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An analysis of nonlinearity effects on bedload transport prediction

ABSTRACT

Because bedload equations are nonlinear and because parameters describing the flow and the bed can have large variance, different results are expected when integrating bedload over a cross section with respect to spatially variable local data (2D), or when computing bedload from cross-section-averaged data, which reduces the problem to uniform conditions (1D). Evidence of these effects is shown by comparing 1D (flume-derived) equations with 2D field measurements, and by comparing a 2D (field-derived) equation with 1D flume measurements, leading to the conclusion that different equations should be used depending on whether local or averaged data are used. However, whereas nonlinearity effects are considerable for low-transport stages, they tend to disappear for higher flow conditions.

Probability distribution functions describing the variance in flow and bed grain size distribution (GSD) are proposed and the width-integrated bedload data (implicitly containing the natural variance in bed and flow parameters) are used to calibrate these functions. The method consists of using a Monte Carlo approach to match the measured 2D bedload transport rates with 1D computations, artificially reproducing the natural variance associated with the mean input parameters. The Wilcock and Crowe equation was used for the 1D computation because it was considered representative of 1D transport.

The results suggest that nonlinearity effects are mostly sensitive to the variance in shear stress, modeled here with a gamma function, whose shape coefficient α was shown to increase linearly with the transport stage. This variance in shear stress suggests that even for very low flow conditions, shear stress can locally exceed the critical shear stress for the bed armor, generating local armor break-up. This could explain why the bedload GSD is usually very similar to subsurface GSD, even in the presence of complete armor.

INTRODUCTION

Bedload transport prediction is important for many applications, including river engineering, hazard prediction, and environmental monitoring and management. Sophisticated equations have been proposed in recent decades [START_REF] Parker | Surface-based bedload transport relation for gravel rivers[END_REF][START_REF] Wilcock | Surface-based transport model for mixed-size sediment[END_REF], and when the quality of the required input data is good and the flow hydraulics are calculated in sufficient detail to take into account shear stress variations, they have been shown to adequately predict transport rates, changes in bed topography, and downstream fining [START_REF] Ferguson | A critical perspective on 1-D modeling of river processes: Gravel load and aggradation in lower Fraser River[END_REF]. However, the requisite data (detailed grain size distribution [GSD], topography, discharge or depth) are not always available, and in many practical situations bedload must be computed with limited information and width-averaged river characteristics: The GSD is reduced to a few surface diameters (D 50 , D 84 ), often estimated by surface counting [START_REF] Wolman | Method of sampling coarse river bed material[END_REF], the bed topography is assumed to be trapezoidal or rectangular and reduced to a mean width W and slope S, and the flow is considered uniform at the reach scale (a single water depth d for a given discharge and the energy slope equal to the bed slope).

Despite reflecting the reality of many practical situations, the proposed approach of computing bedload with simple models and width-averaged data has been widely criticized for two main reasons: First, equations using limited input data are assumed to be incapable of reproducing the full complexity of transport [START_REF] Habersack | Evaluation and improvement of bed load discharge formulas based on Helley-Smith sampling in an Alpine gravel bed river[END_REF], and second, since bedload equations are nonlinear with exponents that may exceed values of 10, widthaveraged bedload calculation has been suspected of under-estimating the true bedload flux if there is any local and/or spatial variation in either the bed material size distribution or in the flow hydraulics [START_REF] Gomez | An assessment of bedload sediment transport formulae for gravel bed rivers[END_REF][START_REF] Paola | Grain size patchiness as a cause of selective deposition and downstream fining[END_REF][START_REF] Ferguson | The missing dimension: effects of lateral variation on 1-D calculations of fluvial bedload transport[END_REF][START_REF] Bertoldi | A method for estimating the mean bed load flux in braided rivers[END_REF][START_REF] Francalanci | Do alternate bars affect sediment transport and flow resistance in gravel bed rivers?[END_REF]. [START_REF] Ferguson | The missing dimension: effects of lateral variation on 1-D calculations of fluvial bedload transport[END_REF] demonstrated nonlinearity effects with an analytical model based on the Meyer-Peter and Mueller formulation (derived for local transport in a flume). Using a probability function describing the shear stress variation around its mean value, he showed that additional flux locally induced by high shear stress outweighs the lower flux induced by low shear stress and that, consequently, the total flux (the sum of all local fluxes) should be higher than the flux computed with the averaged shear stress. These effects are illustrated in Figure 1, where τ * is the Shields number, which for diameter D is:
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where R is the hydraulic radius, S is the slope, and s=ρ s /ρ is the ratio between the sediment and the water density. Figure 1a illustrates a river section, the averaged Shields stress <τ*> and computed bedload transport q s (<τ*>), and its decomposition in local values τ i * and q s (τ i *); whereas the local shear stress τ i * is twice the average value <τ*> in the figure, the corresponding computed bedload transport is plotted such that q s (τ i *) >> 2q s (<τ*>). These effects occur because bedload has been shown to be a power function of the shear stress and the value of the exponent is greater than 1. Considering q s ∝τ* p , Figure 1b shows that the higher the value of the exponent p, the greater these effects (with a threshold equation of the form q s ∝(τ*-τ c *) p these effects would be maximum near the critical Shields stress τ c *).

In contrast to the above expectation, most studies comparing bedload equations to measured bedload transport rates report large over-estimates instead of under-estimates when equations are used with width-averaged data, especially for gravel bed rivers [START_REF] Rickenmann | Comparison of bed load transport in torrents and gravel bed streams[END_REF][START_REF] Barry | A general power equation for predicting bed load transport rates in gravel bed rivers[END_REF][START_REF] Bathurst | Effect of coarse surface layer on bed-load transport[END_REF]Recking, et al., 2012]. In addition, because equations derived on the basis of field data are supposed to have a built-in allowance for the effects of spatial variability, they should considerably improve the computation of bedload transport when compared with standard 1D equations; however, many equations based on field data are also site specific, and [START_REF] Barry | A general power equation for predicting bed load transport rates in gravel bed rivers[END_REF]2007] did not draw any conclusions about the superiority of one category of equation when compared with field data.

Consequently, the questions this paper aims to answer are: How do the nonlinear effects influence predicted transport rates? Can a single equation, used with either the exact local shear stress or with width-averaged river characteristics, reproduce local transport and width-averaged transport, respectively, or should we consider two distinct families of equations, depending on whether bedload must be computed with local shear stress (as in numerical models) or with width-averaged data? Can we relate nonlinearity effects to the natural variance in flow and bed parameters?

First, flume and field data are presented. Secondly, they are used with several bedload transport equations (1D capacity equation, 1D surface-based equation, and 2D field-derived equation) to look for evidence of nonlinearity effects. Thirdly, the variance associated with each flow and bed parameter is described, and a Monte Carlo approach is used for statistically investigating (calibrating) the shape parameter of each probability distribution function.

Finally, the results are used to discuss the use of equations in field applications.

DATA SET PRESENTATION

In this part, the data set used in the analyses is presented; field data are considered 2D data because they are width-integrated, and they are distinguished from flume data that are considered 1D (near-uniform) and therefore an analogue for local transport in natural rivers.

Note that the term 1D should rigorously correspond to strictly uniform flows (constant depth and bed roughness); however, such flows are almost never fully observed even in the flume, where small bedforms can exist and sediment patches can develop [START_REF] Meyer-Peter | Formulas for bed-load transport[END_REF][START_REF] Dietrich | Sediment supply and the development of the coarse surface layer in gravel-bedded rivers[END_REF]. Consequently 1D flow is used here to designate quasi-uniform flows when compared with 2D flows in the field.

All parameters considered width-averaged are noted between the symbols < >; other standard notations correspond to local values. The flow conditions were discriminated with the transport stage defined by the τ * /τ c * ratio [START_REF] Church | Form and stability of step-pool channels: Research progress[END_REF], where τ c * is the critical Shields stress estimated with the following formula fitted to a compilation of field data from the literature [START_REF] Recking | Theoretical development on the effects of changing flow hydraulics on incipient bedload motion[END_REF]:
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Large uncertainties exist on τ c * [START_REF] Buffington | A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers[END_REF]] and a constant and arbitrary value τ c * =0.03 [START_REF] Parker | Bed load at low Shields stress on arbitrarily sloping beds: Alternative entrainment formulation[END_REF] or 0.047 [START_REF] Meyer-Peter | Formulas for bed-load transport[END_REF] could have been used, but using a dependency with slope is more likely to represent reality [START_REF] Mueller | Variation in the reference Shields stress for bed load transport in gravel-bed streams and rivers[END_REF][START_REF] Lamb | Is the critical Shields stress for incipient sediment motion dependent on channel-bed slope?[END_REF][START_REF] Recking | Theoretical development on the effects of changing flow hydraulics on incipient bedload motion[END_REF][START_REF] Ferguson | River channel slope, flow resistance, and gravel entrainment thresholds[END_REF]. The transport stage can be defined for different diameters D i . D 50 was used because this diameter is often considered representative. However, because the exponent in Eq. 2 is near 1, the results would have been slightly changed with other diameters such as D 84 (used for plotting the data in [START_REF] Recking | Testing several bed load transport equations with consideration of time scales[END_REF]. Nonetheless, this is not important because this choice impacts only the distribution of the results on the figures (the x-axes) and not the results themselves (all equations being used exactly as recommended by their authors).

1D data

Investigating local transport assumes knowledge of the local values. Whereas a few field data sets measure local transport and the associated flow velocity, the bed surface GSD is always highly uncertain and always averaged at the reach scale. Such local data sets would be very difficult to construct because measuring the local bed GSD associated with transport is almost impossible during flooding. A practical way to obtain such information is flume experiments, where the flow can be stopped and the bed can be sampled after each bedload measurement, as done by [START_REF] Wilcock | Experimental study of the transport of mixed sand and gravel[END_REF]. They produced bedload data in a 0.6-m-wide and an 8-m-long tilting flume, with recirculation of poorly sorted sediment mixtures and flow conditions allowing partial transport. Five runs were produced with different sand contents and the data are summarized in Table 1 and are available in [START_REF] Wilcock | Experimental study of the transport of mixed sand and gravel[END_REF]. These data cover a large slope range (0.06%-2%) and are (to the best of the author's knowledge) the only published flume data that fully document partial transport [START_REF] Wilcock | Surface-based fractional transport rates: Mobilization thresholds and partial transport of a sand-gravel sediment[END_REF]. These flows are not strictly speaking 1D, as uniformity implies a perfectly constant water depth and bed roughness. However, as mentioned by the authors, "the sediment bed was essentially planar," which allows for the hypothesis of near-uniform flows when compared with flows in a natural river reach.

2D data

An existing field data set comprising 6,319 values (available in [START_REF] Recking | A comparison between flume and field bedload transport data and consequences for surface based bedload transport prediction[END_REF]) was expanded with new data from the literature comprising 2,614 measurements collected on 24 river reaches. The main characteristics of this new data set are given in Appendix A and the data (including bed surface GSD) are available on-line as supplementary material. The complete data set comprises 8,940 values collected at 109 river sites and is summarized in Table 2. Most sampling results (when specified) provided width-averaged data for the bed GSD, the flow characteristics (discharge, velocity), and the bedload transport. The following figures provide general descriptions of the data set and were used in the subsequent calculations of 2D bedload transport.

Figure 2 presents the cumulative distribution of diameter <D 84 >, slope <S>, and width <W> for the 109 reaches composing the data set. Only 5% are sand bed rivers and 10% have a D 84 smaller than 1 cm (not many published bedload data collected on sand bed rivers were found in the literature); 70% are gravel bed rivers and 20% are cobble and boulder bed rivers.

Slopes span a broad range of values from 0.01 to 8%. Most widths are in the range 0-15 m, but reaches as large as 500 m were also considered. The different ranges obtained for <D 84 >, slope <S>, and width <W> are consistent, with width and grain size evolving with slope, from large lowland sandy rivers to steep narrow boulder streams [START_REF] Montgomery | Channel-reach morphology in mountain drainage basins[END_REF][START_REF] Church | Form and stability of step-pool channels: Research progress[END_REF]. Figure 3 plots slope < S > as a function of <D 84 > for the data set considered; the trend roughly follows a power function.

A selection of 121 GSDs are plotted in Figure 4. Figure 4a plots a selection of 78 GSDs collected in gravel bed rivers (from the Idaho data set; [START_REF] King | Sediment transport data and related information for selected corse-bed streams and rivers in Idaho[END_REF]) and the corresponding averaged GSD. It shows a similar shape between all curves. Figure 4b plots 42 additional GSDs, including sand bed rivers. Figure 4 indicates that the sand fraction at the bed surface   s F can vary greatly, and these data suggest 0 <   s F < 0.2 for most gravel bed rivers. This is confirmed in Figure 5, where   s F is plotted as a function of   84 D : It is close to 1 for sand bed rivers and rapidly decreases to approximately 0.1-0.15 for gravel bed and cobble bed rivers.

Figure 6 (that also includes additional data from [START_REF] Pitlick | Relation between flow, surface layer armoring and sediment transport in gravel bed rivers[END_REF]

) indicates that the     50 84 / D D
ratio is approximately equal to 2, which was also found to be representative of gravel bed rivers by Rickenmann and [START_REF] Rickenmann | Evaluation of flow resistance in gravel-bed rivers through a large field dataset[END_REF] with another data set. However, the ratio can also differ significantly from 2, and 2 / 50 84
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is associated with a variance following approximately a log-normal distribution with a standard deviation σ DR =0.3 (1.1< D 84 /D 50 < 3.3). high <D 84 > values is not surprising, as the Shields number <τ*> is known to barely exceed 120% of the critical value <τ c *> in gravel bed rivers [START_REF] Parker | Self-formed straight rivers with equilibrium bank and mobile bed. Part 2 : the gravel river[END_REF][START_REF] Andrews | Entrainment of gravel from naturally sorted riverbed material[END_REF][START_REF] Ryan | Defining phases of bedload transport using piecewise regression[END_REF][START_REF] Mueller | Variation in the reference Shields stress for bed load transport in gravel-bed streams and rivers[END_REF][START_REF] Parker | Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers[END_REF]. In fact, only for sand and fine gravels can the transport stage be very high [START_REF] Buffington | Changes in channel morphology over human time scales, in Gravelbed Rivers: Processes, Tools, Environments[END_REF].

Figure 8a plots the unit transport rates <q s > (g/s/m) and Figure 8b plots the averaged dimensionless transport <Φ>, with Φ defined by [START_REF] Einstein | The bed-load function for sediment transportation in open channel flows[END_REF]:
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where ρ s is the sediment density. Transport rates cover a wide range; it is interesting to note that the threshold value <τ*>/<τ c *>=1 (computed for D 50 ) corresponds to somewhat considerable transport and <τ*>/<τ c *>=2 approximately delimits two groups with a change in trend, a result which is consistent with previous analyses [Parker, et al., 1982;[START_REF] Buffington | The legend of A. F. Shields (Closure)[END_REF].

To complete this description of the field data, the bed morphology should be presented. Unfortunately, except for a few cases [START_REF] Hassan | Sensitivity of bed load transport in Harris Creek: Seasonal and spatial variation over a cobble-gravel bar[END_REF][START_REF] Church | Mobility of bed material in Harris Creek[END_REF], an exact description of the reach used for measurements was usually not included in the publications. Mostly only general descriptions of river morphology were provided, but available information suggests that straight reaches were frequently chosen for bedload measurements. Nevertheless, the surrounding reach morphology of some sites may exhibit substantial topographic variation (e.g., pool-riffle or step-pool channels).

LOOKING FOR EVIDENCE OF NONLINEARITY EFFECTS

In this part, the flume and the field data are used with bedload equations to look for evidence of nonlinearity effects. Bedload equations are used exactly as recommended by their authors.

From the flume to the field

This part aims to analyze whether averaging the data produces under-prediction when 1D equations are used in the field.

Sixteen flume-derived 1D bedload transport equations were compared with a large field data set in [START_REF] Recking | Testing several bed load transport equations with consideration of time scales[END_REF]. The conclusion of this study was that for the lowest transport stages (corresponding to partial transport, with τ * /τ c these threshold equations predicted zero transport whereas the measured transport was nonzero. When the non-zero transport computations were considered, the results showed overestimation, for all equations, often by several orders of magnitude, which is not in accordance with the expected under-estimation induced by nonlinearity. This resulted in a generally poor performance of most of the equations tested, except for high flow conditions (when τ * /τ c * > 2, which corresponds to sand and fine gravels in Figure 7a). One reason potentially responsible for over-prediction is that these equations do not account for the changing critical shear stress with slope.

To overcome this threshold problem (zero prediction and slope effects), a 1D bedload equation expressed as a function of τ * /τ c * was fitted in [START_REF] Recking | A comparison between flume and field bedload transport data and consequences for surface based bedload transport prediction[END_REF] on a large flume data set obtained with near-uniform sediments (compilation comprising most of the data that have served to build the equations reported in the literature, available as supplementary material in [START_REF] Recking | A comparison between flume and field bedload transport data and consequences for surface based bedload transport prediction[END_REF]). This equation accounts for variation of the critical Shields stress with slope and is presented in Appendix B1. When this 1D equation (used with the median diameter) is compared with the 1D flume data from [START_REF] Wilcock | Experimental study of the transport of mixed sand and gravel[END_REF], the results plotted in Figure 9 can be deemed satisfying, considering that there was no calibration; most particularly, the trend is very good and there is no clear evidence for over-or under-prediction.

On the other hand, when this equation is compared with the field data, the results plotted in Figure 10 clearly confirm under-prediction when the transport stage is τ * /τ c * < 0.7, as expected by nonlinearity effects. However, like the other equations tested in Recking et al.

[2012], this equation over-estimates transport rates for higher flow conditions and gives acceptable results only when τ * /τ c * > 2 approximately. The possible reason for overestimation in the range 0.7 < τ * /τ c * < 2 is that all these equations were derived to match as well as possible the transport capacity of nearly uniform fine materials in flume experiments (see [START_REF] Recking | Feedback between bed load and flow resistance in gravel and cobble bed rivers[END_REF] for a review of these data). In these conditions, each increment in shear stress was systematically balanced by an increment in transport. In gravel and cobble bed rivers, sediments are not always available for transport because of supply limitations and hiding effects, and small increments in shear stress may not be compensated by an immediate increment in bedload, which can explain over-estimation [START_REF] Bathurst | Effect of coarse surface layer on bed-load transport[END_REF][START_REF] Recking | Influence of sediment supply on mountain streams bedload transport rates[END_REF].

The results are improved in the range 1 < τ * /τ c * < 2 when the Meyer-Peter and [START_REF] Meyer-Peter | Formulas for bed-load transport[END_REF] shear stress correction is used; however, it also considerably increases under-prediction in the τ * /τ c * < 1 range.

To overcome the above-mentioned problem, fractional equations were developed for computing the transport of what is actually present on the bed surface [Parker and Klingeman, 1982;[START_REF] Parker | Surface-based bedload transport relation for gravel rivers[END_REF][START_REF] Wilcock | Surface-based transport model for mixed-size sediment[END_REF]. Among these equations, the [START_REF] Wilcock | Surface-based transport model for mixed-size sediment[END_REF] equation is considered a truly surface-based relation [START_REF] Parker | Transport of gravel and sediment mixtures[END_REF] because it was derived from the flume experiments of [START_REF] Wilcock | Experimental study of the transport of mixed sand and gravel[END_REF], with the exact surface GSD being measured immediately after each flow event. This equation (presented in Appendix B2) was used as suggested by the authors, with the GSDs sampled at 1-ψ intervals, and by computing the grain shear stress with [START_REF] Wilcock | Sediment transport primer, Estimating bed-material transport in gravel-bed rivers[END_REF]. A comparison with the field data set (restricted to 82 reaches and 6,239 values because the full GSD was not available for all data) showed no significant over-prediction and a tendency for under-prediction at low shear stresses, in agreement with expected nonlinearity effects (Figure 11). Similar results were obtained by [START_REF] Gaeuman | Predicted fractional bed load transport rates: Application of the Wilcok-Crowe equations to a regulated gravel bed river[END_REF] who compared the Wilcok and Crowe equation to bedload measurements of the Trinity river.
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To conclude, the above analysis suggests that the variance in flow and bed parameters produces under-prediction at low transport stages when 1D equations are used in the field.

From the field to the flume

A second way to verify the effects of nonlinearity is to use a 2D field-derived equation for computing local transport. By fitting the width-integrated transport measurements, these equations have a built-in allowance for the effects of spatial variability, which should improve the computation of field bedload transport with width-averaged input data, when compared with standard 1D equations. On the other hand, if they implicitly compensate for spatial variability, these equations should logically over-predict transport when compared with 1D measurements because of nonlinearity effects. This is what was tested here by comparison with the flume data from [START_REF] Wilcock | Experimental study of the transport of mixed sand and gravel[END_REF] (assuming that these data are representative of 1D transport in the field).

Several 2D field-derived equations have been proposed in the literature [Parker, et al., 1982;[START_REF] Barry | Performance of bedload transport equations relative to geomorphic significance: predicting discharge and its transport rate[END_REF][START_REF] Recking | A comparison between flume and field bedload transport data and consequences for surface based bedload transport prediction[END_REF]. Here, an equation (presented in Appendix B3) proposed in a previous paper by the author [Recking, 2013] was used because it requires only a few parameters and permits a direct comparison with flume data. This equation was compared with the field data set (restricted to 5,735 values not used in its construction, collected at 73 sites, for blind testing), and the results plotted in Figure 12 indicates only a slight under-prediction at very low Shields stress ratios. The comparison with a selection of river reaches did not indicate any particular dependency on the bed morphology (Figure 13).

On the other hand, the comparison with 1D flume data confirmed over-prediction for the low transport stages, as expected by nonlinearity effects (Figure 14).

To conclude this part, only low transport stages are affected by nonlinearity effects.

Assuming that the flume data are representative of local flows, this analysis suggests that the variance in flow and bed parameters produces under-prediction when 1D equations are used in the field. Field-derived equations compensate for these effects, but by contrast they overpredict bedload transport when they are used for computing local transport with local flow values (e.g., in a numerical model). The following section aims to fill the gap between 1D and 2D transport by investigating the variance associated with each parameter.

INVESTIGATING THE MISSING DIMENSION

The difference between 1D bedload computation and 2D bedload measurements results from variance in shear stress and bed properties. Each bedload value of the data set is by construction the average of several bedload values measured locally and produced by the variance in flow and bed GSD (as illustrated in Figure 1a); consequently, bedload data implicitly include the variance in flow and bed parameters, which evolve in both space and time. On the other hand, this variance is absent from the associated flow and bed data (discharge measured not simultaneously and often at a gauging station, in another location, and with a single mean GSD). This variance, which is present in bedload data and absent in the flow and bed data used in the equations, is what [START_REF] Ferguson | The missing dimension: effects of lateral variation on 1-D calculations of fluvial bedload transport[END_REF] called the "missing dimension."

The only way to make the use of a 1D equation consistent for comparison with measured 2D field data would be to "artificially" reproduce the natural flow and bed variability. This is done in this part of the paper, using the averaged input data in the 1D Wilcock and Crowe equation, with their variance described by probability distribution through a Monte Carlo approach.

Probability distribution functions describing the variance in flow and bed parameters

The depth  d can vary considerably in an irregular cross section, ranging from near zero close to the banks to a maximum at the thalweg, and is linearly related to shear stress for a given slope
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. The variance associated with longitudinal slope across a given cross section is difficult to evaluate; however, as pointed out by [START_REF] Ferguson | The missing dimension: effects of lateral variation on 1-D calculations of fluvial bedload transport[END_REF], available field studies have actually shown a positive correlation between d and τ (local deviations from τ ∝ d tending to cancel each other out), leading to a similar frequency distribution for d and τ. This is why in the following the variance was considered directly for the shear stress  τ instead of separate variance for  d and  S . This variance was described with an asymmetric gamma probability function, as already proposed in other works [START_REF] Paola | Grain size patchiness as a cause of selective deposition and downstream fining[END_REF][START_REF] Nicholas | Modelling bedload yield in braided gravel bed rivers[END_REF][START_REF] Bertoldi | A method for estimating the mean bed load flux in braided rivers[END_REF]:
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where
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τ is the width-averaged bed shear stress, and α is a parameter describing the width of the distribution. The lower its value, the larger the variance in τ. A value α=1

was found to be a limiting value for highly irregular cross sections [START_REF] Paola | Grain size patchiness as a cause of selective deposition and downstream fining[END_REF][START_REF] Nicholas | Modelling bedload yield in braided gravel bed rivers[END_REF], for instance, in braided streams. It also predicts a shear stress in the range 0 <  τ τ / < 5 (Figure 15), which is approximately what [START_REF] Ferguson | The missing dimension: effects of lateral variation on 1-D calculations of fluvial bedload transport[END_REF] obtained with his probability function when the shear stress is below its mean value of over 80% of the cross section.

Values greater than 5 would be representative for single-thread irregular channels, and α tends toward infinity for a rectangular cross section.

Fractional equations require a complete definition of the GSD. Instead of discussing the variance associated with each size class, GSD was reduced to three parameters: the sand fraction on the bed surface Fs, the median diameter D 50 , and the D 84 /D 50 ratio. This model, presented in Table 3, was obtained by considering the proportionality ratios between each size class measured in the compilation of 78 GSDs, plotted in Figure 4a. Figure 16a shows three examples of measured GSDs and their approximation with the model, and Figure 16b andc indicates that the difference between the measured and computed percentage for each fraction of the whole data set is very weak. There is no intention here to reduce all natural GSDs to these three parameters, but it allows very realistic GSDs to be built.

Only a few studies have investigated the variability of GSDs in a given reach [START_REF] Church | On the statistics of grain size variation along a gravel bed river[END_REF][START_REF] Crowder | Sampling heterogeneous deposits in gravel-bed streams[END_REF], and defining the variance for Fs, D 50 , and D 84 /D 50 for the purpose of this study is not trivial. Considering the central limit theorem, the distribution of the means of a series of samples should be normally distributed regardless of the underlying distribution of the sample; therefore it is hypothesized that for a given mean 3) observed between sites (Figure 6) was hypothesized as always valid, including for different locations in a given site. Fs=0.1 was considered on average for gravel bed rivers (Figure 5); however, sand can be either uniformly distributed over the surface or concentrated in local patches [Buffington and Montgomery, 1999a;[START_REF] Dietrich | Sediment patches, sediment supply and channel morphology[END_REF], which can be described with an asymmetric beta function B(x 1 ,x 2 ), with an average set to x 1 /x 2 = 0.1 (where x 1 and x 2 are the shape parameters of the function).

Figure 18 plots B(x 1 , x 2 ) for different values of x 1 and x 2 . Low coefficients (x 1 = 0.001; x 2 = 0.01) simulate near-zero sand everywhere and high local sand concentration (patches); on the other hand, high coefficients (x 1 =100 and x 2 =1000) simulate a more uniform distribution of the sand fraction over the surface.

Limited evidence of a clear correlation between grain size and depth led [START_REF] Ferguson | The missing dimension: effects of lateral variation on 1-D calculations of fluvial bedload transport[END_REF] to consider two limiting scenarios: purely random patchiness, and perfect fining upward as in classic models of meander point bars. Here, only the case of near-straight reaches was considered, with no or little correlation between grain size and depth. Flows over typical morphological units such as riffle, pools, and bars are considered in the discussion.

A Monte Carlo approach for calibrating the probability functions

In this section the width-integrated bedload data (implicitly containing the natural variance in bed and flow parameters) were used to calibrate the probability functions describing the variance in flow and bed parameters. This approach is in a sense similar to that of [START_REF] Chiari | Back-calculation of bedload transport in steep channels with a numerical model[END_REF], who used bedload measurements for back-calculating the macro roughness of several alpine rivers; however, whereas they used a numerical model, a

Monte Carlo approach was used here.

For a given set of width-averaged input data (say,

  s F ,     τ , D
), the Monte Carlo approach consists in performing a large number of random draws from the probability distribution of each input parameter to construct numerous sets of local values (Fs, D, τ)

about the means. In the second step, each set of local values is used in the 1D bedload equation to compute the associated local bedload transport s q . Assuming the probability distribution functions are correct, averaging these local bedload values

 N s q N 1 should
retrieve (in a statistical sense) the measured (and width-averaged) bedload transport q s meas .

For each flow range (considered through the ratio (3) calculation of the appropriate mean grain shear stress ( ) [START_REF] Wilcock | Sediment transport primer, Estimating bed-material transport in gravel-bed rivers[END_REF]; <D 65 > is given in millimeters and deduced from the model of Table 3; (4) construction of several sets of local values for τ and GSD (with the model of Table 3 Large data sets (N=5,000) were constructed to ensure a stable solution for the computed bedload probability distribution;

  * τ /   * c τ )
2 / 3 4 / 1 65 17      =   U D S τ [
(5) calculation of the average value ( )

) , ( 1 , GDS q N GSD q N s s τ τ  =   ;
(6) comparison of ( )   GSD q s , τ with q s meas .

Results of simulations

The simulations were tested with different values for α (for τ), σ D (for D 50 ), and x 1 (with x 2 = 10x 1 for <F s > = 0.1). Figure 19 compares the meas s s q q / ) ( *  τ ratios (where q s meas is the measured bedload transport and ) ( *  τ s q is bedload computed with the Wilcock and Crowe equation used with average input data, as shown in the right panel of Figure 11) with

> <   ) ( / ) ( * * τ τ s s q q , where > < ) ( * τ s q
is the average bedload deduced from the Monte Carlo computation. Adequate probability distributions should make it possible to fit

> < ) ( * τ s q
with q s meas (in a statistical sense).

No stable solution could be obtained with σ D > 0.3 (leading to near-zero D 50 ), and simulations were considered with 0.1 < σ D < 0.3. This range is consistent with Segura et al.

[2010], who measured σ D in the range 0.1-0.36 on the basis of multi-pebble counts [Wolman, 1954] involving 2,500-4,700 particles on three reaches of the Williams Fork River (Colorado, USA). It is also consistent with measurements made on a large gravel bar on the Gunnison River [START_REF] Barkett | The relationship between grain size and shear stress in two gravel bed streams[END_REF], a tributary to the Colorado River, consisting of 28 separate Wolman counts of 100 particles each (total of 2,800 particles), and for which σ D was 0.28 (John Pitlick, personal communication).

Figure 19a shows that it was not possible to match the measurements for all flow conditions when setting a constant α-value (α = 1 actually seems to work fairly well as a lower limit to the data). linked to the slope and GSD (Figure 19c) through relations plotted in Figure 3 and Figure 7a. Whatever the hypothesis, the best fit between computed (with the Monte Carlo approach) and measured bedload was obtained by varying α linearly with a function given in the form (Figure 19b andc):

    = * * c τ τ ξ α (5)
The value of ξ in Equation 5is slightly sensitive to the variance in GSD. A value of 5 best fits the measured bedload transport with σ D =0.1 (Figure 19c), and a value of approximately 8-10 (not shown in the figure) would be more appropriate for a higher variance in D 50 (σ D =0.25). 19c indicate a weak dependency on whether sand is considered uniformly displayed over the surface (x 1 =100, x 2 =1000) or is concentrated into patches (x 1 =0.001, x 2 =0.01).

Results plotted in Figure

The conclusion from these simulations is that predictions are weakly sensitive to the variance in GSD (Figure 19 b andc) but very sensitive to the variance in shear stress (Figure 19a). Such an increase in the parameter α with flow strength was an expected result [START_REF] Nicholas | Modelling bedload yield in braided gravel bed rivers[END_REF], and values within the range 2 < α < 10 are consistent with results for singlethread channels found by [START_REF] Tunnicliffe | Use of 2D hydraulic models to develop and improve parameterized 1D models of sediment transport paper presented at EGU 2012[END_REF].

DISCUSSION

Consequences for field application

The above results suggest that all models are not adapted to all situations. 1D equations used with width-average input data are likely to under-estimate width average bedload transport. The Monte Carlo approach (used with appropriate probability distributions) can be used for compensating the "missing dimension." It is illustrated hereafter with the example of the Lochsa River (using hydraulics and bedload data presented in [START_REF] King | Sediment transport data and related information for selected corse-bed streams and rivers in Idaho[END_REF]).

For the given bed characteristics (F s =0.03, D 50 =0.126 m, D 84 =0.28m, S=0.0023), the procedure has consisted in defining, for each of the 71 runs characterized by a measured velocity U and depth d, the transport stage <τ>/<τ c >, the GSD, the probability distribution for all parameters (no calibration was used here, and α=5, σ D =0.1, σ DR =0.3, x 1 =100 and x 2 =1,000 following the above results), and in building bedload data with the Wilcock and Crowe equation (3,000 values were computed for each run), which were averaged and compared with the measured bedload.

The results presented in Figure 20 indicate that taking into account the variance in bed and flow parameters can greatly improve prediction when compared with a direct computation of the width-averaged data. The inconvenience of this approach is that thousands of calculations are needed for each width-averaged input data considered.

Local vs. averaged shear stress

Testing the equations (Figure 11) and the Monte Carlo results (Figure 19) showed that the under-prediction is greater for low transport stages and decreases with increasing shear stress, as [START_REF] Ferguson | The missing dimension: effects of lateral variation on 1-D calculations of fluvial bedload transport[END_REF] also concluded. This can be explained by a reduced variance in the shear stress when the flow increases, because depth variations with the local bed topography may become relatively negligible with regard to the mean flow depth (this is particularly true for moveable beds becoming flatter with increasing transport stage).

Equations 4 and 5 were used to compute the distribution of the local transport stage τ/<τ c >, for different values of the mean transport stage <τ>/<τ c >. The results, plotted in Figure 21, indicate that for <τ>/<τ c > ratios as low as 0.3, the shear stress may locally be higher than the critical shear stress for mobility of the bed surface (τ/τ c >1). This means that local armor break-up can always exist to some degree, exposing the subsurface material to the flow. This finding is consistent with the observation that even in the presence of a coarse armor, with a zero sand fraction at the bed surface (F s = 0), the bedload GSD is always much finer than the surface GSD and equivalent to the subsurface GSD. This was, for instance, the case for several of the Idaho streams [START_REF] King | Sediment transport data and related information for selected corse-bed streams and rivers in Idaho[END_REF], for which bedload was measured for very low transport stages. However, the bedload material may also include upstream sediment supply that is not accounted for in the current analysis. Consequently, the sand fraction measured at the bed surface at rest could be an incorrect indicator of sediment availability for bedload computation.

Several questions to be investigated further

The first question is how much are the above results dependent on the Wilcock and Crowe equation, used here as representative of 1D transport? To answer this question, another 1D equation was considered. In work not shown here, an attempt was made to adapt the 2D Recking [2013] equation (Appendix B3) to 1D transport by introducing a correction coefficient ζ < 1 such that:

D s D F 2 1 ) *, ( Φ = Φ τ ζ (6)
According to Figure 14, the function ζ(τ*, F s ) must converge to 1 when the sand fraction F s converges to 1 or when the transport value is high (when all grain classes are moving, which can be expressed, for instance, with reference to the threshold conditions τ c * for the coarser fraction considered through diameter D 84 in Eq. 2). Calibration with the Wilcock et al. flume data gave:

10 * * * ) ln( ) 12 . 0 15 . 0 ( 1 ) , (         - + = s c s F F τ τ τ ζ for τ*/τ c * < 1.56 ζ(τ * , F s ) = 1 for τ*/τ c * > 1.56 (7) 
where τ* and τ c * were calculated with Eqs. 1 and 2 for D i =D 84 . This function performed as well as the Wilcock and Crowe equation for the bulk bedload transport when compared with the flume data of Wilcock et al., it produced results that are very similar to Figure 11 when compared with the field data, and gave a very similar result for α (i.e., linear variation with <τ*>/<τ c *>) when used in the Monte Carlo approach. Consequently, it is not the Wilcock and Crowe equation that should be questioned here, but the flume data from which it was derived:

Are they representative of local transport in the field? Very precise local field measurements would be needed to confirm these results, not only for the bed shear stress and bedload transport, but also for the associated bed surface GSD (such data do not yet exist to the best of the author's knowledge).

A second question concerns the effects of the local bed morphology. The case of nearstraight reaches was considered here, with no or little correlation between the depth and GSD.

Developing probability functions that are typical of morphological units such as riffle, pools, and bars [Buffington and Montgomery, 1999b;[START_REF] Bunte | Sampling surface and subsurface particle-size distributions in Wadable and cobble bed streams for analyses in sediment transport, hydraulics and streambed monitoring[END_REF] may necessitate a more sophisticated approach, linking these two parameters [START_REF] Ferguson | The missing dimension: effects of lateral variation on 1-D calculations of fluvial bedload transport[END_REF]. However, investigating the correlation between depth and grain size is challenged by uncertainties on the variance in GSDs, which may change with hydraulic roughness [Buffington and Montgomery, 1999a] or other external factors, such as the transport stage: The streambed textures are typically documented at low flow when the bed is at rest and likely reflect preferential transport by secondary flows, during hydrograph recession. For instance, there is no reason why the bed patchiness measured on the bed at rest would be representative of the bed during flooding.

To conclude, the investigation proposed in this paper considered variations around the mean input values, which themselves were assumed to be exact. However, an erroneous estimation of the width-averaged input data is likely to strongly impact the results. This aspect should be considered in further analysis. It should be noted that the Monte Carlo analysis can also be a useful tool for estimating the error on bedload prediction, with consideration of uncertainties attached to the measured (or estimated) field data [START_REF] Wilcock | Sediment transport primer, Estimating bed-material transport in gravel-bed rivers[END_REF].

CONCLUSIONS

Because they are nonlinear, bedload transport equations should logically under-predict observed bedload transport when they are used with averaged (flow and bed) input data [START_REF] Gomez | An assessment of bedload sediment transport formulae for gravel bed rivers[END_REF][START_REF] Paola | Grain size patchiness as a cause of selective deposition and downstream fining[END_REF][START_REF] Ferguson | The missing dimension: effects of lateral variation on 1-D calculations of fluvial bedload transport[END_REF][START_REF] Bertoldi | A method for estimating the mean bed load flux in braided rivers[END_REF][START_REF] Francalanci | Do alternate bars affect sediment transport and flow resistance in gravel bed rivers?[END_REF]. However, this expectation has not been clearly demonstrated in prior studies comparing predicted transport rates with observed values, which show overprediction, usually by several orders of magnitude [START_REF] Rickenmann | Comparison of bed load transport in torrents and gravel bed streams[END_REF][START_REF] Barry | A general power equation for predicting bed load transport rates in gravel bed rivers[END_REF][START_REF] Bathurst | Effect of coarse surface layer on bed-load transport[END_REF]Recking, et al., 2012].

In this paper, evidence of nonlinearity was shown by comparing 1D (flume-derived)

equations and 2D field measurements (Figure 10, Figure 11) and by comparing a 2D (fieldderived) equation with 1D flume measurements (Figure 14). Comparison with a 1D nonthreshold equation derived for uniform sediments [START_REF] Recking | A comparison between flume and field bedload transport data and consequences for surface based bedload transport prediction[END_REF] and with no shear stress correction produced under-prediction for low transport stages only (when τ*/τ c * < 1), over- prediction in the range 1 < τ*/τ c * < 2, and near adequate transport for higher transport stages (Figure 10). Over-prediction in the range 1 < τ*/τ c * < 2 is typical of other 1D threshold equations [Recking, et al., 2012]. The nonthreshold fractional equation from Wilcock and Crowe used with shear stress correction also under-predicted bedload for the low transport stages (when τ*/τ c * < 1) as expected by nonlinearity effects, and adequately reproduced bedload for higher transport stages (Figure 11). On the other hand, the field-derived 2D equation [Recking, 2013] that implicitly takes into account the variance in flow and bed parameters correctly predicted the field data but over-predicted 1D bedload transport measured in the flume by [START_REF] Wilcock | Experimental study of the transport of mixed sand and gravel[END_REF] (Figure 14). Crowe equation was compared with the field bedload data in a Monte Carlo approach, in order to calibrate the parameters of these functions. The conclusion is that bedload prediction is weakly sensitive to the variance in bed GSDs but is highly sensitive to the variance in shear stress (Figure 19). The shear stress was modeled by a gamma function, whose shape coefficient was found to vary linearly with the transport stage <τ*>/<τ c *>. The variance in shear stress suggests that local shear stress can exceed the critical shear stress for the bed armor even for very low flow conditions (Figure 21); this may explain local armor break-up and why the bedload GSD is frequently equivalent to the subsurface GSD (much finer than the surface GSD).

Several aspects of this study remain to be investigated. In particular, little is known about the variance in GSDs for a given reach, and new data (collected in the flume or in the field) are needed for comparison with the [START_REF] Wilcock | Experimental study of the transport of mixed sand and gravel[END_REF] data used here as representative of 1D transport.

FIGURE CAPTIONS

Figure 1: Schematic representation of nonlinearity effects on a river cross section. Figure 1a illustrates a river section, its averaged parameters <τ*> and q s (<τ*>), and its decomposition in local values τ i * and q s (τ i *); Figure 1b indicates that the higher the value of the shear stress exponent, the greater the nonlinearity effects. measured unit bedload q s meas vs. computed value q s <τ> (left panel), and q s meas / q s <τ> ratio vs. transport stage (right panel). (qs(<τ*>); Appendix B2): measured unit bedload q s meas vs. computed value q s <τ> (left panel), and q s meas / q s <τ> ratio vs. transport stage (right panel).

Figure 12: Comparison of the field data (qs meas) with the field equation [START_REF] Recking | A comparison between flume and field bedload transport data and consequences for surface based bedload transport prediction[END_REF]2013] (qs(<τ*>); Appendix B3): measured unit bedload q s meas vs. computed value q s <τ> (left panel), and q s meas / q s <τ> ratio vs. transport stage (right panel). Where q vi is the volumetric transport rate of size i per unit width (q v =Σq vi ), D sm is the geometric mean particle diameter of the bed surface and F s is the sand fraction at the bed surface. 

Figure 7

 7 Figure 7 presents relations between the transport stage and the bed surface <D 84 > and

  D 50 vary randomly following a normal distribution (Figure17). Several values were considered for standard deviation σ D . (σ DR = 0.

  this equation was chosen because it has been shown to give satisfying values when compared with a large data set in[START_REF] Rickenmann | Evaluation of flow resistance in gravel-bed rivers through a large field dataset[END_REF]);

  As a consequence, α was empirically varied with the transport stage  b and c. All combinations (α, σ D , x 1 ) were tested with the range [0.3-100], for constant slopes <S> and <D 50 > (Figure19b) and also with the transport

  Under-prediction exists because each bedload data is by construction the average of several local bedload values containing the variance in shear stress and bed GSD, whereas such variance is absent from the mean input values used in bedload equations. The GSD was reduced to three parameters (F s , D 50 , D 84 /D 50 ) and probability distribution functions were proposed to describe the variance associated with the flow and the bed. Then theWilcock and 
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 235678910 Figure 2: Cumulative distribution of <D 84 >, slope <S>, and width <W>, for the field data set
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 11 Figure 11: Comparison of the field data (qs meas) with the Wilcock and Crowe equation [2003]
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 13 Figure 13: Performance of the field equation [Recking, 2013; Appendix B3] across a broad
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 16171819 Figure 16: Modeling of GSD: (a) model comparison with three GSDs and difference between

Figure 20 :

 20 Figure 20: Bedload computation with the Wilcock and Crowe [2003] equation with and without

  q = Q/W and where p = 0.23 when 3 84 / gSD q < 100 and p = 0.3 otherwise.

  2mm but if F s = 0 D m = the minimum diameter of the GSD 1 size). C n is a coefficient and D i is the upper limit of the size class. For constructing a GSD, Fs and C n are used for computing the limits of each size class (column 3) and the % in each class (column 2).

  

  

  

  

  

  

  

  

  

  

  

  

  Shields parameter calculated for diameterD x [ ]: τ* x = τ/[(ρ s -ρ)gD x ] [-]

	τ*									
	τ* c Mid Fork Piedra	bedload sampler, 102×203mm Critical Shields stress corresponding to grain entrainment [-] Ryan et al [2005] Same as East Fork SJ 11.4-	9-19	1-10.9 0.45-1.63	0.19-0.53	80	210
						13.8				
	Silver Creek	Ryan et al [2005]	Same as East Fork SJ		3.8-4.4	45	0.1-1.4 0.08-0.39	0.11-0.32	31	73
	Upper Florida	Ryan et al [2005]	Same as East Fork SJ		11.3-17	1.2-15.1	1.1-15.3 0.27-1.35	0.41-0.89	210	550
	Redwood at Orick	Madej and Ozaki	Qs (Helley-Smith sampler) and	11.7-70	1.4	1.8-569	NA	NA	5	18
		[1996] and	Q measured at Orick gauging					
		unpublished USGS	station. W(Q), D 50 and D 84					
		data	from unpublished data						
	Fraser river at	McLean et al [1999],	Basket sampler (610×255 mm)	510	0.46 1085-11445	NA	NA	42	70
	Agassiz	Ferguson and Church	for high flows (>7000 cm) and					
		[2009]	half-size	VuV	sampler					
			(225×115 mm) for lower flows.					
			Discharge measured at gauging					
			station.							
	Harris Cr.	Church and Hassan	Sediment trap		15	13	4.2-18.4	NA	NA	70	100
		[2002]; Hassan and								
		Church [2001];								
		Sterling and Church								
		[2002]								
	Tordera River	García and Sala	Pit trap			5.5	20	2-7.5	0.9-1.63	0.27-0.45	50	170
		[1998], Garcia et al								
		[2000]								
	Bridge Cr.	Nanson [1974]	Basket sampler 38 cm long/30	2.3	67	0.3-1.1	NA	NA	30	63
			cm wide, mesh size 6.4 mm,					
			current meter and water stage					
			recorder							
	Virginio Cr.	Tacconi and Billi	Vortex tube			12	8	0.6-7.1	NA	NA	27	55
		[1987], Cencetti et	Bedload values deduced from					
		al.,[1994]	graph reading							
	Fall River FR1	Pitlick [1993].	Helley-Smith 76 mm, water	9	3.2	0.92-10.71 0.34-1.37	0.30-0.87	11	20
			stage record and calibration					
			with a current meter						
	Fall River FR2	Pitlick [1993]	Same as FR1			7	1.5	1.13-9.97 0.44-1.11	0.36-1.39	1	3
	Torrent Saint-Pierre	Meunier et al [2006] U with propeller CM OTT, HS					
	(braided river)		15*15cm, Net mesh 0.25mm.					

Table 2 :

 2 Main characteristics of field data

	TABLES						
	Run	Fs* (x100)	D 50 * (mm)	D 84 * (mm)	Slope (x10 3 )	q (m²/s)	d (m)	q s (g/m/s)
	BOMC 37.9-59.6	0.5-2.8	8-14.9	0.6-16.2 0.029-0.095 0.09-0.12 0.002-572
	J27	15.5-27.7	4-5.5	16.4-20.2	2.1-17	0.05-0.13	0.09-0.11 0.003-779
	J21	3.4-16.5	5.5-8	18-21.8	3.3-18.5 0.065-0.126 0.1-0.12	0.017-152
	J14	0.6-1.8	9-12	21.4-23.2 5.2-18.6 0.079-0.133 0.102-0.12 0.019-115
	J06	0-0.3	10.5-12.9 20.4-24.8 4.5-22.5 0.078-0.133 0.1-0.11	0.000-204
	* measured at the bed surface					
	Table 1: Experimental runs from Wilcock et al 2001			
			Parameter		Range		
			Slope (m/m)		0.00004-0.085		
			Diameter D 50 (mm)	0.25-220		
			Diameter D 84 (mm)	0.3-558		
			Bankfull depth (m)	0.04-7.5		
			Bankfull width (m)	0.3-578		
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Da [START_REF] Da Cunha | River Mondego, Portugal[END_REF] in [START_REF] Brownlie | Computation of alluvial channel data: Laboratory and Field[END_REF] No information 70-189 0.54-0.97 Mountain Creek [START_REF] Einstein | Bed Load Transportation in Mountain Creek[END_REF] in [START_REF] Brownlie | Computation of alluvial channel data: Laboratory and Field[END_REF] Sediment