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This paper presents the building heating demand prediction model with occupancy profile and 11 operational heating power level characteristics in short time horizon (a couple of days) using artificial 12 neural network. In addition, novel pseudo dynamic transitional model is introduced, which consider 13 time dependent attributes of operational power level characteristics and its effect in the overall model 14 performance is outlined. Pseudo dynamic model is applied to a case study of French Institution 15 building and compared its results with static and other pseudo dynamic neural network models. The 16 results show the coefficients of correlation in static and pseudo dynamic neural network model of 0.82 17 and 0.89 (with energy consumption error of 0.02%) during the learning phase, and 0.61 and 0.85 18 during the prediction phase respectively. Further, orthogonal array design is applied to the pseudo 19 dynamic model to check the schedule of occupancy profile and operational heating power level 20 characteristics. The results show the new schedule and provide the robust design for pseudo dynamic 21 model. Due to prediction in short time horizon, it finds application for Energy Services Company

22

(ESCOs) to manage the heating load for dynamic control of heat production system.

Introduction 29

The global concerns of climate change and regulation in energy emissions have drawn more showed that occupancy profile has a significant contribution in determination of auto regressive terms 119 during different intervals of time and further showed a variation of it in the building heating and cooling 120 energy consumption. The proposed ARX model showed similar performance with neural network.

121

Sensitivity analysis for heating, cooling, hot water, equipment and lighting energy consumption based 122 on occupancy profile was performed by Azar et al. [31] for different sizes of office buildings. In their 123 work, they found that heating energy consumption has the highest sensitivity compared to cooling, hot 124 water, equipment and lighting energy consumption for small size buildings. Also, results showed that 125 heating energy consumption is highly influenced by occupancy profile for medium and small buildings 126 during the occupancy period. Moreover, few literatures focused on operational power level 127 characteristics (schedule of heating and cooling energy to manage energy production from plant 128 system). For example, Leung et al. [32] used climate variables and operational characteristics of 129 electrical power demand (power information of lighting, air-conditioning and office equipment which 130 implicitly depends on occupancy schedule of electrical power demand) to predict hourly and daily 131 building cooling load using neural network.

132

In conclusion, it can be reiterated that physical and semi-physical models [4][5][6][7][8][9][10][11], though give 133 precise prediction of building energy, they are highly parameterized and are computationally expensive 134 to manage the energy for control applications for ESCOs. Data-driven methods which depend on 135 measurement historical data are not effective during the early stage of building operation and 136 construction since measurement data are not available at these stages. When building energy data 137 are available, data-driven methods can be considered if measurement data are accurate and reliable 138 as this kind of models can be sensitive on the quality of measured data. Sensitivity of the accuracy of 139 data driven models, thus, depends on the measurement data. Data-driven models based on statistical 140 and regression methods [12][13][14][15]26] cannot precisely represent short time horizon (couple of days) 141 with hourly (or couple of minutes) sampling time prediction, though they perform prediction of energy 142 consumptions of buildings with limited physical parameters. They also require significant efforts and 143 time to compute the best fitting of the actual data. Static neural network models [19][20][21] are used for 144 daily prediction and [22][23][24][25] are used for hourly prediction of the buildings energy consumptions.

145

Though dynamic neural network model [27][28] gives better precision in compared to static neural 146 network, they do not consider occupancy profile and operational power level characteristics of the 147 plant system and therefore not adapted for the ESCOs to manage energy production for control variables and application of models developed in the literature reviews are summarized in Table 1.
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None of these studies has evaluated the transition and time dependent effects of operational 153 power level characteristics of heating plant system and has predicted building heating energy demand 154 in short time horizon (a couple of days). This short term prediction is important to ESCOs for dynamic 155 control of heat plant system. This paper bridges the gap between static and dynamic neural network 156 methods with occupancy profile and operational power level characteristics of heating plant system. It 5. The wind speed and direction are not taken into consideration. This is due to the fact that 202 present weather variables data are taken from data acquisition system but future weather 203 variables values are coming from an atmospheric modeling system which mesh size can be 204 15 km (as ARPEGE, see [33]), 10 km (as ALADIN, see [34]) or 2.5 km (as AROME, see [35]).
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In such a case, wind impact on heating demand prediction of a specific building located inside the mesh is very difficult or even impossible to consider for precise effect. Further, heating 207 energy demand is highly dependent on outside temperature and other climate variables have 208 less significant impact on heat energy [36]. 

211

The operational heating power level characteristics gives operational features of the plant system, 212 however, they do not give abstract information about transition attributes of operational heating power 213 level which is illustrated through an example in figure (2). The y-axis represents set up power level 214 from the production system and x-axis represents operation schedule. 227

      2 , 1 , ... 7 , 5 , 3 ....., 8 , 6 , 4 , 2 0 2 2 2 2              u v v u v u uv v u uv       (1)

228

where, 0  ,   and represents initial power level, step size of transition power level and absolute values respectively. In figure (4), delay represents time it takes from plant system to reach the building for heating 241 operation and after this, power is sufficient to provide heating demand. The  represents the 63% of 242 power transferred to the building heating system from plant system. Other dynamics to incorporate is 243 settling time ( s T ), which is the time elapsed for heating power to reach and remain within the specified 
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for normalization of input and output variable, and for this paper, normalization with zero mean and 301 unit standard deviation is done as shown in equation (4). In equation (4), x , i X and m represents 302 mean of input variable, overall vector of input variable and number of datasets respectively and thus,

303

applies similarly for output variable.
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The cost function of MLP network is computed in equation ( 5):
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where y , a y , l and    J represents predicted values produced from the network, actual values of 309 given datasets, individual data from m number of datasets and cost function of the neural network 310 model respectively. Further, y of the network is computed as:
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312

In order to update the model parameters for a higher degree approximation on unknown non-313 linear function for learning process, there are different methods as -gradient descent, Newton's 314 method and so on [37]. Gradient descent is too slow for the convergence, and it takes more time to 315 compute the hessian matrix in Newton's method as well. Levenberg-Marquardt algorithm is used for 316 this paper which takes approximation of hessian matrix in the form of Newton's method and model 317 parameter update equation

1  t  is given as: 318           J L I L L T T t t 1 1      (7)
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In equation ( 7), hessian matrix is approximated as [ L L T ] and gradient is computed as

   J L T , 320
where, L is Jacobian matrix,   

328

The maximum failures in validation or accuracy over validation datasets is defined to stop the 329 learning process if the accuracy of learning datasets increase and validation accuracy stays same or 330 decrease. 347

Model

    y w w x L L L L L * 1 * 1      (12)

348

DOF of neural network model is the difference between number of learning equations and 349 number of model parameters in the network. It should be always >>1 and depends on the optimum 350 size of hidden neurons. DOF and maximum hidden neurons are given by equation ( 13) and ( 14), the maximum hidden neurons. 

353
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366

It is essential to know whether schedule of occupancy profile and operational characteristics 367 obtained from ESCOs is reliable for the robust design of pseudo dynamic model. Occupancy profile performance and if all these transition period are consider for finding the best robust model, it takes 370 long time to compute. Orthogonal arrays (OA) identify the main effects with minimum number of trials 371 to find the best design. These are applied in various fields: mechanical and aerospace engineering

372

[40], electromagnetic propagation [41] and signal processing [42] for the robust design model.

373

The orthogonal array allows the effect of several parameters to find best design with given 

390

The data is taken from data acquisition system and consists of day/month/time, solar radiation, 

398

The simplified/theoretical occupancy profile and operational heating power level characteristics 399 for working and off-days for 24 hours is shown in figure ( 6) and ( 7).

400 

404

from 18 hour onwards, power demand characteristics is not accordance with occupancy profile. Thus,

405

it further shows that simplified occupancy profile is not enough to characterize the heating demand.

406 

424

x L equals to 10. Transitional and pseudo dynamic characteristic with four lags during working day is

425

shown in figure ( 9). Transition level in figure ( 9) is calculated from equation ( 1) and for this case study, 5) is computed iteratively up to 1000 for each

437

of the minimum and maximum number of hidden neurons. The maximum number of hidden neurons is 438 calculated from equation ( 14), where  is chosen 8 as it gives the flexibility in the degree of model 439 parameters. Thus, three minimum hidden neurons are chosen as 3 for this case study. Hidden 440 neurons length ( w L ), thus, is varied from 3 to max W . Performance of model at each iteration (number 441 of epochs) is computed from equation ( 16) and ( 17) and model parameters are updated based on 442 equation ( 7), where initial value of  is chosen as 0.01 and its value is increased with a factor of 10 443 and decreased with a factor of 0.1. The maximum value of  is chosen as 1e10. Neural network 444 model in this study will be stopped if the number of epochs reached to 1000 and performance goal 445 reached the value given by equation ( 15).

446

Under the scope of study (see subsection 2.1), the accuracy on the number of occupants are 447 not relevant, however, it is essential to know inside the sampling time, when the staff and students 
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For the robustness of pseudo dynamic model, orthogonal arrays are applied to determine the 515 highest coefficient of correlation for learning and validation for the optimum 9 hidden neuron size of 516 model 6. Table (5) shows OA(729,10,3,5) and coefficient of correlation for learning and validation 517 phase. It is clear from table (5) that the schedule taken from the ESCOs is from experiment 1 and from 518 the orthogonal arrays, the optimal schedule that fits the best for model 6 is experiment 398. The 
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However, there is a fluctuation in the power demand in the morning for each consecutive 4 days and it 538 is difficult to learn datasets which transits rapidly in actual power demand. The prediction of heating 539 demand for model 6 during testing phase after optimum orthogonal array design is shown in figure 540 (14). It is vivid that pseudo dynamic model is able to predict heating demand, however during the third 541 day, the pseudo dynamic model is not able to meet 1.1 MW of heating demand. This is due to the fact 542 that neural network does not learn this threshold maximum heating demand in the learning phase as 543 this kind of information is not available in the database. This data, thus, needs to be improved in the 

novel pseudo dynamic transitional model is introduced. A large building is considered for application The minimum energy consumption error is achieved and is 0.02% for the learning phase and is 2.39% orthogonal array design is applied to the pseudo dynamic model (the schedule of occupancy profiles and operational heating power level characteristics) application for energy operator to manage the heating load for the dynamic control of the heat production system *Highlights (for review)

  157 introduces novel pseudo dynamic model, which incorporates time dependent attributes of operational 158 power level characteristics. Their effects on neural network model performances are compared to 159 static neural network for building heating demand. Orthogonal arrays are applied to the proposed 160 pseudo dynamic model for robust design and confirmed the new schedule of occupancy profile and 161 operational heating power level characteristics obtained from ESCOs. The proposed method allows 162 short term horizon prediction (around 4 days with sampling interval of 15 minutes) to make decision 163 (e.g. management of wood power plant) for the ESCOs. The next section describes methodology 164 including scope of study, design of transitional and pseudo dynamic characteristics, neural network 165 model and orthogonal arrays. Finally, a case study is presented and results and discussion are drawn 166 to analyze the performance of different static and pseudo dynamic models along with robustness of 167 proposed pseudo dynamic model for heating demand prediction of the building.

179Figure 1 : 1 .

 11 Figure 1: Outline of the proposed methodology on heating demand prediction

192 2 .

 2 Existing building is considered and space heating demand of this building is fed up from a heat 193 network to a central substation. Domestic hot water (DHW) is out of the scope.1943. The heating demand data was recorded in data acquisition system database and thermal 195 comfort inside the building was performed in this database. Thus, the effects of ventilation and 196 air-conditioning on heating are already included in this database.

197 4 .

 4 Simple occupancy profile of building is anticipated approximately to assist the ESCOs to 198 schedule their heat production system. In such a system, individual occupant's behavior or 199 precise occupancy profile is not considered. Thus, the modeling constraints are closer to the 200 operational condition of ESCOs to estimate the heat demand.

  201

  215

Figure 2 :

 2 Figure2: Operational heating power level characteristics of the plant system (for a day)

244 280 Figure 5 :

 2805 Figure 5: Neural Network Architecture

  cost function, t  is initial model parameter,  is 321 suitable chosen scalar and I is identity matrix. Update model parameter, thus, depends on the cost 322 function and scalar value  .

  criteria for stopping the neural network model. For this paper, the stopping 325 criteria depend on number of epochs to learn the network, performance goal, maximum range of  326 and maximum failures in the validation. The performance goal (PG) is given as:

  Performance332Performances of models are characterized by mean square error (MSE) and coefficient of 333 issues of neural network model is over learning of the network. With increase of 338 hidden neurons, model performance can be increased, but, it will lead neural network to over learning.339Validation accuracy and degree of freedom (DOF) adjustments are done in this paper to avoid over 340 fitting. Number of learning equations that model could deliver are given by equation(11), where e L is 341 learning equations of the network and y L is length of vector output neurons ( y ), and in this case 342 equal to 1 since there is only heating demand load.

  model parameters for a single hidden layer MLP neural network are given by 345 the equation (12), where  L , x L and w L represents number of model parameters, vector length of 346 input neurons ( i x ) and vector length of hidden neurons ( k w ) respectively.

355

  Modified performance goal according to degree of freedom adjustment is given as: also further modified based on degree of freedom adjustment. The 358 is performed for learning and validation, 364 and based on it, optimal configuration of model is identified for the final prediction.

391

  outside air temperature and heating demand from mid of January to February 2013 with sampling 392 interval of 15 minutes. The 70% of data (outside temperature, solar radiation and heating demand as 393 shown in figure 5) are used for learning phase i.e. in mathematical equation in neural network, see 394 section 2.3, equivalent to 19 days with 15 minute sampling time, and each 15% of data (4 days with 15 395 minute sampling time) is used for validation and testing phase. Outside temperature taken for this study has minimum, average and maximum value of 1

Figure 6 :Figure 7 :

 67 Figure 6: Occupancy profiles for working and off-day

Figure 8 :

 8 Figure 8: Heating power demand and occupancy profile during working days

Figure 9 :Figure

 9 Figure 9: Transitional and pseudo dynamic characteristics during working day

448

  come and leaves the buildings. It is necessary to check occupancy and operational power level characteristics provided by ESCOs are right or not for robust design model. And, the main controlling 450 factors for robust design model are the transition schedule of occupancy and operational 451 characteristics. From figure (6), it is clear that there is no transition of occupancy during off-day, but 452 there is transition of occupancy during the interval at 8 hour, 12 hour, 13:30 hour and 17:45 hour and 453 these are represented by t1, t2, t3 and t4 factors respectively. Similarly, there is a transition of 454 operational characteristics for working and off day as shown in figure (7) and these transition factors 455 are represented by t5, t6, t7 and t8 for working day for 6 hour, 12 hour, 14 hour and 20 hour; t9 and 456 t10 for off day for 6 hour and 20 hour. Since the sampling interval taken for this case study is 15 457 minutes, three levels are used for orthogonal arrays so that the model will represent the 15 minutes 458 ahead and before from occupancy and operational characteristics schedule period. The summary of 459 control factors and their levels are shown in table (3), where OSW represents occupancy schedule at 460 work day, OCSW represents operational characteristics schedule at work day and OCSO represent 461 operational characteristics schedule at off day. 462 Table 3: Summary of control factors and their levels 463 Thus, there are 10 factors and 3 levels that govern the robustness of the model and if the full464 factorials are used to generalize the model, it takes 3 10 = 59049 experiments. The orthogonal arrays 465 reduce the number of experiments to 729 with 5 strengths. OA (729,10,3,5) is applied to the proposed 466 pseudo dynamic model in this case study.

Figure 11 :

 11 Figure 11: Coefficient of correlation performance (Model 5)
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  operational characteristics are not enough to determine and generalize the unknown function of the 489 building heating demand. As transitional attributes of operational characteristic is introduced in model significantly from 0.82 to 0.87 for learning phase and from 491 0.81 to 0.85 for validation phase and correspondingly ified mod MSE decreases in contrast to model 1. 492 Pseudo dynamic transitional attributes in model 3 and time constant  in model 4 leads increase in 493 model performance. Further, dynamics of settling time and steady state plays an important role in 494 characterizing the neural network model. It is seen that for learning and 0.85 to 0.87 for validation in model 5 compare to model 2 although transition 496 attributes is introduce in model 2. In addition, hidden neuron size is also reduces from 19 to 13. 497 Moreover, it is distinguish that learning and validation performances remained the same in the model 6 498 compared to model 5. The optimal choice of the model, thus, lies in between settling and steady state 499 time. 500 It can be further view that model 5 and model 6 show reasonable and consistent model 501 performances. However, minimum hidden neuron size and maximum learning criteria is essential for performance ified mod 2 R remained the same (0.89) in model 6 comparing to model 5, model 6 is 504 chosen as the best configuration of the overall models. The optimal choice of the model 5 and model 6 505 can be delineated by the error in percentage of energy consumption (kWh) in actual and prediction for 506 the learning and validation phase. Heating energy consumption error in actual and prediction in 507 learning phase in Model 6 is 0.02% compare to 0.32% in Model 5. For validation phase, heating 508 energy consumption error is 2.39% in Model 6 compare to 2.57% in Model 5. From this energy 509 consumption error, it is clear that there is a small heating energy consumption error in Model 6 510 compare to Model 5 during the learning and validation phase. So, one can conclude that Model 6 can 511 be chosen as optimal configuration of the overall model. The model 6, thus, bridges the gap between 512 static and dynamic neural network model in the sense that it is better than static model and increases 513 the performance comparable to dynamic neural network model.

519

  orthogonal arrays, thus, ensures that there is transition in occupancy in 7:45 hour, 12 hour, 13:45 hour 520 and 18 hour instead of 8 hour, 12 hour, 13:30 hour and 17:45 hour period in the existing case 521 respectively. There is also a transition in 5:45 hour, 11:45 hour, 14 hour and 17:45 hour instead of 6 522 hour, 12 hour, 14 hour and 17:45 hour for working day; 5:45 hour and 20 hour instead of 6 hour and 523 20 hour in off days for operational characteristics. The coefficient of correlation after the orthogonal 524 array design is 0.90 for learning, 0.88 for validation and 0.86 for training phase. Nevertheless, other 525 issue of overall model is that it is difficult to increase the coefficient of correlation beyond 0.90 and this 526 is due to the sampling time of 15 minutes. With short sampling time, it is very difficult to learn the ified mod 2 R value of 0.90 during the learning phase is always acceptable. Coefficient of correlation of linear regression obtained from neural network model in the actual 531 and prediction of heating demand for learning, validation and testing phase of Model 6 after optimum 532 orthogonal array design are 0.95, 0.95 and 0.93 respectively. The prediction of heating demand for 533 model 6 after optimum orthogonal array design during validation phase is shown in figure (13).

534

  Prediction gives the power heating demand and the area under the curve gives the heating energy 535 demand. From figure (13), it is clear that heating demand tremendously increases approximately 990 536 kW during third and fourth day and pseudo dynamic model is able to predict and learn the behavior.
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 1314134 Figure 13: Prediction of heating demand in model 6 during validation phase (after optimum orthogonal

Figure 7 :

 7 Figure 7: Operational heating power level characteristics for working and off-day

  

  

  

  

  

  

  

168 Table 1 :

 1681 Summary of variables and application models in the literatureThe development and implementation of models proposed in this work are based on collection of 171 real building heating demand, operational heating power level characteristics, climate variables and steady state time and is estimated from real building data. Based on operational heating power level 178 and dynamics of building characteristics, transitional and pseudo dynamic models are designed.

	169	
	170	2. Methodology

Table 4 :

 4 Optimal configuration of models 486

	487	Table (4) shows that with static neural network model 1, best	R	2	mod	ified	for learning and
		validation can be obtained up to 0.82 and 0.81. From this, it is clear that occupancy profile and

Table 1 :

 1 Summary of variables and application models in the literature

			Ambient Dry Bulb Wet Bulb
	Girardin et al. [12] (2009)	Statistical	√

Table 1 5 6 7

 16 

Table 5

 5 

level characteristics of the plant system are still missing, though, authors[29][30] consider occupancy

profile and author[32] considers operational characteristics of electrical power demand. The detailed

approximated occupancy profile data (see Appendix A for selection of relevant input variables). An

outline of the methodology presented in this paper is shown in figure[START_REF] Laustsen | Energy efficiency requirements in building codes, energy efficiency policies for 1*: Nominal Temperature of heating, cooling and hot water system[END_REF]. The input of this methodology

is in form of time-series climate and building heating energy data. The other inputs data are occupancy

profile and operational heating power level characteristics for working and off-days for 24 hours.

depends on the power level of operational characteristics.

The neural network consists of neurons to interconnect the inputs, model parameters and

and operational characteristics transition period, thus, plays an important role in the model

and testing for different hidden neurons sizes of model 5 and from this optimal configuration is chosen

datasets which changes in 15 minutes sample, nonetheless, for good generalization of the model,

Table 5: OA (729,10,3,5) and coefficient of correlation for learning and validation for model 6

buildings. Coefficient of correlation increases from 0.82 to 0.89 for learning, 0.81 to 0.87 for validation
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Remarks:

and 0.61 to 0.85 for testing in pseudo dynamic comparing to static neural network model. Also, the 562 size of hidden neuron is further reduced, which reduces complexities and increases generalization of 563 the model. Moreover, minimum energy consumption error is achieved in pseudo dynamic model as 564 0.02% for learning and 2.57% for validation phase. Further, orthogonal array is applied to optimal 

575

Further, research will be focused towards the feature extraction of data before learning phase of 576 the neural network so that abnormalities in the data can be corrected in the learning phase. Also 577 adaptive and real time learning criteria with seasonal behaviour will be studied.
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689

The influence of input variables on the model output is evaluated based on the correlation analysis.

690

Correlation measures the strength and weakness of linear relationship between two variables. There

The correlation coefficients can range from -1 to +1: