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Abstract

The cliff-edge hypothesis introduces the counterintuitive idea that the trait value associated with the maximum of an
asymmetrical fitness function is not necessarily the value that is selected for if the trait shows variability in its phenotypic
expression. We develop a model of population dynamics to show that, in such a system, the evolutionary stable strategy
depends on both the shape of the fitness function around its maximum and the amount of phenotypic variance. The model
provides quantitative predictions of the expected trait value distribution and provides an alternative quantity that should be
maximized (‘‘genotype fitness’’) instead of the classical fitness function (‘‘phenotype fitness’’). We test the model’s
predictions on three examples: (1) litter size in guinea pigs, (2) sexual selection in damselflies, and (3) the geometry of the
human lung. In all three cases, the model’s predictions give a closer match to empirical data than traditional optimization
theory models. Our model can be extended to most ecological situations, and the evolutionary conditions for its application
are expected to be common in nature.
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Introduction

Evolutionary theory predicts that trait means in populations

should evolve towards the value that maximizes fitness [1], which

is also a central assumption in most optimality analyses [2].

However, in many cases the evolution of fitness-related traits

might be constrained by genetic or physiological trade-offs that

cause negative genetic correlations between traits [3]. Fitness in

these situations will be maximized in a way that depends on the

balance between the counteracting selective forces on traits, and

the net fitness functions are expected to be bell-shaped [4]. For

instance, increased annual reproductive effort is expected to

negatively affect adult survival in long-lived species, leading to a

fitness optimum where lifetime reproductive success will be

maximized by intermediate reproductive effort [5]. Optimality

theory predicts that natural selection will drive the population

towards this ‘optimal’ trait value that maximizes fitness [6], which

has a close connection to the concept of ‘adaptive peaks’ in

population genetics [7]. This classical optimization approach has

been successfully applied in evolutionary ecology to predict the

population mean of many phenotypic traits.

In particular, the evolution of reproductive traits, such as

offspring number, has received considerable interest and has

provided evolutionary ecologists with a solid conceptual founda-

tion for optimality theory in life-history evolution [8–10].

However, in many species of birds and mammals, the number

of offspring most commonly observed is often less than the

maximum [11–16]. Several alternative theories have been

advanced to explain this pattern [15,17]: (1) costs of reproduction

due to trade-offs with parental survival or future reproduction

[18]; (2) inter-annual variation in juvenile survival related to

variation in environmental quality [12]; (3) individual optimization

in relation to individual condition and local resource availability

[19]; and (4) the interaction between asymmetrical fitness costs

and individual variance in brood size (‘cliff-edge hypothesis’)

[12,20].

Among these hypotheses concerning the evolution of litter size,

cliff-edge effects have the potential to provide a unifying

framework for understanding the optimization of phenotypic

traits. This theory predicts that when juvenile survival is

asymmetrically low in large broods, moderate variance around

the optimal brood size will result in large differences in survival

between clutches slightly smaller or larger than the optimal. As a

consequence of these asymmetric costs, females producing larger

than the most productive broods will leave fewer descendants than

females producing smaller than the most productive broods, and

the evolutionary optimal should be smaller than the most

productive brood size.

In what follows, the relationship between phenotypic value and

reproductive value will be referred to as ‘phenotype fitness’ (which

defines the single most productive brood size). In contrast, the

relationship between genotypic value and the reproductive value

averaged over the phenotype range for each genotype will be

referred to as ‘genotype fitness’ (which defines the evolutionary

optimum). The difference between these two definitions of fitness

is illustrated on Figure 1. In the absence of any phenotypic

variance, these two definitions merge.

On a more general note, cliff-edge effects are related to the

properties of convex functions known as Jensen’s inequality.
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Jensen’s inequality states that, for a convex function f and a set of

values x = (x1,…,xn) with a mean of x and non-zero variance, the

average image of x, f (x) does not equal the image of the average x,

f xð Þ. In other words, the trait value that gives the highest genotype

fitness in the presence of phenotypic variance is not the value that

gives the highest phenotype fitness. These analytical principles

have been successfully applied to a wide range of evolutionary

questions, including the evolution of reproductive systems and life-

history strategies, individual behaviour or population dynamics in

variable environments [21–28]. In this article, we propose a

general mathematical formalization of the cliff-edge problem that

can be applied to any fitness-related trait that exhibits phenotypic

variability and has asymmetric fitness costs. These conditions are

expected to be quite common in nature; hence the generality of a

model incorporating these effects is likely to be high.

We develop an analytical model that describes the evolution of a

population with random variation in the expression of a fitness-

related trait and an asymmetrical fitness function. We demonstrate

that these conditions select for apparent sub-optimal genotypes

with regard to phenotype fitness, and we show that the optimal

genotypic value depends on both the amount of variance of the

trait and on the skewness of the fitness function. The model

provides quantitative predictions of the position of the optimum

and the distribution of phenotypic variance. To illustrate our

method, we apply the model to three different evolutionary

systems for which we were able to estimate realistic fitness

functions from empirical data. Two of these examples (evolution of

litter size in guinea pigs, and the evolution of male sexual

ornaments in a damselfly) are in line with the classical framework

of life history evolution. The third example (evolution of human

respiratory tract geometry) stems from evolutionary medicine and

demonstrates that cliff-edge effects can act on any trait that is

targeted by natural selection.

Figure 1. Comparison between (a) the phenotype fitness function, and (b) genotype fitness function relative to the trait variation
(after Martin and Huey [27]). Because of the steep part (cliff) of function (a), the optimal trait value (red phenotypic distribution) is shifted
downwards from the trait value that maximizes phenotype fitness. Function (c) represents the variance in offspring phenotype fitness for different
mean values of the trait.
doi:10.1371/journal.pone.0034889.g001
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Results

1- Model of the evolution of a population in presence of
phenotypic variation

We consider a population with a continuous trait (e.g.

reproductive effort, physiological parameters). We assume that

there is no genetic variation for this trait in the population: all

genotypes take the value g, but the phenotypic expression can vary

randomly from Qmin to Qmax. This phenotypic variance can arise

from several different processes (e.g. developmental instability,

environmental variability, maternal effects, epistasis) as long as it is

a random process such that any individual of genotype g can

experience any phenotype between Qmin and Qmax. The simple

evolutionary processes involved in the population model were

chosen to isolate the effect of phenotypic variability on trait

evolution and to increase the generality of model predictions.

The function a(Q,t) denotes the frequency of individuals in the

population having the phenotype value Q at time t. We assume

that instantaneous fitness depends on the phenotype, so these

individuals have a reproductive rate b(Q)$0 and a mortality rate of

m(Q).0. Therefore, at each instant t and per unit of time,

m(Q)a(Q,t) individuals of phenotype Q die, while b(Q)a(Q,t)

descendants are produced by individuals of phenotype Q.

For any individual with genotype g, the phenotype Q of its

offspring is randomly distributed around the value g following the

distribution function G(Q,g,s). We consider that G(Q,g,s) is a

Gaussian function (default hypothesis for a quantitative characters,

see [29]) centred around g with a variance s2.

Therefore, offspring of phenotype Q are produced by parents of

genotype g in the proportion G(Q,g,s), regardless of the parents’

own phenotype, i.e. there are no cross-generational effects.

Therefore, at each time a total quantity
Ðqmax

qmin

b(l) a(l,t)dl of new

individuals are produced in the population, among which only a

fraction G(Q,g,s) will have the phenotype Q.

The variation of the distribution of individuals of parameter Q
over time is then given by the differential equation:

La

Lt
(q,t)~ {m(q) a(q,t)|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

mortality

%hbrace

z G(q,g,s)|

ðqmax

qmin

b(l) a(l,t)dl

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
reproduction

%hbrace
ð1Þ

We show in Supplementary Text S1 that such a population does

not go extinct as long as

F (g)~

ðqmax

qmin

G(l,g,s) b(l)

m(l)
dl w 1 ð2Þ

The term in the integral represents the per capita growth rate

w(l) = b(l)/m(l) (phenotype fitness) of individuals with phenotype l

multiplied by their frequency in the population. Thus, the function

F(g) represents the sum of phenotype fitness of all phenotypes

weighted by their respective frequency, i.e. the weighted mean of

phenotype fitness in the population. The growth rate function F(g)

is therefore the genotype fitness of genotype g. This result holds for

populations with limited resources (Supplementary Text S1).

Then, we consider two populations with limited growth, one

with a genotype g1 and the other with a genotype g2?g1. They are

represented by their respective distribution a1(Q,t) and a2(Q,t).

They are interacting with each other due to mutually shared

resources that are limited. In order to have true competition, we

assume that each population does not go extinct if it is alone,

which is equivalent to F(g1).1 and F(g2).1.

The equations that describe the evolution of these populations

and their distributions along time are:

La1

Lt
(q,t)~{m(q) a1(q,t)z 1{

ðqmax

qmin

(a1(l,t)za2(l,t))dl

0
B@

1
CA

|G(q,g1,s)|

ðqmax

qmin

b(l) a1(l,t)dl

La2

Lt
(q,t)~{m(q) a2(q,t)z 1{

ðqmax

qmin

(a1(l,t)za2(l,t))dl

0
B@

1
CA

|G(q,g2,s)|

ðqmax

qmin

b(l) a2(l,t)dl

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð4Þ

There are four equilibrium points: coexistence of both popula-

tions; extinction of both populations; only one population survives

while the other goes extinct (two combinations). Coexistence is

possible only if g1 = g2, which is excluded by hypothesis. Moreover

since F(g1) and F(g2) are assumed to be strictly greater than 1 for

each population, it can be shown that the extinction of both

populations is not possible. Thus, under these hypotheses one

population must invade the other. Then, a successful invasion of

population g1 into population g2 (i.e. equilibrium a1?0 and a2 = 0

stable) is possible if and only if:

F (g1)~

ðqmax

qmin

G(l,g1,s) b(l)

m(l)
dl w F (g2)~

ðqmax

qmin

G(l,g2,s) b(l)

m(l)
dlð5Þ

Hence, the evolutionary stable strategy (ESS) corresponds to the

genotype g* that maximises the growth rate function F(g). The

population of parameter g*, also called the super-mutant

population, will invade any population of parameter g?g*, while

it cannot be invaded by other populations with a parameter g?g*.

Thus, the genotype g* is an ESS and should be observed in

population at the equilibrium state, although the phenotype varies

in the population.

To determine g*, it is necessary to calculate the maximum of the

growth rate function F(g). Hence, the most efficient genotype is the

one that maximises the success of the whole population by

cumulating the relative success of each phenotypic trait weighted

by their frequency.

When the fitness function is symmetric or if there is no

phenotypic variance at all, the genotypic value g* associated with

the maximum of the function F is equal to the value that

maximizes the phenotype fitness w. However, when the fitness

function is asymmetric and the phenotypic variance is non-zero,

these two values do not match anymore, as predicted by Jensen’s

inequality. In this case, the optimum genotype g* value is

Cliff-Edge Effects in Ecology and Evolution
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systematically shifted from the maximum of the phenotype fitness

in the direction of the least slope (Supplementary Text S2).

2- Application of the model using three biological
examples

Most heritable traits are expected to include some degree of

non-additive genetic, environmental or developmental variability

that affects their optimal expression. Our first example focuses on

optimal litter size in laboratory strains of Guinea pigs (Cavia

porcellus). For this, we re-analyzed Mountford’s original data set

[20] that was used in his development of the cliff-edge hypothesis.

Our second example deals with a secondary sexual trait in the

damselfly Calopteryx splendens, using survival and mate choice data

obtained in the field ([30], M. Wellenreuther, E. Vercken and E.

Svensson, unpublished data). The third example is based on

modelling work about the impact of lung geometry on respiratory

performance in humans [31]. In all these examples, fitness

functions are not symmetrically shaped around their maximum

value, and we show consistent matching between empirical data

and model predictions.

2-1 Example 1: Optimal litter size in Guinea pigs. In his

seminal paper, Mountford [20] showed that the litter size that

leads to the maximum number of surviving offspring in Guinea

pigs was not the most frequent one. He suggested that the

phenotypic variability associated with high asymmetric fitness costs

for large litter sizes could explain this observation. To prove the

validity of his theory, he produced a theoretical example based on

simple numeric calculations. In what follows, we show that the

frequency distribution of litter size in Guinea pigs could be

predicted by the general model described above, and that this

model can also provide information about both the optimal

genotype as well as the variance in the expressed phenotype.

In our model, the litter size is called L and extents from Lmin = 0

to Lmax = 9. Reproductive rate b(L) corresponds to offspring

survival in relation to the litter size (data reproduced from

Mountford [20]). Life-history theory predicts that, as a conse-

quence of trade-offs between present and future reproduction,

female survival should decrease when litter size increases ([32–36]

but see [15,37,38] for counter-examples). In the absence of any

data on the precise relationship between litter size and female

mortality rate in Guinea pigs, we assumed a simple linear model

m(L) = mr+a6L, where mr is the mortality rate for non-reproductive

individuals and a is a constant estimated by least-squares method.

The intercept value mr does not affect the position of the genotype

fitness maximum as it plays the role of a scaling factor once a is

chosen. The phenotype fitness function is asymmetric around a

maximum plateau for litter sizes between 2 and 3 (Figure 2a).

The general method to compare the predictions of our model to

the measured data is similar in the three different examples used in

this paper and is described in detail in Supplementary Text S3.

First, we determine the optimal genotype Lo(s) for each of the

possible values of phenotypic variance s2. Second, we find the

value of (s, Lo(s)) that best fits empirical data using the mean-

square method, here in the first example, the distribution of litter

size in Guinea pigs.

Figure 2b represents the relationship between the standard

deviation s and optimal genotype Lo(s) (first step). Because the

phenotype fitness function has a maximum plateau, this

relationship is not monotonic. For small values of s, most

offspring will fall within the phenotype fitness plateau. However,

because of the long tails of the Gaussian distribution, a small

proportion will be outside of it. Therefore, the optimal genotype

fitness is initially shifted away from the steepest slope (left side).

When s increases, at first a significant proportion of offspring

phenotypes reaches values of L.3, while fewer phenotypes reach

values of L,2 (because the optimum is initially right-shifted).

Therefore, the optimum genotype value decreases as it shifts away

from the closest fitness slope, accounting for the initial negative

relationship in Figure 2b.

For higher values of s, a more significant proportion of offspring

phenotype reaches values of L,2 and thus ‘fall off the cliff’.

Because the phenotype fitness loss is higher for phenotypes that

reach values of L,2 than for those with values of L.3, the

optimum genotype will shift away from the steepest slope and

tends to obtain higher values of L as s increases (positive

relationship in Figure 2b).

In Guinea pigs, the optimal phenotypic trait predicted was 3.05

with a phenotypic variance of 1.30 (s = 1.14). The difference

between the distribution of the trait in the population predicted by

Figure 2. Effect of phenotypic variance on optimal litter size in Guinea pigs. (a) Asymmetric fitness function b(L)/m(L). The curve reaches its
maximum value on the plateau between L = 2 and L = 3. The dashed line corresponds to the optimal genotype L = 3.05 (s = 1.14) that best fits the
empirical data from Mountford [20]. (b) Position of the optimal genotype relative to the standard deviation s.
doi:10.1371/journal.pone.0034889.g002

Cliff-Edge Effects in Ecology and Evolution
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the model and the distribution observed by Mountford [20] was

less than 3.5% (Figure 3).

2-2 Example 2: Selection on male wing patch size in

Calopteryx splendens. In the damselfly Calopteryx splendens,

males have a dark melanized wing patch that covers

approximately 50% of the wing [39]. Wing patches in this

species function as secondary sexual traits and are only carried by

males [40–42]. Wing melanization affects male predation risk, as

males with larger wing patches suffer higher mortality from avian

predators [30]. This trait is also under sexual selection in this

population, where female mating response increases with male

wing patch size (Supplementary Text S4).

The phenotype fitness function is asymmetric (Figure 4) around

a maximum at wing patch length x = 17.52 mm. The fitness

decrease is steeper for larger patches; hence the optimal genotype

is expected to be smaller than the phenotype fitness maximum.

The best fit was obtained with an optimal trait xo of 16.93 mm

and a standard deviation s of 2 mm. The difference between the

values predicted by the model and those measured in the field was

less than 17% (Figure 5).

2-3 Example 3: Estimating optimal lung

geometry. Mauroy et al. [31] developed a model of the

human bronchial tree to study the relationship between the

geometry of the tree and its hydrodynamical resistance. They

modelled the distal part of the lungs as a dichotomical tree

branching in a homothetical way: at each bifurcation: each branch

divides in two identical smaller branches, whose length and

diameter are reduced by a constant factor h, the homothetical

factor (Figure 6, for hl = hd = h).

They showed that the mean phenotypic parameter h, observed

from empirical data [43], is around 0.8470, while the optimum

value predicted by their model was 0.7937. Although small, this

difference is expected to have major effects on the resistance and

volume of the lung because of the multiplicative nature of the

homothetical transformation (i.e. if the tree bifurcates 10 times, the

deepest branches will be h10 smaller than the first generation

branch). Large lung hydrodynamic resistance (small h) requires

more energy for lung ventilation, while large lung volume (large h)

results in a reduced exchange surface (less volume is available for

alveoli). We consider that the fitness of an individual is a function

of respiratory efficiency and thus depends on the value of the

parameter h.

We further extended the model originally formulated by

Mauroy et al. [31] to estimate a more realistic fitness function

for h. Based on morphometric data [44] we assumed that lengths

and diameters of the tree branches are not reduced by the same

factor at each bifurcation (Figure 6, hl?hd). Under this hypothesis,

the resulting phenotype fitness function (Figure 7) is asymmetrical

around the optimum (Supplementary Text S4). The steepest

decrease in fitness occurs for values below the optimum, thus we

expect the optimal value of the genotype fitness to be higher than

the most efficient phenotype.

Empirical data indicate a mean phenotypic value of h = 0.8470

[36]. The model predicts that this mean phenotype is reached for

an optimal genotype h = 0.8504 and a standard deviation s = 0.2.

Compared with the value maximizing the phenotype fitness

function hmin,0.7937, the optimal genotype corresponds to a

resistance that is 3.3 times smaller and a volume that is 2.4 times

larger. This result quantitatively confirms the hypothesis stated by

Mauroy et al. [31] that this shift from the phenotypic optimum

acts as a security margin to protect the bronchial tree from

phenotypic variations. This analysis is representative of an

optimality problem related to the geometry of a transport tree,

and as such it can be extended to many other well-known

theoretical contexts, such as the Metabolic Theory of Ecology

[44,45].

Figure 3. Comparison between model predictions (dashed line) and empirical data (Mountford [20], solid line) for the distribution
of litter sizes in the population. The model predicts an optimal genotypic value for litter size at 3.05 with a variance s2 of 1.30.
doi:10.1371/journal.pone.0034889.g003

Cliff-Edge Effects in Ecology and Evolution
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Figure 4. Estimate of the asymmetric phenotype fitness function z for Calopteryx splendens in relation with wing patch length x. The
maximum is reached for a wing patch length of 17.52 mm. The dashed line represents the optimal genotype predicted by our model that best fits the
observed population distribution, i.e. a patch length of 16.93 mm.
doi:10.1371/journal.pone.0034889.g004

Figure 5. Distribution of wing patch length of Calopteryx splendens at the population Naturreservat Klingavälsån (55.6384,
13.54142) in southern Sweden. The bars correspond to males caught in the field. The line shows the distribution predicted by the model with an
optimal patch length of 16.93 mm and a standard deviation of 2 mm.
doi:10.1371/journal.pone.0034889.g005

Cliff-Edge Effects in Ecology and Evolution
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Discussion

Environmental variation is ubiquitous in nature and can

generate substantial levels of phenotypic variation in fitness-related

traits [20,23,46]. Such unpredictable variation (e. g. developmen-

tal plasticity) can have profound effects on optimal trait values

[22,47]. Our model explicitly incorporates such unpredictable

variation through its effects on phenotypic variance and shows that

the position of the genotype fitness optimum will ultimately

depend on both the amount of phenotypic variance and the shape

of the fitness function. For symmetrical fitness and variance

functions, the optimal value for the fitness-related trait matches the

value that maximizes phenotype fitness. However, this classical

optimization scenario does not hold when fitness functions are

asymmetrical and when environmental variance leads to a variable

expression of genetic traits. Then, the genotype fitness optimum is

instead expected to shift from the phenotype optimum value in the

direction of the least slope. Such qualitative predictions can be

driven directly from the shape of the fitness function. Furthermore,

as illustrated in our three examples, quantitative predictions of

random phenotypic variance and genotype fitness optima can be

derived from empirical data.

Model applications
In the first two examples, we used empirical data on the

frequency distribution of traits and their relationship with fitness

components (reproductive rate and mortality) to estimate s, the

amount of random phenotypic variance in the population, and to

validate the predictions from the model. If the theoretical

distribution predicted by the value of s closely matches the

observed distribution of the trait, then the cliff-edge hypothesis is a

sufficient condition to explain the shift in the distribution away

from the phenotype fitness maximum. In this case, the most

frequent phenotype in the population is located at the predicted

value of the genotype fitness optimum. Furthermore, independent

of the intrinsic quality of the prediction, the difference between the

theoretical and observed descriptors provides information about

the importance of processes other than cliff-edge effects in the

evolution of the trait. In these two examples, we obtained less than

3.5% deviation for the Guinea pig data and less than 17% for the

damselfly data. Data on litter size in Guinea pigs are more likely to

meet the model’s assumptions (e.g. laboratory strains with low

amount of additive genetic variance, controlled environment with

few external selective pressures). In contrast, natural damselfly

populations should contain more genetic variability, and many

selective pressures in addition to predation and female mate choice

are expected to affect the evolution of male wing patch size [40].

These processes are partly responsible for the variability that is not

incorporated in the model. Yet, the model gives a closer prediction

of the actual fitness optimum than the phenotype fitness

maximum, thus supporting the claim that cliff-edge effects are

likely to play a strong role in the evolution of natural populations.

Alternatively, the model can be used as an a priori hypothesis to

predict the value of key parameters when empirical data is not

available, which is a classical approach in physics and biome-

chanics modelling. In the lung example, the frequency distribution

of the trait h is unknown, but its mean value in the population has

been estimated. Mauroy et al. [31] suggested that the value of h is

shifted from the phenotype fitness optimum in order to confer

higher robustness to the lung geometry in response to develop-

mental variation. In this context, the cliff-edge hypothesis provides

a formal framework to calculate the expected value of s, which

can then be used to implement other models and derive further

predictions that can be empirically tested.

Generality of the conditions of the model
The keystone hypotheses of the model are the existence of an

asymmetrical fitness function and a certain amount of phenotypic

variance, and the qualitative model predictions appear robust to

the precise shape of these functions (Supplementary Text S2).

Although the exact geometry of trade-offs will differ between

different ecological situations, asymmetrical trade-offs are likely to

be the rule rather than the exception, especially for traits under

stabilizing selection [48]. Indeed, if a trade-off results from the

interaction between two unrelated traits, there is no reason why

Figure 6. Model of the distal part of the bronchial tree used in
this study. After each bifurcation the generation index is incremented
by one (white numbers). The full model consists of 11 generations.
doi:10.1371/journal.pone.0034889.g006

Figure 7. Relationship between homothetical factor h and
fitness (trade-off between lung volume and hydrodynamical
resistance). The vertical dashed line corresponds to the optimal
genotype h = 0.8504 with s = 0.2, which best fits empirical data.
doi:10.1371/journal.pone.0034889.g007
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their respective effects on phenotype fitness should be exactly

opposing each other, i.e. completely symmetric. Similarly, there

are many processes that can generate random phenotypic

variation. For instance, condition-dependence, phenotypic plas-

ticity, developmental effects, environmental fluctuations and/or

non-additive genetic effects (e. g. epistasis) are all common and

well-known processes that are likely to increase phenotypic

variance [49,50]. These processes are expected to have a

significant influence on traits with low heritability, which is a

common characteristic of traits strongly related to fitness [29].

Therefore, sources of stochastic phenotypic variation have been

suggested to be key factors in the evolutionary ecology of

populations [51–54].

Finally, we modelled the effects of phenotypic variance during

development of individual phenotypes. These phenotypes are then

assumed to be stable during life, i.e. we explicitly considered inter-

generational phenotypic variance. However, the model can be

generalized and the same predictions can also be made in the case

of intra-individual variance, for example, when the value of a

fitness-related trait changes during an individual’s life. Such an

example was recently documented by Martin and Huey [27] in the

context of thermoregulation in reptiles. The authors showed that

the optimal range of body temperatures for an individual should

not be centred at the temperature for which the instantaneous

fitness is maximised, but should be shifted towards a lower

temperature and that the magnitude of the shift increased with the

asymmetry of the fitness function.

Phenotypic variability and species adaptation
In the context of optimization problems, stochastic effects can

influence the predictions of theoretical models (e.g. bet-hedging

strategies, optimization of the geometric mean fitness, [23,55,56],

this study). However, these effects depend quite strongly on the

relationship between an individual’s genotype and the variability

of its phenotype.

First, if the variability in phenotype expression is independent

from the individual’s genotype (as is the case in our model), its

association with an asymmetrical fitness functions can be a

significant limit to adaptation. Our example of bronchial tree

geometry illustrates this situation and provides an adaptive

explanation relating to the fact that the human lung is probably

not as efficient as it could be. Several other examples in

evolutionary medicine appear to be consistent with the existence

of cliff-edge effects [57–60]. Strong directional selection for traits

that are globally advantageous would sometimes drive their mean

too close to the ‘fitness cliff’, which could set the stage for counter-

selection of extreme phenotypes. Such mechanisms would limit the

long-term directional evolution of heightened physiological,

mental and immune capacities in humans, and the average

performance of individuals would be lower than their maximum

potential. These examples tentatively suggest that similar processes

might have operated in many different species to constrain the

evolution of phenotypic traits within a smaller range than their full

physiological potential.

Alternatively, when phenotype variability is related to the

individual’s genotype, the evolutionary consequences are likely to

be quite different. In certain conditions, selection can favour the

ability of phenotypes to resist random developmental or

environmental perturbations, a process known as canalization

[61]. Canalization is expected to be favoured in spatially or

temporally variable environments, or in environments connected

by high levels of gene flow, because it allows the persistence of high

genetic variation and evolutionary potential [62]. In contrast,

different genotypes might display different reaction norms in

response to environmental variations, i.e. the amount of

phenotypic variance and the shape of its distribution can differ

between individuals. In this case, asymmetrical variance functions

can be selected as a way to compensate for an asymmetrical fitness

function by avoiding most detrimental phenotypes (Supplementary

Text S2). However, such a strategy could be selected only if

environmental variations do not affect the fitness function itself,

and if they are restricted within a limited range so that extreme

phenotypes will be rare.

Conclusion
In this study, we propose a simple formalization, validated by

three empirical examples, of an evolutionary process known as the

‘cliff-edge’ effect. Our predictions stand for any trait (i) associated

with an asymmetrical fitness function and (ii) when phenotypic

expression is subjected to random variation, which are conditions

expected to be common in nature [63,64]. In this framework,

future studies should aim at analysing the optimization of genotype

fitness instead of phenotype fitness. If only cliff-edge effects are

shaping the evolution of the trait, then the most frequent value of

the trait should match the genotype fitness optimum, i.e. the

genotype fitness optimum is the null hypothesis for trait

optimization. On the contrary, if the trait is non-optimal with

regard to the genotype fitness, other evolutionary processes should

be considered. For instance, unmeasured fitness components

might cause undetected trade-offs that constrain the adaptation of

the trait.
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64. Hansen TF, Carter AJR, Pélabon C (2006) On adaptive accuracy and precision

in natural populations. Am Nat 168: 168–181.

Cliff-Edge Effects in Ecology and Evolution

PLoS ONE | www.plosone.org 9 April 2012 | Volume 7 | Issue 4 | e34889


