protocol, 2∆ time

units have elapsed. From the property of UDTSj , infinitely often ∆
time units allow pj to receive all the messages sent to it. Thus pj receives

at least all the estimates pi has received. Thus by function S, S(Vi) =
S(Vj).

– No process decides and all the processes exit the wait until loop

with their input vector satisfying a strong convergence area. By the

strong convergence agreement property all the processes pi and pj sat-

isfy S(Vi) = S(Vj), and thus have the same estimate at the end of the

round.

– 2∆ time units have elapsed for all the non-crashed processes. Then

infinitely often all the processes have received all the messages sent to

them (by lemma 5.1). Thus, infinitely often all the processes build the

same local view and by function S, obtain the same estimates.

– No process decides, some processes exit the waiting loop after

t + 2∆ time units, and the other ones belong to a strong convergence

area. Then all the processes that exit the waiting loop upon time-out

have received all the messages sent to them. By construction of the pro-

tocol, either they strongly converge or they decide. Thus, by the strong

convergence agreement area, they all complete the round with the same

estimate.

✷Lemma 5.2

Lemma 5.3 If a correct pi does not begin the round r + 1 after after

having executed round r then pi decides at the end of the round r.

Proof The proof is by contradiction. Suppose that pi does not de-

cide in round r and does not begin round r + 1. It must be the case

that pi is blocked forever in the waiting loop, that is decide=false and

strong=false. By assumption of the model, pi receives at least n − f
messages. Thus eventually, pi time-outs (after 2∆ time units), exits the

wait until loop, and begins round r+1. This contradicts the assumption,

and concludes the lemma. ✷Lemma 5.3

46 Studia Informatica Universalis.

Lemma 5.4 Eventually, at least one process decides.

Proof Let r be the current round. If some correct process pi does

not begin round r then pi must have previously decided by lemma 5.3.

Suppose that all the non-crashed processes begin round r. Let pi be

such a process. If Vi satisfies C
[f]
f , then pi decides. Otherwise, due

to lemma 5.2 infinitely often all the processes complete round r with

the same estimate est. Thus, in round r + 1, all the local views are

comparable to an input vector J=[est,....est] with J ∈ C [f]. Thus, each

local view satisfies C
[f]
f and hence decides. This ends the proof of the

lemma. ✷Lemma 5.4

Lemma 5.5 If some process decides then all non crashed processes de-

cide.

Proof Straightforward from Task T4. ✷Lemma 5.5

Lemma 5.6 Eventually, all correct processes decide.

Proof Straightforward from lemmas 5.4 and 5.5. ✷Lemma 5.6

Lemma 5.7 Infinitely often, all the correct processes decide in a

bounded number of communication steps.

Proof Let r be a round such that all non-crashed processes have exe-

cuted r. By lemma 5.2, infinitely often all the non-crashed processes

complete round r with the same estimate, and if no decision is reached,

execute round r + 1 with a view in C
[f]
f . Thus, a decision is performed

infinitely often in 2 communication steps. ✷Lemma 5.7

Distributed Timing Scrutinizer 47

6. Conclusion

In this paper, we have presented an extension of the condition-

based approach introduced by Mostefaoui et al in 2001. The condition-

based approach is related to the consensus impossibility result shown by

Fisher Lynch and Paterson result in 1995 (Fisher et al., 1985). Briefly,

the condition-based approach finds restriction on the set of input vec-

tors proposed by the set of processes for which the consensus problem

is directly solvable (i.e., in one communication step). We have extended

this condition to significantly augment the number of input vectors for

which the consensus problem becomes solvable. To this end, we have

characterized, for a given acceptable condition, the set of input vectors

that makes all the processes converge, with a computable probability, to-

ward the same decision. Our approach has been applied to a distributed

algorithm to solve the consensus problem: by adopting the convergence

value as new input value, the probability to converge toward a good pat-

terned one (i.e., a vector that satisfies an acceptable condition) increases

to be equal to 1. For example, experimental results show that favoring

the value that appears the most often in an input vector despite up to f
crashes and the presence of any other value is not sensitive to increasing

values of n, which confirms the interest of our approach.

7. References

Anceaume E., Mourgaya E., ”Unreliable Distributed Timing Scrutinizer: Adapting Asyn-

chronous Algorithms to the Environment” , Proc. of the 5th IEEE International Symposium on

Object-Oriented Real-time distributed Computing (ISORC 2002), 2002.

Ben-Or M., ”Another Advantage of Free Choice: Completely Asynchronous Agreement Pro-

tocols” , 2nd ACM Symp. on Principles of Distributed Computing (PODC’83), p. 27-30, 1983.

Chandra T., Toueg S., ”Unreliable Failure Detectors for Reliable Distributed Systems” , Jour-

nal of the ACM, vol. 43,2, p. 225-267, 1996.

Chaudhuri S., ”More Choices Allow More faults: Set Consensus Problems in Totally Asyn-

chronous Systems” , Information and Computation,105, p. 132-158, 1993.

Cristian F., Fetzer C., ”The Timed Asynchronous Distributed System Model” ,

IEEE,Transactions on parallel and Distributed Systems, p. 642-657, 1999.

Dolev D., Lynch N., Pinter S., Stark E., Wheihl W., ”Reaching Approximate Agreement in

the Presence of Faults” , Journal of ACM, vol. 33,3, p. 499-516, 1986.

Fisher M., Lynch N., Paterson M., ”Impossibility of Distributed Consensus with one Faulty

Process” , Journal of the ACM, vol. 32,2, p. 374-382, 1985.

48 Studia Informatica Universalis.

Mostéfaoui A., Mourgaya E., RaÔpin Parvédy P., Raynal M., ”Evaluating the Condition-

Based Approach to Solve Consensus” , Proc. of the 2003 International Conference on Depend-

able Systems and Networks (DSN-2003), IEEE, 2003.

Mostéfaoui A., Rajsbaum S., Raynal M., ”Conditions on Input Vectors for Consensus Solv-

ability in Asynchronous Distributed Systems” , Proc. of the 33rd ACM Symposium on Theory

of Computing (STOC’01), ACM Press, p. 153-162, 2001a.

Mostéfaoui A., Rajsbaum S., Raynal M., ”A Versatile and Modular Consensus Protocol” ,

Proc. of the 2002 International Conference on Dependable Systems and Networks (DSN-2002),

IEEE, 2002.

Mostéfaoui A., Rajsbaum S., Raynal M., Roy M., ”Efficient Condition-based Consensus” ,

Proc. of the 8th Int. Colloquium on Structural Information and Communication Complexity

(SIROCCO’01), Carleton Univ. Press, p. 275-291, 2001b.

Mostéfaoui A., Rajsbaum S., Raynal M., Roy M., ”A Hierarchy of Conditions for Consen-

sus Solvability” , Proc. of the 20th ACM Symposium on Principles of Distributed Computing

(PODC-2001), ACM Press, Newport, RI, 2001c.

Shostak R., Pease M., Lamport L., ”Reaching Agreement in Presence of Faults” , Journal of

the ACM, 1981.

Verissimo P., Raynal M., Recent Advances in Distributed Systems, S. Krakowiak and S. Shri-

vastava, Springer-Verlag, chapter Time, Clock and Temporal Order, 2000.

Distributed Timing Scrutinizer 49

Task T2:

(8) while (¬decision) do

(9) r ← r + 1; k ← 0;

(10) TimEsti ← Get∆([⌈k0n⌉, n]); % pi queries UDTSi

% to get the vector of time estimations

(11) Broadcast(propose(r, esti));
(12) t=ReadTime();

(13) ∆ ← TimEsti[k];
(14) wait until ((ReadTime()=t + 2∆) ∧

(receipt of at least ⌈k0n⌉ propose(r,-)) ∨ Decide ∨ Strong)

(15) esti ← estimatei;

(16) if (Decide) then

(17) decision ← true;

(18) Reliable Broadcast(decide(esti));
(19) return(esti);
(20) endif

(21) endwhile

endTask

Task T3:

(22) upon receipt of PutCond+(est,nbvalue,decide,strong)

(23) estimatei ← est;

(24) Decide ← decide;

(25) if (nbvalue > k + ⌈k0n⌉ − #(¬⊥)Vi
) then

(26) k ← Min(Min(e ∈ [0, f]/nbvalue ≤ e + ⌈k0n⌉ − #(¬⊥)Vi
), n);

(27) if TimEsti[k] *= ⊥ then

(28) ∆ ← TimEsti[k];
(29) else

(30) if strong then

(31) Strong ← true

(32) else

(33) k ← Sup{e ∈ [0, f]/ TimEsti[e] };

(34) ∆ ← TimEsti[k];
(35) endif

(36) endif

(37) else

(38) skip ;

(39) endif

endTask

50 Studia Informatica Universalis.

Task T4:

(40) upon receipt of decide(est) ∧ ¬decision

(41) decision ← true;

(42) return(est);
endTask

Figure 6: Consensus Protocol Run by Process pi

