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Abstract. We present in this paper the structural and magnetic properties of high 

aspect ratio Co nanowires (~10) at high temperatures (up to 623 K) using in-situ X 

ray diffraction (XRD) and SQUID characterizations. We show that the anisotropic 

shapes, the structural and texture properties are preserved up to 500 K. The 

coercivity can be modelled by µ0HC = 2(KMC + Kshape)/MS with KMC the 

magnetocrystalline anisotropy constant, Kshape the shape anisotropy constant and MS 

the saturation magnetization. HC decreases linearly when the temperature is 

increased due to the loss of the Co magnetocrystalline anisotropy contribution. At 

500K, 50% of the room temperature coercivity is preserved corresponding to the 

shape anisotropy contribution only. We show that the coercivity drop is reversible in 

the range 300 - 500 K in good agreement with the absence of particle alteration. 

Above 525 K, the magnetic properties are irreversibly altered either by sintering or by 

oxidation. 

 

 

Keywords.nanowires, cobalt, polyol process, permanent magnets, thermal 

treatments. 
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1. Introduction 

The last decade has seen numerous investigations on anisotropic inorganic 

nanoparticles such as nanowires and nanorods for their peculiar physical properties 

and new applications in optics, magnetism or electronics [1, 2]. Several physical and 

chemical methods have been developed to grow ferromagnetic nanowires. The most 

used consists in the electrochemical reduction of Fe, Co or Ni salts within the unixial 

pores of an alumina or a polycarbonate membrane to confine the metal growth [3]. In 

order to grow nanowires with a diameter below 10 nm, other solid hosts have been 

employed such as carbon nanotubes [4] or mesoporous silica [5]. Recently, cobalt 

nanowires with diameters below 5 nm embedded in epitaxial CeO2 layers were 

obtained by pulsed-laser deposition [6]. Iron-boride nanowires with diameter in the 

range 5-50 nm were obtained by chemical vapour deposition [7]. Wet chemistry 

methods, for which the adsorption of long chain molecules at the metal particle 

surface is the driving force of the anisotropic growth, were developed for the 

synthesis of cobalt [8] and cobalt-nickel nanowires [9]. 

One interest of the ferromagnetic nanowires is that they can present hard magnetic 

properties due to their large shape anisotropy. Magnetic nanowires have been 

recently proposed as potential candidates for high-density magnetic recording [10], 

nanowire-based motors [11] and the bottom-up fabrication of permanent 

magnets[12]. Indeed, very high coercivity values were observed on assemblies of 

cobalt rods or wires obtained using wet chemistry, either by the polyol process [13] or 

by organometallic chemistry [14]. Composite materials of well aligned cobalt wires 

with a volume fraction of 50% could exhibit higher (BH)max.values than AlNiCo or 

ferrite-based magnets [11]. The interest of these liquid phase processes for the 

synthesis of nanowires with hard magnetic properties lies in the possibility to produce 

wires combining very good crystallinity and small diameter. The cobalt wires 

synthesized by these chemical methods crystallize with ahcp structure with the c axis 

along the long axis of the wires [8, 15]. The coincidence of the shape anisotropy easy 

axis and the magneto-crystalline anisotropy easy axis reinforces the whole magnetic 

anisotropy [12, 14]. 

But even if progresses have been made in the synthesis of ferromagnetic nanowires 

exhibiting large coercivities at room temperature and in the understanding of their 
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magnetic properties [12, 13, 16-18], there is still a lack of information about the 

stability of both their structural and magnetic properties at high temperature (above 

room temperature) which is a key information for any practical use of these materials 

for the fabrication of rare-earth free permanent magnets. The scope of this 

communication is to determine whether the anisotropic structure and texture are 

modified at high temperature and consequently whether their magnetic properties, 

and especially their large coercivities, are preserved. At high temperature, metal 

wires generally undergo an irreversible transformation to chains of spheres, 

described as the Rayleigh instability [19, 20]. Thehigh aspect ratio of compacted 

wires may also be altered by sintering. A first study showed that the thermal stability 

of “organometallic” cobalt nanowires was dependent on the atmosphere under which 

the wires were annealed [21]. Fragmentation of cobalt wires into chains of cobalt 

particles due to the Rayleigh instability was avoided when the cobalt wires were 

annealed in high vacuum conditions [21]. 

In this paper we present the high temperature structural and magnetic properties of 

cobalt nanowires prepared by the polyol process using in-situ characterizations up to 

623 K under different atmospheres. The temperature range of stability of these wires 

and the temperature dependence of their intrinsic magnetic properties are described. 

 

2. Materials and methods. 

2.1. Syntheses of Co nanowires. 

CoCl26H2O (Alfa Aesar, 99.9%), RuCl3xH2O (Aldrich, 99.98 %), NaOH (Acros), 1,2-

butanediol (Fluka, ≥ 98%), methanol (VWR, Normapur) and sodium laurate, 

Na(C11H23COO) (Acros, 98%) were used without any further purification. 

The cobalt laurate precursor, CoII(C11H23COO)2 was first prepared. In 100 mL of 

distilled water at 333 K, was dissolved sodium laurate (75 mmol; 16.7 g) and to this 

solution, was added an aqueous solution (38 mL) of cobalt(II) chloride (40 mmol, 10,0 

g) pre-heated at 333K under vigorous stirring. This resulted in the formation of a 

purple precipitate which was vigorously stirred at 333K for 15 min. The Co(II) solid 

phase was washed twice with distilled water (100 mL) then with methanol (100 mL) 

and finally dried in an oven at 323 K overnight. Yield: 94 % (based on Co). 
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The synthesis of the cobalt nanowires was realized according to a procedure 

previously described [13]. To 75.0 mL of 1,2-butanediol were added Co(C11H23COO)2 

(2.75 g, 0.08 M), RuCl3xH2O (3.2 10–2 g) and NaOH (0.225 g, 0.075 M). The mixture 

was heated to 448 K with a ramping rate of 13 K.min1 for 20 min until the color of the 

solution turned black, indicating the reduction of Co(II) into metallic cobalt. After 

cooling to room temperature, the Co nanowires were recovered by centrifugation at 

8500 r.p.m. for 15 min, washed with 50 mL of absolute ethanol (3 times), and finally 

dried in an oven at 323 K. Yield: 92 % (based on Co). 

 

2.2. Preparation of the sample for magnetic measurements. 

Two sets of samples were prepared for magnetic measurements: i) a few drops of a 

Co nanowires suspension in toluene were deposited on an aluminium foil and the 

toluene was removed by evaporation under the application of an external magnetic 

field of 1 T and ii) a pellet of magnetic nanowires was prepared using an infrared die 

(internal diameter 13 mm) and applying a pressure of about 6 tons delivered by a 

hydraulic press. The mass and the apparent density (including porosity) of the pellet 

were respectively 0.26 g and 2.13 g cm–3. The true density of the powder, obtained at 

298 K using a helium Accupyc 1330 pycnometer from Micromeritics, was found to be 

6.76  0.41 g cm–3. The packing factor, defined as the ratio of the volume of the 

particles by the volume of the pellet was about 30%. Co nanowires are randomly 

oriented inside the pellet since no magnetic field was applied during its preparation. 

 

2.3. Characterization techniques. 

2.3.1. Room temperature characterizations. 

Transmission electron microscopy (TEM) characterizations were performed using a 

Jeol 100-CX II microscope operating at 100 kV. Infrared spectra were recorded on a 

nitrogen purged Nicolet 6700 FT-IR spectrometer equipped with a VariGATR 

accessory (Harrick Scientific Products Inc., NY) fixing the incident angle at 62°. A 

drop of the colloidal solution was deposited on the Ge wafer and the spectrum was 

recorded when the solvent (absolute ethanol or toluene) was fully evaporated. XRD 

patterns obtained using Co K radiation (λ = 1.7889 Å) were recorded on a 

PANalyticalX’Pert Pro diffractometer equipped with an X’celerator detector in the 

range 20-80° with a 0.067° step size and 150 s per step. The size of coherent 
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diffraction domains, Lhkl, were determined using MAUD software which is based on 

the Rietveld method combined with Fourier analysis, well adapted for broadened 

diffraction peaks. Magnetic measurements were performed using a Quantum Design 

MPMS-5S SQUID magnetometer. 

 

2.3.2. Thermal treatments and high temperature characterizations. 

In order to follow the structural evolution of the samples with temperature, in-situ 

thermal treatments were realized in the range 300-673 K, using a HTK 1200N high-

temperature X-ray diffraction chamber from Anton Paar. Two types of experiments 

were performed, depending on the oxygen content of the nitrogen gas used: in the 

first one, the powder was heated under a high-purity nitrogen atmosphere (O2< 0.1 

ppm; N2Alphagaz 2) while in the second one, the oxygen content was substantially 

higher (O2< 2 ppm; N2Alphagaz 1). The samples were heated inside the high 

temperature X-ray diffraction chamber from room temperature to the final 

temperature using a 5 K·min1 rate and maintained for 2 h at the final temperature 

before the acquisition of a X-ray diffraction pattern. Magnetization curves at high 

temperature were measured with a SQUID equipped with an oven. In this procedure 

the particles were heated in a reduced helium pressure. 

 

3. Results and discussion. 

3.1. Room temperature morphology, structure and magnetic properties of the cobalt 

particles. 

TEM observations on the particles prepared by the polyol process showed Co 

nanowires with a mean diameter dm = 13 nm and a mean length Lm = 130 nm (Figure 

1a). The standard deviation of the diameter is very small (<15 % of the mean length) 

as it was observed before [13]. For the Co nanowires deposited on an Al substrate, 

the application of an external magnetic field results in the alignment of the cobalt  

anisotropic nanoparticles while the Co nanorods are randomly oriented within the 

pellet (see Figure 1b and 1c). Moreover Figure 1b shows also that the compression 

was not detrimental to the Co nanowires. The particles are ferromagnetic at room 

temperature and the coercivities measured for the Co nanoparticles deposited on the 

Al substrate and pressed into a pellet are respectively 530 and 230 mT (Figure 1d). 

The saturation magnetization of the wires is 113 emu g1 (1.410–4 T m3 kg–1) and the 

M/MS values forCo nanowires deposited on an Al substrate and pressed into a pellet 
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are respectively 0.67 and 0.46, indicating a higher degree of organisation in the 

former case, in agreement with the Stoner-Wholfarth model.Several parameters 

govern the coercivity of an assembly of anisotropic magnetic particles: (i) the 

distribution of the particle easy axis orientation with respect to the magnetic field and 

(ii) the particles shapes. For the cobalt wires we showed that the coercivity increases 

when they are aligned parallel to the applied magnetic field in good agreement with 

the Stoner-Wohlfarth model [13]. The coercivity is the sum of magnetocrystalline and 

anisotropy contributions. The contribution due to the shape anisotropy actually 

strongly depends on the detailed geometry of the wires and especially of the wire 

tips. This was investigated by micro-magnetic simulations [16]. On the one hand, 

while the ellipsoid shape is the most favourable, a cylindrical shape also provide a 

good shape anisotropy. On the other hand, enlarged tips create nucleation points for 

the magnetization reversal which can significantly reduce the coercivity by up to 30%. 

Surface effects related to the thin superficial CoO layer were extensively studied [18]. 

The measured Néel temperature of the CoO shell was 230 K. Significant 

modifications of the magnetic behaviour take place below this temperature. When the 

temperature decreases, a coercivity drop is actually observed below 150 K [18]. 

The Co nanowires were further characterized using TG-DT analyses under pure N2 

(O2< 0.1 ppm). The thermogram (see Figure 2) showed a 7 % weight loss at about 

575 K associated with a sharp endothermic peak. This weight loss is attributed to the 

elimination of organic matter adsorbed on the particle surface. Infrared spectroscopy 

was thus performed on the cobalt particles to characterize the organic matter 

remaining after the synthesis and the washing procedure at room temperature. The 

cobalt particle infrared spectrum washed twice with ethanol (Figure 3) exhibits a large 

band centered at 3300 cm-1 corresponding to the O-H stretching vibration. The OH 

groups can belong to a surface cobalt hydroxide and/or to adsorbed ethanol. At 2850 

and 2920 cm-1 the symmetric and asymmetric C-H stretching vibration are 

respectively observed, which is attributed to the CH2 groups of the laurate ions. In the 

region between 1400 and 1550 cm-1 the intense bands are attributed to the 

asymmetric and symmetric C-O stretching vibration of carboxylate groups, indicating 

that laurate ions remain at the particle surface. The intensity of all these bands 

decreases with the successive washings (Figure 3) showing that the amount of 

organic ligands at the particle surface is strongly dependent on the way they have 

been washed. 
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3.2. High temperature structural and chemical modification. 

In order to follow the structural modifications of the nanowires when they are heated 

up, in-situ X-ray diffraction have been performed on Co nanowires for different 

temperatures ranging from 298 K up to 623 K. Ex-situ TEM analyses have also been 

realized for samples thermally treated in a tubular furnace using the same conditions. 

The structural and chemical modifications were found to depend on the atmosphere 

under which the cobalt wires are annealed. 

 

3.2.1. N2 atmosphere with O2 concentration < 2 ppm. 

Figure 4a shows the in-situ X-ray diffraction patterns of the Co nanowires annealed 

under a N2 atmosphere at different temperatures. The results show that in spite of a 

small O2 concentration (< 2 ppm), there is a progressive oxidation of the nanowires 

emphasized by the growth of the CoO (111) peak around 42°. With increasing 

temperature, the very broad peaks of the oxide becomes thinner indicating grain 

growth processes and/or crystallization of a pre-existing amorphous phase. Previous 

HRTEM studies performed on Co nanowires have evidenced the presence of a CoO 

layer composed of disoriented crystallites of various sizes [18], indicating that the 

former case is the more probable one. No structural modification was observed on 

the hcpnon oxidized cobalt phase.  

 

3.2.2. N2 atmosphere with O2 concentration < 0.1 ppm. 

For Co samples treated under N2 with very low dioxygen content, the X-ray diffraction 

data show that there is also development of the CoO oxide between 298K and 473 

K.Then, between 473 and 523 K, CoO vanished at the benefit of metallic Co as 

indicated by the sharpening and the increase of intensity of the Co peaks. For higher 

temperatures, 573 K and 623 K, CoO is detected again. Given the high temperature 

applied, the very low dioxygen content (0.1 ppm) is nevertheless sufficient to induce 

the formation of this oxide. For the as-synthesized sample, TG-DT analyses realized 

under N2 (O2 content 0.1 ppm) have shown a weight loss of about 7 % at 573 K 

associated with an endothermic signal (see Figure 2). This weight loss is explained 

by the decomposition of the remaining metal-organic species adsorbed at the particle 

surface. Indeed, IR-ATR experiments (Figure 3) have clearly shown vibrations 
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attributed to adsorbed laurate species (see above). These results suggest that the 

organic molecules remaining at the particle surface reduce the CoO shell in the 

temperature range corresponding to their decomposition. This effect can be 

evidenced only when the oxygen concentration in the atmosphere is small enough. 

 

3.3. High temperature texture modification. 

The XRD diffractograms showed that the hexagonal close-packed structure of the Co 

core is preserved for temperatures up to 623 K, whatever the annealing atmosphere. 

Nevertheless, a close examination of these patterns shows that the line broadening is 

modified during the thermal treatment. The mean crystallite sizes for the (10.0) and 

(00.2) reflexions have been determined and plotted as a function of the temperature 

treatment for samples annealed in N2with the lowest oxygen content (Figure 5). At 

room temperature, the mean crystallite size for the (10.0) reflexion is always found 

much smaller than the mean crystallite size for the (00.2) reflexion. This observation 

confirms that the long axis of the cobalt wires is the c axis of the hcp structure. The 

data show that up to 500 K, the (10.0) and (00.2) mean crystallite sizes are more or 

less constant, indicating that the anisotropic shape of the crystallites is preserved. 

Major texture modifications are observed above 525K. Indeed, at this temperature a 

considerable increasing of both the L10.0 and L00.2 mean crystallite sizes is observed 

and the crystallites lose their anisotropy. At 525 K particles start to undergo sintering. 

In order to probe a possible deterioration of the Co nanowire morphology, TEM was 

performed for the samples treated at different temperatures. Figures 6a and 6b 

indicate that the shape of the nanowires is kept up to 523 K. On the other hand, 

Figure 6c shows that at 573 K and above, the nanowires start to sinter so that their 

shape anisotropy starts to fade away at these temperatures. At 623 K, the anisotropic 

shape is lost and only large aggregates are observed (Figure 6d). The sintering of the 

particles is probably enhanced by the fact that the CoO layer which likely acts as a 

protective layer preventing sintering has vanished at about 523 K (as seen by XRD, 

Figure 4b). 

 

3.4. Magnetic properties at high temperature. 

The high temperature magnetometry measurements were carried out on two types of 

cobalt samples: (A) particles washed with ethanol and pressed into pellets; 

(B)particles washed twice in ethanol and twice in toluene and deposited from a 
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diluted suspension in toluene onto an aluminium foil under a static magnetic field of 1 

T to orient the cobalt wires during the drying process (see Fig. 1b). One has to keep 

in mind that the sample (A) contains more metal-organic matter than the sample (B). 

This difference can have a strong effect on the surface state at room temperature 

and on their chemical reactivity at high temperature. 

 

Figure 7a presents the saturation magnetization normalized to the room temperature 

saturation magnetization, MS(T)/MS(300K), as a function of temperature for samples 

(A) and (B). Two very different behaviors are observed. The saturation magnetization, 

MS, of the sample (A) (pressed pellet) is rather stable up to 550 K: MS only decreases 

by less than 1% from 300 K to 550 K. At 550 K, a jump of the magnetization is 

observed (Figure 7a). At higher temperatures (up to 800 K), the saturation 

magnetization decreases only moderately (10%). The magnetization jump at 550 K is 

irreversible. When the sample is cooled down to room temperature the magnetization 

is increased by 25% with respect to the initial room temperature value. The jump of 

the magnetization at 550K can be explained by the fact that the saturation 

magnetization of the Co initial pellet is 113 emu g1 (1.410–4 T m3 kg–1) 

corresponding to only 70% of the bulk metal values. Such a low value is due to the 

surface oxidation of the wires and by the remaining organic matter in the pellet. The 

apparent density of the pellet, determined using He pycnometry, was found to be 

6.76  0.41 g cm–3 (see experimental section). Taking into account that the organic 

matter in the particles corresponds to about 7 wt. % and that the CoO layer thickness 

is 1.2 nm for a nanowire with a mean diameter of 15 nm and a mean length of 130 

nm [18], the ratio of the mass of Co to the total mass of the solid (including CoO and 

the organic matter) can be estimated. The determined value, 73 wt. % is in excellent 

agreement with that determined using the MS value.Thus, the jump of magnetization 

at 550 K can be explained by the decomposition of remaining metal-organic at the 

surface of the nanowires that reduces the cobalt oxide layer and causes the 

apparition of added metallic Co. This phenomenon was clearly evidenced by XRD 

(Figure 4b). For the sample (B), the saturation magnetization of the cobalt wires 

washed vigorously and deposited on an aluminium foil from a diluted suspension 

varies only slightly up to 500 K but decreases strongly above this temperature. In this 

case, the decrease of the magnetization is explained by the oxidation of the cobalt 

wires into CoO as was inferred by XRD in the case of the experiment presented on 



11 
 

Figure 4a. The successive washings have removed most of the organic matter 

(Figure 3) and no reduction can occur. The He reduced pressure in the oven of the 

SQUID is not enough to prevent the powders from oxidation at high temperature. 

Figure 7b presents the coercivity normalized to the room temperature coercivity, 

HC(T)/HC(300K) as a function of temperature for the same samples (Co pellets, on 

one hand, and washed Co wires deposited on an Al foil, on the other hand). In the 

temperature range 300-500K the two samples exhibit the same magnetic behavior: 

the coercivity decreases linearly when the temperature increases and, in both cases, 

the coercivity at 500K is about 50% of the value at 300K. It is important to stress that 

the two samples do not have the same coercivity at room temperature: the value of 

the oriented cobalt wires, 530 mT, is much higher than that of the pressed pellet, 230 

mT, in which the wires are randomly oriented. It is noteworthy that despite this 

difference, the coercivities normalized to the room temperature values follow the 

same behavior. This decrease is independent on the wire dispersion but is an 

intrinsic property of cobalt. As it will be described more precisely in the next section, 

this behavior is related to the temperature dependence of hcp cobalt. 

 

Above 500 K two different behaviors are observed depending on the sample 

preparation procedure. The coercivity of the cobalt pellets collapses and becomes 

negligible at 550 K while the coercivity of the cobalt wires deposited on the Al foil still 

follows a linear decrease between 500 and 600 K (Figure 7b). In the first case, 

sample (A), the cobalt wires undergo a sintering in the temperature range 

corresponding to the decomposition of the metal-organic matter and to the reduction 

of the surface cobalt oxide. The cobalt particles lose their anisotropy as it was 

observed on the textural analysis of the XRD patterns (Figure 5). Thus, the very small 

coercivity value is explained by the vanishing of the magnetic shape anisotropy due 

to sintering and by a weakmagnetocrystalline anisotropy of cobalt at 550 K (see next 

section). On the other hand, the cobalt wires washed and deposited, sample (B), 

undergo a slow oxidation as was inferred from the decrease of the saturation 

magnetization. In this latter case, the magnetic shape anisotropy is preserved up to 

600 K. No sintering occurs probably for several reasons: the wires are much more 

isolated on the foil than in the pellet, the amount of organic matter is much lower and 

the surface oxidation prevents wires coalescence. 
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Nanowire oxidation and surface reduction are irreversible processes. However, we 

have checked that when the wires are heated below 500K both the magnetization 

and the coercivity variation are reversible. The samples recover their initial 

magnetization and coercivity when they were cooled down to room temperature. 

Therefore, these nanowires can be annealed at temperatures as large as 500 K 

without losing their shape anisotropy. However to reach higher treatment 

temperatures, these objects would need to be separated from each other to prevent 

sintering. 

 

3.4.1. High temperature evolution of the coercive field. 

A linear temperature dependence of the coercivity was observed for the sample (B), 

i.e. Co wiresdeposited on an aluminium foil (Figure 7b). Between 300 and 600K, as 

far as particle sintering is avoided, the coercivity µ0HC (mT) can be expressed as:  

 

µ0HC / 0HC(300K) = 1 – a(T – 300)  (1) 

 

where0HC(300K), the room temperature coercivity is 530 mT and a is 2.410–3 K–

1for Co nanoparticles. As shown in Figure 8, the magneto-crystalline anisotropy 

constant KMC of bulk hcp Co is almost temperature independent from 0 to 200 K and 

linearly decreases from KMC 6.6105J.m3 at 200 K down to KMC 1.2105J.m3 at 

600 K [22-24].A positive KMC value corresponds to an easy axis along c, i.e. along the 

wire axis. A negative KMC value corresponds to an easy axis perpendicular to c, i.e. 

perpendicular to the wire axis. Note that, above 500 K, the value of the 

magnetocrystallineconstant becomes negative which means that it counteracts the 

shape anisotropy of the wire. The observed linear temperature drop of the coercivity 

is essentially related to the temperature dependence of the magnetocrystalline 

anisotropy of Co. At the opposite, the weak temperature dependence of the coercivity 

of cobalt wires grown by electrochemistry illustrates the dominance of shape 

anisotropy and the small magneto-crystalline contribution [25]. 

At a fixed temperature, within the Stoner-Wohlfarth model, the coercivity of elongated 

ellipsoidal particles with their long axis aligned with the applied field can be 

expressed as [26]: 

µ0HC = 2(KMC + Kshape)/MS   (2) 
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whereKshape corresponds to the effective anisotropy constant related to the shape 

anisotropy of the nanowires. Note that this formula is strictly valid only if the 

magnetization rotation is coherent, which requires that the nanowires diameter is very 

small ( 8 nm for Co). Our nanowires dimensions are close to this limit. 

Magnetization measurements in the range 5 K to 500 K show that the magnetization 

is almost constant, within a few percents. Since the shape anisotropy is proportional 

to Ms, this allows us to make the assumption that the shape anisotropy contribution is 

constant over this range of temperatures. On the other hand, around 500 K, the Co 

magneto-crystalline anisotropy KMC can be assumed to be close to zero, reducing the 

contribution of the magnetocrystalline anisotropy to the coercivity close to zero. The 

value of the coercivity normalized to the room temperature coercivity at 500 K, about 

0.50 (see Figure 7b), allows to calculatethe coercivity at this temperature: µ0HC 260 

mTwhich corresponds to the contribution of the shape anisotropy. This corresponds 

to only half of the theoretical value for an aspect ratio of 5 (2Kshape/MS 527 mT) but 

is close to that of previous assessments (2Kshape/MS 380 mT) obtained by fitting 

room temperature hysteresis curves [12]. The fact that the measured value is 

significantly smaller than the maximum theoretical value for equivalent ellipsoid can 

be easily accounted for by the fact that: (i) the assembly of wires is not well aligned 

which dramatically reduces the coercivity related to the shape anisotropy, (ii) for an 

equivalent aspect ratio, ellipsoids have a higher coercivity compared to cylinders 

because of domain nucleation [16]for the latter and (iii) we are not working at 0 K. 

Using equation (2), it is possible to plot the KMC(T) dependence for the Co nanowires 

(see Fig. 8) We calculate Kshape = 0HCMS/2  1.8105 J m–3, assuming MS = 1.4 

MAm–1. Our experimental determination of the temperature dependence of KMC leads 

to values smaller than that of the bulk Co. It can be accounted for by the angular 

distribution of the nanowires axis with the applied magnetic field which reduces the 

coercivity measured along the applied field [12]. Moreover, although our nanowires 

are well crystallized in the hcp phase [13], some stacking faults (fcc phase) can 

appear and can further reduce the value of KMC. We may add that the value of the 

cobalt anisotropy constant is controversial because it suffers large variations in the 

literature [27, 28]. For example, in epitaxial Co hcp thin films, the value of the 

magnetocrystalline anisotropy is generally found to be half the value of the expected 
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one at room temperature. The deduced values of KMC of our nanowires are thus not 

so smaller than the ones obtained in epitaxial Co thin films. 

 

From a point of view of using Co nanowires as a basis for the fabrication of 

permanent magnetic materials, one important aspect was to evaluate magnetic 

dipolar magnetic interactions between nanowires in dense magnetic aggregates. This 

has been very recently addressed and micromagnetic simulations have shown that 

dipolar interaction between wires are not detrimental to the high coercivity properties, 

even for very dense aggregates [17].Dealing with the working temperature, the 

present study shows that the temperature dependence of the Co magneto-crystalline 

anisotropy may be a real limitation. KMC not only vanishes around 500 K but becomes 

negative above this temperature, which, as a consequence, leads to magnetic 

properties which are very sensitive to the temperature. Nevertheless, the materials 

are rather resilient to high temperatures (up to 550K) and are competitive with the 

other existing types of permanent magnetic materials. The magnetic performances of 

Co nanowires are of the order of (BH)max 12-15 MGOeat room temperature 

[12]which rank them in-between ferrites ( 3 MGOe) and AlNiCo ( 5 MGOe) and RE-

magnets (NdFeB 40 MGOe; SmCo 20-30 MGOe). A general drawback of rare 

earth based materials is their relatively lower Curie temperature (580K for NdFeB and 

1023K for SmCo) which leads to a significant dependence of the magnetization at 

high temperatures which is not the case for pure Co systems (Tc 1300K). NdFeB 

magnets cannot be operated at temperatures above 400 K because of irreversible 

losses. SmCo magnets can be operated at elevated temperatures (up to 523K 

typically) which is equivalent to our materials. They have a similar temperature 

coefficient for the coercive field ( –210–3 K–1) as Co nanowires. 

 

4. Conclusion. 

The interest of high aspect ratio cobalt nanoparticles prepared by the polyol process 

lies in their well-controlled morphology, diameter smaller than 15 nm, high aspect 

ratio and shape homogeneity, and, consequently, in their high coercivity at room 

temperature. In this paper, we have presented a study on structural and magnetic 

properties of these particles at high temperatures. 
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In the temperature range 300-500 K, we show that the coercivity decreases linearly 

and that this variation is reversible. In this range no particle alteration occurs and the 

coercivity can be modelled by µ0HC = 2(KMC + Kshape)/MSwith KMCthe 

magnetocrystalline anisotropy constant, Kshape the shape anisotropy constant and MS 

the saturation magnetization. The KMCconstant being the only parameter responsible 

for the temperature dependence, high temperature magnetic measurements appear 

as a very simple method to evaluate the respective contribution of shape and 

magnetocrystalline anisotropy. At 500 K, 50% of the room temperature coercivity is 

maintained. This value corresponds to the contribution of the shape anisotropy to the 

global anisotropy while at 500K the magnetocrystallinecontribution has vanished. 

This value confirms previous numerical calculations.  

Above 525 K,the magnetic properties are irreversibly altered either by sintering or by 

oxidation. In absence of oxygen the decomposition of metal-organic matter remaining 

at the particle surface reduces the native cobalt oxide layer and provokes 

coalescence.Thecoercivityis irreversibly altered by the loss of shape 

anisotropycorresponding to the transition for magnetic mono- to multi-domains 

particles (see Figure 5 and 6d). In slightly oxidative conditions, the growth of a thin 

oxide layer at the wire surface prevents from sintering but decreasessignificantlythe 

saturation magnetization 

Above 500 K a sintering of the particles can occur that has been evidenced by TEM 

analysis and by in-situ XRD pattern analysis. This study clearly shows that this 

sintering is favoured by the presence of metal-organic matter remaining at the 

particle surface which reduces the thin cobalt oxide layer in the temperature range 

525-575 K as was inferred by in-situ XRD measurements. The apparition of added 

metallic Co has for consequence to irreversibly increase the saturation magnetization 

of the particles but also to induce a collapse of the coercivitydue to sintering. 

Sintering was not observed when the main part of the organic matter was removed 

by washing; in that case the thin surface oxide layer avoids this phenomenon but 

oxidation decreases the wire magnetization. In terms of temperature stability some 

further work is necessary to prevent both coalescence and oxidation of the wires at 

high temperatures (>550K). The use of a passivation layer is a possible route to that. 
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Figure Captions 

 

Figure 1. TEM images of Co nanowires (Lm= 130 nm, dm= 13 nm) (a); SEM images 

of Co nanowires deposited on an aluminium foil from several drops of a 

wires suspension in toluene with the application of an external magnetic 

field of 1T during the drying (b), of the surface of a pellet made of 

compressed Co nanorods(c) and magnetization curves at 300 K of the 

Co nanowires deposited on an aluminium foil and the Co pressed into a 

pellet (d). Inset: the Co nanowires are rather well aligned inside the 

elongated microscopic structures, with an angular dispersion on the order 

of  = 7° [15]. 

 

Figure 2. Thermogravimetric and differential thermal analyses realized on Co 

nanowires under N2 (O2< 0.1 ppm). 

 

Figure 3. Infrared absorption spectra of cobalt wires washed twice with ethanol (a); 

washed twice with ethanol and once (b), twice (c) and three times (d) 

with toluene. 

 

Figure 4. In-situ X-ray diffraction patterns of Co nanowires thermally treated under 

N2 with (a) low dioxygen content (O2< 2 ppm) and (b) very low dioxygen 

content (O2< 0.1 ppm). In each case, the hexagonal structure of Co is 

preserved up to the highest temperatures. 

 

Figure 5. Variation of the L10.0 and L00.2 mean crystallite sizes with increasing 

temperature for Co samples treated under N2 (O2< 0.1 ppm). 
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Figure 6. TEM images of Co wires (a) after drying at 330 K and after thermal 

treatment under N2 (O2< 0.1 ppm) for 2 hours at 523 K (b), at 573 K (c) 

and 2 hours at 623 K (d). 

 

Figure 7. Saturation magnetization to room temperature saturation magnetization 

ratio as a function of temperature (a) and coercivity normalized to the 

room temperature coercivity as a function of temperature (b) for a pellet 

of compacted cobalt nanowires washed only with absolute ethanol () 

and for cobalt nanowires washed twice with absolute ethanol and twice 

with toluene and deposited on an aluminium foil ().The solid line is a 

linear fit to the experimental data corresponding to cobalt nanowires 

deposited on an aluminium substrate, which is given by µ0HC(T) / 

µ0HC(300K) = 1  a(T – 300) (see text for details). 

 

Figure 8. Deduced temperature dependence of the magnetocrystalline anisotropy 

constant for the Co nanowires (red circles). The bulk values data (open 

circles) of KMC have been reproduced from Refs. [21] and [22]. 
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