
HAL Id: hal-00916491
https://hal.science/hal-00916491

Submitted on 10 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint Propagation for the Dial-a-Ride Problem
with Split Loads

Samuel Deleplanque, Alain Quilliot

To cite this version:
Samuel Deleplanque, Alain Quilliot. Constraint Propagation for the Dial-a-Ride Problem with Split
Loads. Recent Advances in Computational Optimization., 2013, Studies in Computational Intelligence
(470), pp.31-50. �10.1007/978-3-319-00410-5_3�. �hal-00916491�

https://hal.science/hal-00916491
https://hal.archives-ouvertes.fr

Constraint Propagation for the Dial-a-Ride
Problem with Split Loads

Samuel Deleplanque1, Alain Quilliot1

LIMOS, UMR CNRS 6158, Bt. ISIMA, BLAISE PASCAL university, France
{deleplan, quilliot}@isima.fr

Abstract. This paper deals with a new problem: the Dial and Ride
Problem with Split Loads (DARPSL), while using randomized greedy
insertion techniques together with constraint propagation techniques.
Though it focuses here on the static versions of Dial and Ride, it takes
into account the fact that practical DARP has to be handled accord-
ing to a dynamical point of view, and even, in some case, in real time
contexts. So, the kind of algorithmic solution which is proposed here,
aim at making easier to bridge both points of view. First, we propose
the general framework of the model and discuss the link with dynamical
DARP, second, we describe the two algorithms (DARP and DARPSL),
and lastly, show numerical experiments for both.

1 Introduction and Literature Review

Literature in the field of urban systems and geomatics hint a trend to a surge
of new on demand flexible transportation systems (ODT): ad hoc shuttle
fleets, vehicle sharing (AUTOLIB...), co-transportation (see for instance [17],
[4]). This trend reflects from both environmental (climate change, overcrowded
megalopolis) and economical concerns (surge of energy prices). It has also to
be associated with technological advances: internet, mobile communication, geo-
localization, which allow efficient monitoring of complex mobility system and
large sets of heterogeneous requests.

An important Operations Research model for the management of flexible
reactive transportation system is the DARP, which tries to optimize the way a
given fleet of vehicles meet mobility demands emanating from people, or, in some
cases from some combination of people and goods. DARP is a complex problem,
which admits several formulation, most of them NP-Hard. It usually does not
fit well the Integer Linear Programming framework [16] and one must try do
handle it through heuristic techniques: Tabu search [7], genetic algorithms [18],
partial branch/bound [16], Simulated Annealing [9], VNS techniques [20], [13],
Dynamic Programming [16]-[17], Insertion techniques [6]-[12].

A basic features of DARP is that it usually derives from a dynamic context.
So, algorithms for static DARP should be designed in order to take into account
the fact that they will have to be adapted to dynamic and reactive context,
which means synchronization mechanisms, interactions between the users and
the vehicles, and uncertainty about fore coming demands.

In this paper, we use a generic DARP model with time windows to define the
new DARP with split loads, and we propose algorithms for this model based upon
randomized insertion techniques and constraint propagation. These algorithms
can be easily adapted to dynamic contexts, where demand packages has to be
inserted into (or eventually removed from) current vehicle schedules. This has
to be done in a very short time while taking into account some probabilistic
knowledge about fore coming demand packages.

The focus of the paper is to use constraint propagation on the time constraints
and to allow split loads in the DARP. Little has been published on this problem,
only [15]-[19]. The closest study is the Pickup and Delivery Problem with Splits
Loads (PDPSL). The PDPSL solution of solved instances can give a rate up to
25% fewer vehicles used compared to the classic PDP [10]. The Tabu search is
also used to solve the PDFSL [2]. For a recent review of this problem, refer to
[3].

The paper is organized as follows: we first introduce the problem and discuss
the link between static and dynamic formulations. Next, describe our formal
DARP with split loads model, together with the performance criteria which we
used. Then, we present the general insertion mechanism together with the con-
straint propagation techniques which we use in order to filter insertion param-
eters and to select the demands to be inserted. We conclude with experiments
and comparison of the two resolutions.

2 The Standard Dial a Ride Problem

2.1 General Dial a Ride Problem

A Dial a Ride Problem instance is essentially defined by:

– a transit network G = (V,E), which contains at least two nodes Depot,
for the departure and the arrival, and whose arcs e ∈ E are endowed with
riding times equal to the Euclidean distance between two nodes of V , i and
j, DIST (i, j) ≥ 0, and, eventually, with other technical characteristics;

– a fleet VH of K vehicles k with a capacity CAP ,
– a Demand set D = (Di, i ∈ I), any demand Di being defined as a 6-uple
Di = (oi, di, Di, F (oi), F (di), Qi), where:

• oi ∈ V is the origin node of the demand Di and the set of all the oi is
DE ,

• di ∈ V is the destination node of the demand Di and the set of all the
di is AR,

• ∆i ≥ 0 is an upper bound (transit bound) on the duration of demand’s
processing (ride time),

• F (oi) is a time window related to the time Di starts being processed;
F .MIN oi and F .MAX oi are the two bounds;

• F (di) is a time window related to the time Di ends being processed,
• Qi is a description of the load related to Di such that qoi = Qi = −qdi ,

– δj , j ∈ V is the non-negative service time necessary at the node j;
– tki is the time at which the vehicle k begins service in i,
– ∆k is the route maximum time imposed on the vehicle k.

Then, we consider in G = (V,E) all the nodes corresponding to the oi ∈ V and
di ∈ V such that V = DE ∪ AR ∪ {0, 2 |D| + 1} with {0, 2 |D| + 1} the two
depot nodes respectively for the departure and the arrival, oi ∈ {1.. |D|}, and
di ∈ {(|D|+ 1)..(2 |D|)}. Moreover we denote by ζkj the total load of the vehicle
k leaving the node j, j ∈ V .

Dealing with such an instance means planning the handling demands of D,
by the fleet VH , while taking into account the constraints which derive from the
technical characteristics of the network G, of the vehicle fleet VH , and of the 6-
uples Di = (oi, di, Di, F (oi), F (di), Qi), and while optimizing some performance
criterion which is usually minimizing the total distance or a mix of an economical
cost (point of view of the fleet manager) and of QoS criteria (point of view of
the users).

Let xkij a boolean equals to 1 if the vehicle k travels from the node i to
the node j. Then, based on [5], the mathematical formulation is the following
mixed-integer program :

Min
∑
k∈K

∑
i∈V

∑
j∈V

DIST (i, j)xkij (1)

subject to

∑
k∈K

∑
j∈V

xkij = 1,∀i ∈ DE (2)

∑
j∈V

xkij −
∑
j∈V

xk|D|+i,j = 1,∀i ∈ DE , k ∈ K (3)

∑
j∈V

xk0j = 1,∀k ∈ K (4)

∑
j∈V

xkji −
∑
j∈V

xkij = 1,∀i ∈ DE ∪AR, k ∈ K (5)

∑
i∈V

xki,2|D|+1 = 1,∀k ∈ K (6)

tkj ≥ (tki + δi + DIST (i, j))xkij ,∀i ∈ V, j ∈ V, k ∈ K (7)

ζkj ≥ (ζki + qj)xij ,∀i ∈ V, j ∈ V, k ∈ K (8)

DIST (i, |(D)|+ i) ≤ tk|(D)|+i − (tki + δi) ≤ ∆i, i ∈ DE (9)

F .MIN i ≤ tki ≤ F .MAX i,∀i ∈ V, k ∈ K (10)

tk2|D|+1 − t
k
0 ≤ ∆k,∀k ∈ K (11)

ζki ≤ CAPk (12)

xkij ∈ {0; 1}, t ∈ R+ (13)

The program above is a three index formulation (report to [5] for more expla-
nations about the objective function (1) and the constraints (2)-(13)), it exists
in literature several other mathematical formulations for the DARP, even some
with two index formulation [8]. But, the complexity of all these linear programs
doesn’t allow finding an exact solution with a solver, the operation is too time
consuming. In fact, it mixes a lot of booleans and plenty of fractional numbers.

All along this work, we are going to deal with homogeneous fleets and with
nominal demands, and we shall limit ourselves to static points of view but our
insertion process allows flexibility for using it in a dynamic context. Still, we
shall pay special attention to cases when temporal constraints are tight.

Discussion: Dynamic versus Static DARP The problem is essentially a
problem which arise in dynamic contexts, and the trend is about reactivity delays
which become smaller and smaller [1]. Basically, one should consider a system
which is identified by a vehicle set V, a user community C, and a supervision
system S, which, because of advances in the field of geo-localization, mobile com-
munications and remote monitoring, permanently disposes of a full knowledge
about the current state of the vehicles (position, load, roadmap...) and main-
tains communication with both users and vehicles. All along the time, the system
(centralized or decentralized) receives user request, which, in the simplest case,
are characterized by a load, an origin and a destination node, and time windows
related load and unload transactions, as well as about trip duration. At some
instant t, supervisor S decides to launch a scheduling process P, which consider
as its input the current state E of the vehicles of V, together with the currently
waiting demand set D, and which, for any demand d in D, either rejects it or
insert it into the current schedule of some vehicle k in V, without modifying in
a significant way the way v is supposed to meet previous demands. Running P
require a δ computing time, and, at time t + δ , propositions are transmitted to
users and updated schedules are transmitted to the vehicles, which apply them
until instant t’, when the whole process takes place again. Meanwhile, it may
occur that some demands are dropped or that vehicles register failure (delays or
user fault) [11].

In any case, one see that, in case vehicles are moving inside a small area (a
urban area) and deal with a large size set of demands, process P has to insert in
a fast way a demand set D into a current schedule E, and that it has to do it in
a way which keeps most features of E, and preserves the ability of the system to
efficiently deal with fore coming demands, that means with demands which are
likely to be formulated after the instant t when P is launched. This point is the
key one which motivates the approach which is going to be described here. We
want an algorithmic framework which is going to be naturally compatible with
this context: the use of insertion techniques is clearly going to fit the input (E,
D) of the dynamic context, and the use of constraint propagation techniques is
going to make easier uncertainty about fore coming demands handling.

Also, one should notice that, under this prospect, the virtual complete net-
work which is going to be the key input data for the static model (see next
section), is, in practice, going to be a dynamic network.

2.2 The Framework

The Considered Network We treat here the general Dial a Ride Problem
described above. It is known that we do not need to consider the whole transit
network G = (V, E), and that we may restrict ourselves to the nodes which are
either the origin or the destination of some demand, while considering that any
vehicle which visits two such nodes in a consecutive way does it according to a
shortest path strategy. This leads us to consider the node set {Depot , oi, di, i ∈ I}
as made with pairwise distinct nodes, and provided with some distance function
DIST, which to any pair x, y in {Depot , oi, di, i ∈ I}, makes correspond the
shortest path distance from x to y in the transit network G.

As a matter of fact, we also split the Depot node according to its arrival or
departure status and to the various vehicles of the fleet VH, and we consider the
input data of a Standard Dial a Ride Problem instance as defined by:

– the set {1..K = Card(VH)} of the vehicles of the homogenous fleet VH;
– the common capacity CAP of a vehicle in VH;
– the node set X = {DepotD(k), DepotA(k), k = 1..K} ∪ {oi, di, i ∈ I};
– the distance matrix DIST, whose meaning is that, for any x, y in X, DIST(x,

y) is equal to the length, in the sense of the length function l, of a shortest
path which connect x to y in the transit network G: we suppose that DIST,
satisfies the triangle inequality.

Moreover the following characteristics, which, to any node x in X, make corre-
spond:

– its status Status(x): Origin, Destination, DepotA, DepotD ; we set Depot =
DepotD ∪ DepotA;

– its load CH(x):

• if Status(x) ∈ Depot then CH(x) = 0;
• if Status(x) = Origin then CH(x) = Qi;
• if Status(x) = Destination then CH(x) = −Qi;

– its twin node Twin(x):

• if x = DepotA(k) then Twin(x) = DepotD(k) and conversely;
• if x = oi then Twin(x) = di and conversely;

– its time window F(x): for any k = 1..K, F(DepotA(k)) = [0, +∞ [=
F(DepotD(k)). Also, we suppose that any F(x), x ∈ X, is an interval, which
may be written F(x) = [F.min(x), F.max(x)];

– its transit bound ∆(x): if x = oi or di, then ∆(x) = ∆i, and ∆(x) = ∆ else,
where ∆ is an upper bound which is imposed on the duration of any vehicle
tour.

According to this construction, we understand that the system works as follows:
vehicle k ∈ {1..K}, starts its journey from DepotD(k) at some time t(DepotD(k))
and ends it into DepotA(k) at some time t(DepotA(k)), after having taken in
charge some subset D(k) ={Di, i ∈ I(k)} of D: that means that for any i in I(k),
vehicle k arrived in oi at time t(oi) ∈ F (oi), loaded the whole load Qi, and kept
it until it arrived in di at time t(di) ∈ F (oi) and unloaded Qi, in such a way that
t(di) − t(oi) ≤ Di. Clearly, solving the Standard Dial a Ride Problem instance
related to those data (X, DIST, K, CAP) will mean computing the subsets D(k)
= {Di, i ∈ I(k)}, the routes followed by the vehicles and the time values t(x),
x ∈ X, in such a way that both economical performance and quality of service
be the highest possible.

Discussion: Durations and Waiting Times Many authors include what
they call service durations in their models. That means that they suppose that
loading and unloading processes related to the various nodes of X require some
time amount δ(x), (service time) and, so, that they distinguish, for any node
x ∈ X, time values t(x) (beginning of the service) and t(x) + δ(x) (end of the
service). By the same way, some authors suppose that the vehicles are always
running at their maximal speed, and make a difference between the time t*(x),
x ∈ X, when some vehicle arrives in x, and the time t(x) when this vehicle
starts servicing the related demand (loading or unloading process). We do not
do it. Taking into account service times, which tends to augment the size of the
variables of the model and to make it more complex it, has really sense only if we
suppose that the service times δ(x) depend on the current state (its current load)
of the vehicle at the time the loading or unloading process has to be launched.
Making explicitly appear waiting times t(x) - t*(x) is really useful if we make
appear the speed profile as a component of the performance criterion. In case
none of the situation holds, the knowledge of the routes of the vehicles and of the
time value t(x), x ∈ X, is enough to check the validity of a given solution and to
evaluate its performance, and then it turns out that ensuring the compatibility
of the model with data which involve service times and waiting times t(x) - t*(x),
x ∈ X, is only a matter of adapting the times windows F(x), the transit bounds
∆(x), x ∈ X, and the distance matrix DIST.

Discussion: the Homogeneity of the Fleet The general case of the Dial a
Ride Problem includes a homogeneous fleet of vehicles. The word ”homogeneous”
mean the vehicles come from (and come back to) the same depot, and have
the same capacity. Our model can integrate different depots and capacities for
each vehicle without changing in the framework. Moveover, DepotD and DepotA
locations could be different because all these nodes are independent for a given
route.

2.3 Modeling and Evaluation Techniques

The model described in this section needs some definitions, we set:

– First(Γ) = First element of Γ ; Last(Γ) = last element of Γ ;
– for any z in Γ :

• Succ(Γ , z) = Successor of z in Γ ;
• Pred(Γ , z) = Predecessor of z in Γ ;

– for any z, z’ in Γ :

• z �Γ z’ if z is located before z’ in Γ ;
• z �=

Γ z’ if z �Γ z’ or z = z’;
• Segment(Γ , z, z’) = the subsequence defined by all z in Γ such that
z �=

Γ z �=
Γ z’. If z = Nil, then Segment(G, Nil, z’) denotes the subse-

quence defined by all z in Γ such that z �=
Γ z’.

In any algorithmic description, we use the symbol ← in order to denote the
value assignment operator: x ← α, means that the variable x receives the value
α. Thus, we only use symbol = as a comparator.

In order to provide an accurate description of the output data of our standard
Dial a Ride Problem instance (X, DIST, K, CAP), we need to talk about tours
and related time value sets. A tour Γ is a sequence of nodes of X, which is such
that: 3

– Status(First(Γ)) = DepotD ; Status(End(Γ)) = DepotA;
– For any node x in Γ , x 6= First(Γ), End(Γ), Status(x) /∈ Depot;
– No node x ∈ X appears twice in Γ ;
– For any node x = oi (resp. di) which appears in Γ , the node Twin(x) is also

in Γ , and we have: x�Γ Twin(x) (resp. Twin(x)�Γ x).

This tour Γ is said to be load-valid iff:

– for any x in Γ , x 6= First(G), we have
∑
y,y�Γ x

CH (y) ≤ CAP .

Moreover, this tour Γ is said to be time-valid iff it is possible to associate, with
any node x in Γ , some time value t(x), in such a way that: (E1)

– for any x in Γ , x 6= Last(Γ), t(Succ(Γ, x)) ≥ t(x) + DIST (x,Succ(Γ, x));
– for any x in Γ , |t(twin(x))− t(x)| <= ∆(x) ;
– for any x in Γ , t(x) ∈ F (x).

In case the tour Γ is time-valid, any time value set t = {t(x), x ∈ X}, which
satisfies (E1) is said to be a valid related time value set.

The tour Γ is said to be valid if it is both time valid and load valid.
For any pair (Γ , t) defined by some time-valid tour Γ and by some valid

related time value set t, we may set:

– Glob(Γ , t) = t(End(Γ)) - t(First(Γ)): this quantity denotes the global du-
ration of the tour Γ ;

– Ride(Γ , t) =
∑
i∈Γ (t(di) − t(oi)) ; this quantity may be viewed as a QoS

criterion, and denotes the sum of the duration of the individual trips of the
demanders which are taken in charge by tour Γ ;

– Wait(Γ , t) = Glob(Γ , t) - (
∑
x,x 6=Last(G) DIST (x,Succ(Γ, x))) : this quan-

tity denotes the waiting time of the vehicle involved in Γ , the waiting time
related to some node x being the time the vehicle is supposed to wait before
loading or unloading x in case it runs full speed on the route which connects
Pred(Γ , x) to x.

If A, B, C are three multi-criterion coefficients, we may define the performance
criterion CostA,B,C (Γ , t) as follows: CostA,B,C(Γ , t) = A.Glob(Γ , t) +
B.Ride(Γ , t) + C.Wait(Γ , t).

In the experiments section we will use different criteria in order to compare
with other techniques found in literature. Our insertion techniques allow some
flexibility for this change.

So, let us suppose that we deduced from the data G = (V, E), VH = (K,
CAP), D = (Di = (oi, di, ∆i, F (oi), F (di), Qi), i ∈ I), a 4-uple (X, DIST, K,
CAP), and that we are also provided with 3 multi-criterion coefficients A, B
and C ≥ 0. Then we see that solving the related Standard Dial a Ride Problem
instance means computing:

– for any vehicle index k in 1..K, a valid tour T(k);
– a time value set t = {t(x), x ∈ X};

in such a way that:

– the restriction of t to any T(k), k = 1..K, defines a valid time value set
related to T(k);

– the tour set T = {T(k), k = 1..K} induces a partition of X;
– the quantity Perf A,B,C(T, t) =

∑
k=1..K CostA,B,C(T (k), t) is the smallest

possible.

3 Constraint Propagation into an Insertion Algorithm

3.1 Handling Constraints

Let Γ a tour. The algorithm which we are going to describe in this section will
essentially be based upon the use of insertion techniques. Thus, we must be
able to check in a fast way, whether the insertion of some demand Di inside Γ
will maintain the validity of Γ , and to get an evaluation of the quality of this
insertion. Since we want to pay a special attention to the case when temporal
constraints are tight, we are first going to provide ourselves with a package of
constraint handling tools for testing the valid tours.

First, checking the load validity of Γ is easy. In order to be able to test the
impact of the insertion of some demand into the tour Γ on the charge-validity
of this tour, we associate, with any such a tour, the quantities ζ(Γ, x) , defined
by:

– for any x in Γ , ζ(Γ, x) =
∑
y,y�=

Γ x
CH (y) .

Then it comes that Γ is load-valid iff for any x in Γ , ζ(Γ, x) ≤ CAP .
Second, checking the time validity of Γ , according to a current time window

set FS = {FS(x) = [FS.min(x), FS.max(x)], x ∈ Γ} may be performed through
propagation of the following inference rules Ri, i = 1..5. We denote by NFact
a list of nodes related to time constraints non propagated. The five inferences
rules are:

Rule R1 (if (y = Succ(Γ , x))):

FS.min(x) + DIST(x, y) > FS.min(y)
|= FS.min(y) ← FS.min(x) + DIST(x, y); NFact ← y;

Rule R2 (if (y = Succ(Γ , x))):

FS.max(y) - DIST(x, y) < FS.max(x)
|= FS.max(x) ← FS.max(y) - DIST(x, y); NFact ← x;

Rule R3 (if (y = Twin(x)) and (x�Γ y)):

FS.min(x) < FS.min(y) - ∆(x,y)
|= FS.min(x) ← FS.min(y) - ∆(x,y); NFact ← x;

Rule R4 (if (y = Twin(x)) and (x�Γ y))

FS.max(y) > FS.max(x) + ∆(x,y)
|= FS.max(y) ← FS.max(x) + ∆(x,y) ; NFact ← y;

Rule R5 (if x ∈ Γ):

FS.min(x) > FS.max(x)
|= Fail.

Propagating these rules may be performed as follows:

Procedure Propagate
Input: (Γ : Tour, L: List of nodes, FS: Time windows set related to the node
set of Γ);
Output: (Res: Boolean, FR: Time windows set related to node set of Γ);
Not Stop;
While L 6= Nil and Not Stop do

z ← First(L); L ← Tail(L);
For i = 1..5 do Compute all the pairs (x, y) which make possible
an application of the rule Ri and which are such that x = z or y = z;

For any such pair (x, y) do
Apply the rule Ri;
If NFact is not in L then Insert NFact in L;
If Fail then Stop;

Propagate ← (Not Stop, FS);

Proposition 1

The tour Γ is time-valid according to the input time window set FS if and
only if the Res component of the result of a call Propagate(FS, Γ) is equal to 1.
In such a case, any valid time value set t related to Γ and FS is such that: for
any x in Γ , t(x) ∈ FS(x).

Proof

The part (only if) of the above equivalence is trivial, as well as the second
part of the statement. As for the part (if), we only need to check that if we set,
for any x in Γ :

– FS(x) = [FS.min(x), FS.max(x)];

– t(x) = FS.min(x);

then we get a time value set t ={t(x), x ∈ X(Γ)} which is compatible with Γ
and FS.

End-Proof.

We denote by FP(Γ) the time window set which result from a call Propagate(Γ ,
L, F). FP(Γ) may be considered as the largest (in the inclusion sense) time win-
dow set which is included into F and which is stable under the rules Ri, i = 1..5,
and is called the window reduction of F through Γ .

3.2 Evaluating a Tour

Let us consider now the tour Γ , provided with the window reduction set FP(Γ).
We want to get some fast estimation of the best possible value CostA,B,C(Γ, t) =
A.Glob(Γ, t) + B .Ride(Γ, t) + C .Wait(Γ, t), t ∈ Valid(Γ). We already noticed
that it could be done through linear programming or through general short-
est path and circuit cancelling techniques. Still, since we want to perform this
evaluation process in a fast way, we design two ad hoc procedures EVAL1 and
EVAL2:

– the EVAL1 procedure works in a greedy way, by first assigning to the node
First(Γ) its largest possible time value, and by next performing a Bellman
process in order to assign to every node x in Γ its smallest possible time
value.

– the EVAL2 procedure starts from a solution produced by EVAL1, and im-
proves it by performing a sequence of local moves, each move involving a
single value t(x), x ∈ Γ .

Γ being some valid tour, we denote by VAL1(Γ) and VAL2(Γ) the values re-
spectively produced by the application of EVAL1 and EVAL2 to Γ .

3.3 The Insertion Mechanism

The insertion process works in a very natural way. Let Γ be some valid tour, let
Di=(oi, di, ∆i, F (oi), F (di), Qi) be some demand whose origin and destination
nodes are not in Γ , and let x, y be two nodes in Γ , such that x�=

Γ y. Then we
denote by INSERT(Γ , x, y, i) the tour which is obtained by:

– locating oi between x and Succ(Γ , x);
– locating di between y and Succ(Γ , y).

We say that the tour INSERT(Γ , x, y, i) results from the insertion of demand
Di into the tour Γ according to the insertion nodes x and y. The tour INSERT(Γ ,
x, y, i) may not be valid. So, before anything else, we must detail the way the
validity of this tour is likely to be tested.

Testing the Load-Admissibility of INSERT(Γ , x, y, i)
We only need to check, that for any z in Segment(Γ , x, y) = {z such that

x �=
Γ z �=

Γ y} we have, ζ(Γ, x) + Qi ≤ CAP. It comes that we may set:

Procedure Test-Load(Γ , x, y, i):
Test-Load ← {For any z in Segment(Γ ,x, y), ζ(Γ, x) + Qi ≤ CAP};

Testing the Time-Admissibility of INSERT(Γ , x, y, i)
It should be sufficient perform a call Propagate(Γ , {oi, di}, FP(Γ)), while

using the list {oi, di} as a starting list. Still, such a call is likely to be time
consuming. So, in order to make the testing process go faster, we introduce
several intermediary tests, which aim at interrupting the testing process in case
non-feasibility can be easily noticed:

– the first test Test-Node aims at checking the feasibility of the insertion of
a node u, related to some load Q, between two consecutive node z and z’
of a given tour Γ . It only provides us with a necessary condition for the
feasibility of this insertion.

– the second test Test-Node1 aims at checking the feasibility of the insertion
of an origin/destination node u, v, related to some load Q, between two
consecutive node z and z’ of a given tour Γ (e.g. into an empty tour). Again, it
only provides us with a necessary condition for the feasibility of this insertion.

So, testing the admissibility of a tour INSERT(Γ , x, y, i) may be performed
through the following procedure:

Procedure Test-Insert(Γ , x, y, i): (Test: Boolean, Val: Number);
If x 6= y then

Test ← Test-Node(Γ , x, Succ(Γ , x), oi, Qi) ∧ Test-Node(Γ , y, Succ(Γ , y),
di, Qi);

Else Test ← Test-Node1(Γ , x, Succ(Γ , x), oi, di, Qi);
If Test = 1 then Test ← Test-Load(Γ , x, y, i);

If Test = 1 then (Test, F1) ← Propagate(Γ , {oi, di }, FP(Γ);
If Test = 1 then Val ← EVAL1(INSERT(Γ , x, y, i), F1).Val;

Else Val ← Undefined;
Test-Insert ← (Test, Val - Val1(Γ));

3.4 The Insertion Process

So, this process takes as input the demand set D = (Di=(oi, di,∆i, F (oi), F (di),
Qi)), i ∈ I), the 4-uple (X, DIST, K, CAP), and 3 multi-criteria coefficients A,
B and C ≥ 0, and it works in a greedy way through successive insertions of
the various demands Di = (oi, di, ∆i, F (oi), F (di), Qi) of the demand set D. The
basic point is that, since we are concerned with tightly constrained time windows
and transit bounds, we use, while designing the INSERTION algorithm, several
constraint propagations tricks. Namely, we make in such a way that, at any time
we enter the main loop of this algorithm, we are provided with:

– the set I1 ⊂ I of the demands which have already been inserted into some
tour T(k), k = 1..K;

– current tours T(k), k = 1..K: for any such a tour T(k), we know the re-
lated time windows FP(T(k))(x), x ∈ T (k), as well as the load values
ζ(T (k), x), x ∈ T (k), and the values VAL1(T(k)) and VAL2(T(k));

– the knowledge, for any i in J = (I - I1) of the set Ufree(i) of all the 4-uple
(k, x, y, v), k = 1..K, x, y ∈ T (k), v ∈ Q, such that a call Test-Insert(T(k),
x, y, i) yields a result (1, v). We denote by Nfree(i) the cardinality of the set
Kfree = {k = 1..K, such that there exists a 4-uple (k, x, y, v) in Ufree(i)}:
Nfree(i) provides us with the number of vehicles which are still able to deal
with demand Di.

Then, the INSERTION algorithm works according to the following scheme:

– First, it picks up some demand i0 in J, among those demands which are the
most constrained, that means which are such that Nfree(i0) is small: more
specifically, if there exists i such that Nfree(i) = 1, then i0 is chosen in a
random way among those demand indices i in J which are such that Nfree(i)
= 1; else we select randomly in a set of demands j with Nfree(j) inside {2,
NfreeMAX }. NfreeMAX becomes a parameter of the INSERTION. (E2)

– Next, it picks up (k0, x0, y0, v0) in Ufree(i0) which simultaneously corre-
sponds to one of the smallest values v, and to one of the smallest values
EVAL2(INSERT(T(k), x, y, i0)).Val - VAL2(T(k)): more specifically it first
builds the list L-Candidate of the N1 (up to five) 4-uples (k, x, y, v) in Ufree(
i0) with best (smallest value v). For any such a 4-uple, it computes the value
w = EVAL2(INSERT(T(k), x, y, i0)).Val - VAL2(T(k)), and it orders L-
Candidate according to increasing values w. Then it randomly chooses (k0,
x0, y0, v0) among those N2 ≤ N1 first 4-uples in L-Candidate. N1 and N2

become two parameters of the INSERTION procedure. (E3)
– Next it inserts the demand i0 into T(k0) according to the insertion nodes x0,
y0, which means that it replaces T(k0) by INSERT(T(k0), x0, y0, i0);

– Next it defines, for any i ∈ J , the set Λ(i) as being the set of all pairs (x, y)
such that there exists some 4-uple (k0, x

′
, y′, v) in Ufree(i), which satisfies:

• (x
′

= x) or ((x
′

= x0) and x
′

= Pred(T(k0), x)) or ((x
′

= x0 = y0) and
(x

′
= Pred(Pred(T(k0),x))));

• (y′ = y) or ((y′ = y0) and y′ = Pred(T(k0), y)) or ((y′ = x0 = y0) and
(y′ = Pred(Pred(T(k0),y)))); (E4)

– Finally, it performs, for any pair (x, y) in Λ(i), a call Test-Insert(T(k0), x,
y, i), and it updates Ufree(i) and Nfree(i) consequently.

This can be summarized as follows:

Procedure INSERTION(N1 and N2 : Integer): (T: tour set, t: time value
set, Perf: induced Perf A,B,C(T, t) value, Reject: rejected demand set);

For any k = 1..K do
T(k) ← {DepotD(k), DepotA(k)};
t(DepotD(k)) = t(DepotA(k)) ← 0;

I1 ← Nil ; J ← I ; Reject ← Nil;
For any i ∈ J do
Nfree(i) ← K;
Ufree(i) ← all the possible 4-uple (k, x, y, v), k ∈ K, x, y ∈ {DepotD(k),
DepotA(k)}, x�T (k) y, v = EVAL2({DepotD(k), oi, di, DepotA(k)}).Val;

While J 6= Nil do
Pick up some demand i0 in J as in (E2); Remove i0 from J;
If Ufree(i0) = Nil then Reject ← Reject ∪ {i0};
Else

Derive from Ufree(i0) the L-Candidate list and pick up (k0, x0, y0, v0)
in L-Candidate as in (E3);
T (k0)← INSERT(T (k0), x0,y0,i0);
δ ← EVAL2(T (k0)).δ; Insert i0 into I1 ;
For any x in T(k0) do t(x)← δ(x);
For any i ∈ J do
Λ(i)← {all pairs (x, y) such that there exists some 4-uple (k0,x

′
, y

′
, v)

in Ufree(i), which satisfies (E4);
For any pair (x, y) in Λ(i) do

(Test, Val) ← Test-Insert(T(k0), x, y, i);
Remove (k0, x, y, v) from Ufree(i) in case such a 4-uple exists and
update Nfree(i) consequently;
If Test = 1 then insert (k0, x, y, Val) into Ufree(i) and update
Nfree(i) consequently;

Perf ← Perf A,B,C (T, t);
INSERTION ← (T, t, Perf, Reject);

Since the above (I1) and (I2) instruction may be written in a non deter-
ministic way, the whole INSERTION algorithm becomes non deterministic and
may be used inside some MONTE-CARLO framework:

RANDOM-INSERTION(N1, N2, P: Integer) Scheme;
For p = 1..P do

Apply the INSERTION(N1, N2) procedure;
Keep the best result (the pair (T, t) such that |Reject| is the smallest

possible, and which is such that, among those pairs which minimize |Reject|, it
yields the best Perf A,B,C (T, t) value).

4 Dial-a-ride Problem with Split Loads

4.1 Model and Framework updated

The Dial-a-ride problems with split loads means we allow related to some demand
to be split in several pieces and to transported separately. Such a situation may
occur in the case of good transportation (large scale load management) as well as
in the case of people transportation (group management). Difficulties start with
modeling, since the way loads Qi are divided into load-pieces Qi,j , j = 1..n(i),
is part of the problem.

We based on the general Dial-a-ride Problem defined above and we update :

– the set X which gives rise to a infinite set Z = Z(X), which derives from X
by replacing every node x such that Status(x) = {Origin, Destination}, by
nodes (x, s), s ∈ N . This splitting process will allow us to distinguish the
nodes of X which are related to some demand Di according to the load-pieces
Qi,j , j = 1..n(i): the meaning of node (oi, s) is that if a tour T(k) contains
this node (oi, s), then it will also contain the node (di, s), and vehicle k will
ensure the transportation of some load-piece Qi,j from oi to di.

– the DIST matrix which may be considered as extended in a natural way as
a DIST function which is defined on Z.Z;

– the Twin function : for any node z = (x, s) = (oi, s) ((di, s)) which appears
in Γ , the node Twin(z) = (di, s) ((oi, s)) is also in Γ , and we have: z <<
Twin(z) ((Twin(z) << z));

– the ride is computed by the duration between the first time’s origin node
and the last time’s destination node for a given demand;

– the maximum ride time could be considered in two different ways (for a given
demand) :

• it bounds the duration given by the first time’s origin node and the last
time’s destination node,

• each load-pieces is independent and bounded by the same maximum ride
time (like in our experiments).

So, the Dial-a-Ride Problem with split loads may be put in a formal way as
follows:

The dial-a-ride problem with split loads
Input: the demand set D = (Di = (oi, di, ∆i, F (oi), F (di), Qi), i ∈ I), the 4-uple

(X, DIST, K, CAP) which we defined above, and 3 multi-criteria coefficients A,
B and C ≥ 0;
Output: a triple (T, t, Q) where T = {T(k), k ∈ K} is a time valid tour family,
Q = {Q(k), k ∈ K} is a family of related valid load value sets Q(k) = {Q(k)(z),
z ∈ T (k)}, and t = {t(k), k ∈ K} is a family of related valid time value sets t(k)
= {t(k)(z), z ∈ T (k)} such that:

– for every i ∈ I, we have:∑
k=1..K

∑
(i,s) if oi∈T (k)Q(k)(oi, s) = −

∑
k=1..K

∑
(i,s) if di∈T (k)Q(k)(di, s)

– The quantity Perf A,B,C(T, t,Q) =
∑
k=1..K CostA,B,C(T (k), Q(k), t(k)) is

the smallest possible.

Active set related to a feasible triple (T, t, Q): it is the set of the active nodes
(x, s) in Z = Z(X), which means the nodes which belong to some tour T(k), k
= 1..K. The general algorithmic scheme INSERTION-SPLIT-LOADS will
come as follows:

Initialize (T, t, Q); Initialize the sets Ufree(i), i ∈ I;
Initialize the active Z-ACT: Z-ACT <- Nil;
J <- I; For any i in J, set Q-Auxi <- Qi; Reject <- Nil;
While J 6= Nil do

Picks up some demand i0 in J; Remove i0 from J;
If Ufree(i0) = Nil then Reject <- Reject ∪ {i0, Q-Auxi0};
Else

Compute s0; Create two new active nodes (oi0 , s0) and (di0 , s0) and
insert them into Z-ACT;
Derive from Ufree(i0) a L-Candidate list;
Pick up (k0, x0, y0, v0, Q(k0)(oi0 , s0)) in L-Candidate; (E5)
T(k0) <- INSERT(T(k0), x0, y0, i0);
Update t and Q;
Update the sets Ufree(i), i ∈ J;
If Q(k0)(oi0 , s0) = Q-Auxi0 then Remove i0 from J else replace
Q-Auxi0 by Q-Auxi0 - Q(k0)(oi0 , s0);

4.2 Trade-off between load and speed: the Load-Distribute
Problem.

As a matter of fact, performing Instruction (E5) above, which means conve-
niently the parameters k0, x0, y0 and Q(k0)(oi0 , s0) of the insertion process,
also means defining some trade-off between the value Q(k0)(oi0 , s0), which we
would like to be the larger possible, and the quality of the insertion in relation
to the criterion measure Perf A,B,C(T, t) and to the values which are returned
by EVAL1 and EVAL2. In order to define this trade-off, we do not exactly follow
the above algorithmic scheme: instead, we proceed in a specific way, which con-
sists in handling the whole demand Di0 inside a same iteration, while eventually
splitting into several blocks and simultaneously distributing those blocks in an

ad hoc way between the different tours. In order to put it in a more precise way,
let us suppose that we are dealing as above with a demand index i0 in J, in such
a way that Q-Auxi0 = Qi0 and with a L-Candidate list which we derived from
the set Ufree(i0). The elements of L-Candidate are 5-uple (k, x, y, v, q), which
express the feasibility of the transportation by vehicle k of a load q from oi0 to
di0 , respectively inserted into the tour T(k) between x and Succ(T(k), x) and
between y and Succ(T(k), y), the number v providing us with the EVAL2 value
of this insertion. Then we try to solve the following problem:

Load-Distribute Problem
{Select a collection Λ = {(k1, x1, y1, v1, q1),.., (ks, xs, ys, vs, qs)} of 5-uples

of L-Candidate, in such a way that:
- the kj , j = 1..s, are pairwise distincts;
-
∑
j=1..s qj ≥ Qi0 ;

-
∑
j=1..s vj is the smallest possible}

While this problem may be easily solved in an exact way through a bipar-
tite graph matching procedure, we deal with it in a fast way through a simple
heuristic Load-Distribute procedure. In case we don’t find any feasible solution
to this problem, then we reject the whole demand i0. Else, we create the active
nodes (oi0 , j), (di0 , j), j = 1..s , we add them to Z, and, for every index value j
= 1..s, we replace the tour T(kj) by the tour INSERT(T(kj), xj , yj , i0), and we
consequently update the time value set t(ki) and the load value set Q(ki).

Remark 1. The failure of the Load-Distribute test does not completely mean
that the insertion of demand i0 cannot be performed: theoretically, one might
build instances which would make a distributed insertion possible, under the
condition that a same vehicle is going to support several distinct nodes (oi0 , j).
In such a case, we should perform the insertion of a first part of demand i0, and
next try again with the remaining part, while eventually using the same vehicle
as for the first part. Still, practically, such a configuration is likely to occur very
scarcely, and, so, we decide not to take it into account.

5 Computational Experiments

5.1 Experiment on the classic Dial a Ride Problem

This first experiment deals with the two sets of instances defined in [5]. We
integrated the same mono criterion objective function given by Cordeau: the
minimization of the total distance. The instances have between 16 and 48 re-
quests which have to be supported by a fleet of 2 to 4 vehicles, and have been
divided into subsets a and b. In the first set, CAP = 3, the loads are all equal to
1, and the maximum riding time is 30min. For the second set, CAP = 6, the load
q is randomly chosen according to a uniform distribution such as q = 1..CAP ,

Inst. Lb Opti Ub c1(s) TI Gap Wait Ride c2(s)
a2-16 294.25 294.25 294.25 1.1 294.25 0.00 387.32 344.54 0.0
a2-20 344.83 344.83 344.83 2.6 344.83 0.00 605.44 455.32 0.1
a2-24 431.12 431.12 431.12 8.5 431.12 0.00 536.79 603.31 0.3
a3-18 300.48 300.48 300.48 4.6 300.81 0.11 196.65 419.35 0.7
a3-24 344.83 344.83 347.42 7.6 344.83 0.00 642.72 628.86 1.5
a3-30 494.85 494.85 494.85 9.8 495.26 0.08 721.21 732.86 16.3
a3-36 583.19 583.19 584.44 105.1 589.86 1.14 868.83 903.77 13.8
a4-16 282.68 282.68 282.68 5.6 283.10 0.15 100.72 307.00 0.3
a4-24 375.02 375.02 378.13 5.6 376.21 0.32 527.81 581.60 94.0
a4-32 485.5 485.5 487.81 30.7 487.10 0.33 593.75 796.45 29.4
a4-40 557.69 557.69 582.26 8328.5 565.95 1.42 1112.33 824.32 63.3
a4-48 668.82 NA 709.47 14542.6 700.30 NA 966.85 1132.92 30.8

Table 1. Resolution of the set a [5]

and the maximum riding time is 40min. All the demands are randomly chosen in
the square [-10,10].[-10,10] according to a uniform distribution, and all the rout-
ing costs between two nodes are equal to the Euclidean distance. The heuristics
proposed in this paper was implemented in C++ and compiled with GNU GCC.
Each replication was run on the same thread of an Intel Q8300 (2.5 GHz).

Table 1 shows the results obtained for the a first set of instances, and table
2 gives the results for the b second set. Lb, Ub, Opti, and TI are the best lower
bound, the best upper bound, the known optimal value ([5]-[14]), and the result
obtained with our insertion techniques respectively. The cpu times are in seconds
for the first table and in minutes for the second table. c1 is the literature best
cpu time and c2 is the cpu time obtained in our experiment. gap is the gap in
percentage between the optimal distance and our result.

Almost each time, our heuristic found the optimal solution known in the
literature and the worst gap obtained was 2,38%. We obtained these results
quickly, the cpu times are low compared to previous studies, and a good solution
is obtained in little time. Also, we show that our solution can be used with other
objective functions, proving one the flexibility aspects of our solution.

5.2 Experiment on the Dial a Ride Problem with split loads

In this section we present our instances generated in the same square [-10,10].[-
10,10] as above in order to test our heuristic that solves the DARPSL. In all
demands, the origin time window is tight (15 minutes) and the destination time
window is large. Moreover, their origin location are randomly located in the rect-
angle [-10,-9].[-10,10], and their destination location is generated in the square
[9,10].[-0.5,0.5]. The depot point is located on the center of the main square. We
generated four sets of 10 instances (20 to 65 demands managed by 4 to 10 vehi-
cles). All the random generation has been computed by a uniform distribution.

The optimization uses a mono criterion : the minimization of the total dis-
tance. Our two algorithms proposed in this paper were applied to the four sets,

Inst. Lb Opti Ub c1(m) TI Gap Wait Ride c2(m)
b2-16 309.41 309.41 309.61 0.2 309.41 0.00 386.45 448.66 0.7
b2-20 332.64 332.64 334.93 0.0 332.64 0.00 458.17 465.23 0.6
b2-24 444.71 444.71 445.11 0.1 444.71 0.00 475.88 674.12 2.6
b3-18 301.64 301.64 301.8 0.7 301.65 0.00 278.70 479.38 0.7
b3-24 394.51 394.51 394.57 3.6 397.47 0.75 609.62 572.61 3.5
b3-30 531.44 531.44 536.04 6.8 534.23 0.52 785.71 857.28 3.2
b3-36 603.79 603.79 611.79 62.1 603.79 0.00 919.58 942.81 0.9
b4-16 296.96 296.96 299.07 0.8 296.96 0.00 218.97 402.16 2.8
b4-24 371.41 371.41 380.27 5.9 371.41 0.00 490.06 567.75 0.1
b4-32 494.82 494.82 500.92 176.8 506.60 2.38 921.55 749.85 1.9
b4-40 591.76 656.6 662.91 240.0 662.74 0.94 1013.20 1021.47 3.5
b4-48 586.91 673.8 685.46 240.0 684.83 1.64 1458.76 1262.59 5.2

Table 2. Resolution of the set b [5]

K |D| Glob Ride Dist RSucc RInsert cpu(s)
4 20 836.3 953.8 416.9 71.2 98.1 0.3
6 35 1366.7 1590.7 714.2 58.0 98.0 0.7
8 50 1831.0 2203.1 1038.4 28.4 96.3 1.4
10 65 2349.7 2758.5 1347.2 25.2 95.8 2.4

Av. 1595.9 1876.5 879.2 45.7 97.0 1.2
Table 3. Instances solved by the DARP’s heuristic

each instance has been solved with 100 runs. Table 3 and table 4 report the
results obtained with the classic problem and the problem with split loads re-
spectively. Glob and Ride are the times reported from the best run, Dist is
the best total distance obtained, RSucc (%) is the insertion average rate (over
the runs) of all the demands, RInsert (%) the average rate of insertion for each
demand, and cpu(s) is the time in seconds for the 100 runs.

K |D| Glob Ride Dist RPart RSucc RInsert cpu(s)
4 20 856.3 1113.1 356.8 1.205 93.2 99.6 0.5
6 35 1269.2 1787.2 605.5 1.216 78.4 98.8 1.3
8 50 1689.7 2542.1 850.2 1.216 53.6 97.8 2.6
10 65 2024.7 2981.0 1100.3 1.220 47.6 97.1 4.2

Av. 1460.0 2105.9 728.2 1.214 68.2 98.3 2.1
Table 4. Instances solved by the DARPSL’s heuristic

We report the average number of divisions per demand (RPart). So, for the
four sets, this rate is 1,214 (each demand is divided by 1,214 on average).

We observed that the split loads gives us better solutions, we obtained dis-
tances 20% less than the other problem. Glob also decreased (the average number
of vehicles leaving the depot is lower than the classic problem). Ride increased

because it is computed on the difference between the last date of the pickups at
the destination point and the first date of the pickups at the origin point.

6 Conclusion

The static multi-vehicle DARP with Time Windows requires approximate solu-
tions in order to be solved in a reasonable time. We have described an implemen-
tation of some insertion techniques using constraint propagation. This solution
makes it possible to obtain good results in little time. In addition, we formulate
an objective function which optimizes the combination of QoS and cost’s mini-
mization. But, in order to compare with tests found in literature, we prove the
flexibility of our framework by changing the objective function without modifi-
cation of the framework itself. Despite this change, we show that our solution is
effective.

We also propose a new problem: the Dial a Ride Problem with split loads.
This problem gives us better solving method compared to the classic DARP, we
get 20% shorter routes with the resolution of the DARPSL with our instances.

In a future work, we could solve instances in real context, and improve our
solution by integrating inserability demand calculator.

7 Acknowledgments

We wish to thank you the Conseil Regional d’Auvergne and the FEDER of the
European Union.

References

[1] G. Ghiani G. Laporte A. Attanasio, J.F. Cordeau. Parallel tabu search heuristics
for the dynamic multi-vehicle dial-a-ride problem. Parallel Computing. Volume
30, Issue 3, Page 377-387, 2004.

[2] A. Hertz C. Archetti, M.G. Speranza. A tabu search algorithm for the split
delivery vehicle routing problem. Transportation Science, 40(1) :64–73, 2006.

[3] M.G. Speranza C. Archetti. The vehicle routing problem : Latest advances and
new challenges, chapter the split delivery vehicle routing problem : A survey. pages
103–122. Springer US, 2008.

[4] R. Chevrier. Optimisation de transport à la demande dans des territoires polarisés.
PhD. Thesis. Université d’Avignon et des Pays de Vaucluse, 242p, 2008.

[5] J-F Cordeau. A branch-and-cut algorithm for the dial-a-ride. Operation Research.
Vol, 54, n°3, p 573-586, 2006.

[6] J. Jaw A. Odoni H. Psaraftis, N. Wilson. A heuristic algorithm for the multi-
vehicle many-to-many advance request dial-a-ride problem. Transportation Re-
search B 20B, 243-257, 1986.

[7] G. Laporte J.-F. Cordeau. A tabu search heuristic algorithm for the static multi-
vehicle dial-a-ride problem. Transportation Research B 37, 579–594, 2003.

[8] G. Laporte J.F. Cordeau. The dial-a-ride problem: models and algorithms. Annals
of Operations Research, 2007.

[9] J.R. Stone J.W. Baugh Jr., D.K.R. Kakivaya. Intractability of the dial-a-ride
problem and a multiobjective solution using simulated annealing. Engineering
Optimization, 30(2): 91-124, 1998.

[10] P. Trudeau M. Dror. Savings by split delivery routing. Transportation Science,
23(2) :141–145, 1989.

[11] A Schrijver M. Grötschel, L. Lovász. Geometric algorithms and combinatorial
optimization. Springer-Verlag, 1988.

[12] J. Rygaard O. Madsen, H. Ravn. A heuristic algorithm for the a dial-a-ride
problem with time windows, multiple capacities, and multiple objectives. Annals
of Operations Research 60, 193–208, 1995.

[13] R. Moll P. Healy. A new extension of local search applied to the dial-a-ride
problem. European Journal of Operational Research 83, 83–104, 1995.

[14] S. Parragh. Introducing heterogeneous users and vehicles into models and algo-
rithms for the dial-a-ride problem. Transportation Research Part C : Emerging
Technologies. Volume 19, Issue 5, August 2011, Pages 912–930, 2011.

[15] S. N. Parragh. Solving the dial-a-ride problem with split requests and profits. CO
2012, 2012.

[16] H. Psaraftis. An exact algorithm for the single vehicle many-to-many dial-a-ride
problem with time windows. Transportation Science 17, 351–357, 1983.

[17] P. Chatonnay D. Josselin R. Chevrier, P. Canalda. Comparison of three algo-
rithms for solving the convergent demand responsive transportation problem.
ITSC’2006, 9th Int. IEEE Conf. on IntelligentTransportation Systems, Toronto,
Canada, 1096–1101, 2006.

[18] K.B. Bergvinsdottir R.M. Jorgensen, J. Larsen. Solving the dial-a-ride problem us-
ing genetic algorithms. Journal of the Operational Research Society, 58(10):1321-
1331, 2007.

[19] A. Quilliot S. Deleplanque. Dial a ride problem avec transbordement et division du
chargement. 14e conférence ROADEF. 14-15-15 Février 2013 (résumé accepté),
2013.

[20] R.F. Hartl S.N. Parragh, K.F. Doerner. Variable neighborhood search for the
dial-a-ride problem. Computers & Operations Research, 37 p1129–1138, 2010.

