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Abstract : 

The synthesis and photophysical properties of new multiporphyrin assemblies are described. 

Their design, based on a smooth electronic disconnection between  two-photon absorbing 

(2PA) octupolar or quadrupolar cores and the peripheral porphyrins, leads to a major increase 

in (non-resonant) 2PA responses in the NIR, while fully retaining the fluorescence and 

photosensitization properties of isolated porphyrins. This approach, which involves electronic 

coupling of semi-disconnected moieties in the higher excited states of the synergic systems, is 

of interest to fully benefit from the advantages of selective 2PA for application in combined 

two-photon high resolution imaging and photodynamic therapy. 
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Photodynamic therapy (PDT) is a medical technique used in oncology for the treatment of 

several tumours as well as in ophthalmology especially in the treatment of age-related macular 

degeneration (ARMD).
1,2

 The use of a two-photon (2P) excitation offers new perspectives for 

PDT, especially for the treatment of small areas, such as small solid tumours. Indeed two-photon 

absorption (2PA) offers several advantages, which includes the ability for highly selective 

excitation in biological media and intrinsic three-dimensional resolution as well as increased 

penetration depth in tissues.
3
 This however calls for the use of optimized 2P photosensitizers that 

should combine large 2PA cross-sections in the biological spectral window (700-1100 nm) and 

high singlet oxygen quantum yields (or ROS production). Most of the photosensitizers currently 

used clinically or in clinical trials are porphyrin derivatives, such as porfimer sodium (Photofrin) 

and verteporfin (Visudyne). These compounds exhibit high singlet oxygen quantum yields but 

low 2PA cross sections (10 GM and 50 GM, respectively) in the NIR,
4
 as model 

tetraphenylporphine (TPP, 12 GM).
5
_ENREF_8 Dramatic enhancement of the 2PA cross-

sections can be achieved in porphyrinoids,
6
 or expanded porphyrins,

7
 in conjugated porphyrin 

dimers, trimers and oligomers,
8
 planarized fused or bridged porphyrins

9
 or supramolecular 

assemblies.
8a,10

 The extension of the -conjugated system involves the porphyrin or porphyrinoid 

macrocycles thus leading to major modification of their photophysical properties: a marked 

broadening and red-shift of the Q-bands is observed resulting in residual one-photon absorption 

(1PA) overlapping with the 2PA band located in the NIR region. This promotes resonance 

enhancement of the 2PA band leading to giant 2PA cross-sections. Other consequences are 

however possible loss of 3D resolution (due to concomitant 1PA) and weakening of fluorescence 

and photosensitizing properties. Nevertheless biphotonic photosensitizers that maintain significant 

fluorescence are highly desirable to allow in vivo monitoring and subsequent localized irradiation. 

Here we describe our efforts towards the design of porphyrin-based 2P photosensitizers 

exhibiting large 2PA in the NIR – with no 1PA - and retaining the fluorescence as well as the 

excellent photosensitization properties of the porphyrin moiety. Dendritic antenna systems based 

on resonant energy transfer (FRET) from peripheral 2P absorbers towards a single porphyrin core 

have been previously designed.
11

 In contrast, our strategy is based on multiporphyrin assemblies 

with a weak conjugation between a central 2PA unit and peripheral porphyrins. A smooth 

electronic disconnection between the porphyrin moieties and the conjugated -system is ensured 

by deviation from planarity (Figure 1), so as to retain some of the photochemical features of 

native porphyrins (in particular singlet oxygen production and fluorescence).  

To achieve this goal, we chose meso-tetraarylporphyrin derivatives, where a phenyl ring in 

meso position prevents porphyrins to be coplanar with the 2PA unit, due to steric effects
12

 (Figure 

1). Four multiporphyrin assemblies (1a, 1b, 2, 3) were synthesized. Inspired by our seminal work 

on the design of conjugated quadrupolar, octupolar chromophores for 2PA,
13

 we selected fluorene 

and triphenylamine as cores in dumbbell-like or three-branched derivatives, and phenylene-

ethynylene or fluorenylene-ethynylene as connectors to the peripheral porphyrin units (Figure 1). 

Derivatives 2 and 3 bear pyridyl and triethyleneglycol substituents which should improve 

their hydrophilicity and biocompatibility. It should be stressed here that pyridines might be 

further quaternarized. 
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Figure 1. Chemical structures of “electronically disconnected” porphyrin dimers and trimers. 

 

Porphyrin trimer 1a was obtained from the threefold Pd-catalyzed cross-coupling reaction 

between ethynyl porphyrin 4
14

 and triodotriphenylamine 5.
13a

 Its metalation with zinc acetate 

afforded zinc porphyrin trimer 1b (Scheme 1). 
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Scheme 1. Reagents and conditions (a) Pd2dba3, AsPh3, DMF/Et3N, 40 °C, 15 h (47%). (b) Zn(OAc)2 . 2 H2O, 

CHCl3/MeOH, reflux, 1h (82%). 

 

 

Porphyrin dimer 2 was synthesized in a multistep sequence from 2,7-diiodofluorene 6b.
15

 

Dialkylation of fluorene 6b with [2-[2-(2-methoxyethoxy)ethoxy]ethoxy]p-toluenesulfonate 

in the presence of NaOH and tetrabutylammonium bromide afforded 7a. The double 

Sonogashira coupling of diiodo derivative 7a with 2-methyl-3-butyn-2-ol afforded 7c, which 

was deprotected with NaOH to afford diethynylfluorene 7d. The double coupling of the latter 

with bromoporphyrin derivative 8
16

 gave porphyrin dimer 2 (Scheme 2). The synthesis of 



extended porphyrin trimer 3 started also from diiodofluorene derivatives 6b and 7a. The latter 

compound was desymmetrized by reaction with a single equivalent of 2-methyl-3-butyn-2-ol, 

affording monoiodo derivative 7b. The Sonogashira reaction of triethynyltriphenylamine core 

9
13a

 with three equivalents of 7b led to extended core 10a, the protecting groups of which 

were cleaved with NaOH, giving triethynyl derivative 10b. Extended porphyrin trimer 3 was 

finally obtained from the threefold palladium(0) catalyzed reaction of 10b with three 

equivalents of bromoporphyrin 8 (Scheme 2). 

The photophysical characteristics (including one-photon absorption, luminescence, singlet 

oxygen generation and two-photon absorption) of the new porphyrin assemblies are gathered 

in Table 1. As shown in Figures 2 and 3, all compounds exhibit intense absorption bands in 

the UV and visible regions. Absorption spectra of the free-base multiporphyrin assemblies 

(1a, 2, 3) closely resemble that of TPP,
17

 the characteristic Q bands and Soret band being 

unaffected. This reveals that the lower excited states are preserved and localized on the 

porphyrin peripheral units, suggesting that no major electronic coupling between the 

conjugated core and the peripheral porphyrins occurs in these states (Figure 2, left). The 

absorption spectrum of trimer 1b is also typical of zinc tetraarylporphyrin complexes (See 

Supporting Information, Figure S1). No bathochromic shift of the Q bands is observed thus 

preserving full transparency in the NIR. 
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Scheme 2. Reagents and conditions (a) I2, H5IO6, AcOH, H2SO4, H2O, 75 °C, 2 h (68%). (b) 

CH3(OCH2CH2)3OTs, NBu4Br, KOH, 75 °C, 8h (59%). (c) 2-methyl-3-butyn-2-ol (1 equiv), Pd(PPh3)2Cl2, CuI, 

toluene/Et3N, 40 °C, 16 h (29%). (d) 2-methyl-3-butyn-2-ol (3 equiv), Pd(PPh3)2Cl2, CuI, toluene/Et3N, 40 °C, 

18 h (94%). (e) NaOH, toluene/iPrOH, reflux, 1.5 h (58%). (f) 7d (1 equiv), 8 (2 equiv), Pd2dba3, PtBu3, 

DMF/Et3N, 90 °C, 5 h (27%). (g) 7b (4 equiv), 9 (1 equiv), Pd(PPh3)2Cl2, CuI, toluene/Et3N, 40 °C, 60 h (43%). 

(h) NaOH, toluene/iPrOH, reflux, 1 h (51%). (i) 8 (3 equiv), 10b (1 equiv), Pd2dba3, PtBu3, DMF/Et3N, 90 °C, 5 

h (14%). 

 



 

Figure 2. Absorption (left) and emission (right) spectra of free-base porphyrin derivatives 1a, 2 and 3 and 

comparison with TPP. 

 

Table 1 Photophysical data of porphyrin assemblies and model TPP. 

Compd 
abs (core) 
(nm) abs (Soret) 

(nm) 
max 
(M-1.cm-1) 

abs (Q bands) 
(nm) 

em
max 

(nm) 
F 

c  d 
2PA

max 
(nm) 

2
max 

(GM) 
Enhancement

factor e 

1a a 371 422 1.2 106 515, 549, 593, 649 652, 721 0.12 0.66 810 470 13 

1b a 362 425 1.5 106 551, 589 605, 648 0.05 0.70 800 390 11 

2 b 364 420 7.8 105 513, 547, 589, 645 650, 717 0.09 0.74 a 790 480 20 

3 b 378 (sh) 419 1.2 106 513, 547, 589, 645 650, 717 0.08 0.72 a 790 1360 38 

TPP a - 420 4.4 105 f 514, 548, 591, 649 653, 719 0.11 g 0.70 h 790 12 i - 

a In toluene.  b In THF.  c Fluorescence quantum yield determined relative to TPP in toluene.  d Singlet oxygen quantum yield 

determined in toluene relative to TPP in toluene.  e Ratio between the maximum 2PA cross section of each compound 

(normalized by the number of porphyrins in the assembly) and the 2PA cross section of TPP at 790 nm.  f Data from lit.17  g 

Data from lit.18  h Data from lit.19  i Data from lit.5 

 

In contrast, the presence of the conjugated core moiety promotes the rise of a new 

absorption band in the near-UV region to the blue side of the Soret band (Table 1), whose 

intensity increases with increasing size of the core (Figure 1). This band reveals the 

emergence of higher excited states that modify the excitation behavior of the assembly as 

compared to TPP. The photochemical properties of multiporphyrin assemblies 1-3 are similar 

to that of TPP, in agreement with a lower excited state mostly localized on peripheral 

porphyrin units. As a result, fluorescence and singlet oxygen quantum yields are close to that 

of TPP (Table 1). We note however that the presence of the core moiety slightly affects the 

lower excited state as evidenced from the emission spectrum of 1-3 which are slightly 

modified: the intensity of the emission sub-band at 717-720 nm increases with respect to that 

of isolated porphyrin moieties (Figure 2, right). Hence a slight electronic coupling is 

occurring in the excited state. This reveals that the different moieties in the multiporphyrin 

assemblies (i.e. conjugated core and porphyrins) do not behave as fully independent units but 

slightly interact. 

The 2PA properties of porphyrin assemblies 1-3 were further examined. Taking advantage 

of the fluorescence properties, they could be determined in the NIR range by investigating 

their two-photon excited fluorescence (2PEF), following the experimental protocol described 



by Xu and Webb.
20

 Below 740 nm, giant 2PEF signal increases (and concomitant slight 

deviation from quadraticity) are observed due to the onset of 1PA resonance (leading to 

apparent 2PA cross-sections larger than 10
5 

GM for compound 3 at 700 nm). We thus restrict 

further discussion to the spectral range where a fully quadratic dependence of the fluorescence 

intensity on the excitation power is observed and 2PA responses are fully non-resonant ( ≥ 

790 nm). Quite interestingly, in this spectral range, a marked increase of the 2PA responses 

compared to that of model TPP (12 GM at 790 nm), up to 1360 GM for trimer 3 at the same 

wavelength is observed (Figure 3). Tripodal triphenylamine cored compounds 1a-b, reveal an 

enhancement factor of more than 10 while a larger value of 20 is obtained with dumbbell-like 

fluorene derivative 2 (Table 1). Finally, a ~40-fold enhancement is obtained with the 

extended tripodal compound 3. 

 

 

Figure 3. 2PA spectra of TPP5 and “electronically semi-disconnected” porphyrin assemblies. 

 

These striking enhancements provide evidence that the conjugated cores generate higher 

excited states that are responsible for enhanced 2PA, while allowing fast return (in agreement 

with Kasha rule) to the lower-excited state responsible for fluorescence (as demonstrated by 

2PEF experiments) and singlet oxygen generation. This confirms that the different moieties in 

1-3 do not behave as fully independent chromophoric units but slightly interact in the higher 

excited states. The large (non-resonant) 2PA responses are reminiscent of octupolar (1a-b, 3) 

or quadrupolar (2) schemes.
13

 In addition, extension of the conjugated branches leads to an 

increase of the 2PA cross sections and of the enhancement factor of 3 (compared with 1a-b), 

as expected from an octupolar scheme.
13

 This suggests that the porphyrin end-groups are 

indeed contributing to the 2PA response by acting as electro-active end-groups (probably in 

relation with field rather than resonance effects) in the higher excited states. 

In conclusion, by engineering a smooth electronic disconnection between 2PA conjugated 

systems and peripheral porphyrin emitters/photosensitizers, we have achieved striking (non-

resonant) 2PA enhancement in the NIR while retaining excellent fluorescence and 

photosensitization properties. This “semi-disconnection” strategy, which is different in 

essence from the strategies based on the full extension of conjugation in porphyrinoids or 

(supramolecular) assemblies and from FRET based covalent assemblies, opens a promising 

route for combined two-photon imaging and photodynamic therapy. 
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