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ON THE ASYMPTOTIC ANALYSIS OF LITTLEWOOD’S

RELIABILITY MODEL FOR MODULAR SOFTWARE

James Ledoux

Centre de Mathmatiques INSA & IRMAR
INSA, 20 avenue des Buttes de Cosmes,

35043 Rennes Cedex,
France

E-mail: james.ledoux@insa-rennes.fr

We consider a Markovian model, proposed by Littlewood, to assess
the reliability of a modular software. Specifically, we are interested in
the asymptotic properties of the corresponding failure point process. We
focus on its time-stationary version and on its behavior when reliabil-
ity growth takes place. We prove the convergence in distribution of the
failure point process to a Poisson process. Additionally, we provide a con-
vergence rate using the distance in variation. This is heavily based on a
similar result of Kabanov, Liptser and Shiryayev, for a doubly-stochastic
Poisson process where the intensity is governed by a Markov process.

1. Introduction

Two approaches are used in the stochastic modeling of the failure process

of a software. The prevalent approach adopts the so-called black-box view

of the system, where only the interactions with the environment are con-

sidered. The martingale methods3 for analyzing point processes, provide

an unified framework for almost all published black-box models. To each

model corresponds a specific stochastic intensity of the point process.22,10

A second approach, called the white-box approach, incorporates informa-

tion on the structure of the software in models. Littlewood’s model14 is

the most popular model resulting from this approach. It has inspired most

other works. Littlewood proposed a Markov-type model for the reliability

assessment of modular software. For a software with a finite number of

modules:

1
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– the structure of the software is represented by an irreducible finite con-

tinuous time Markov chain X = (Xt)t≥0, where Xt is the active module

at time t.

– When module i is active, failure times are part of a homogeneous Poisson

Process (HPP) with intensity µ(i).

– When control switches from module i to module j, a failure may happen

with probability µ(i, j).

– When a failure appears, the execution is assumed to be resumed instan-

taneously. So, a failure does not affect the software.

– All failure processes are assumed to be independent, given a sequence of

activated modules.

This could be considered to be a naive model. For instance, at any time

t, the control of the execution is assumed to be in only one module. However,

using a suitable definition of the state space of the Markov process X , the

model may be adapted to a software system where the control is shared

by several of its parts. In the Littlewood model, the failures do not affect

the execution, the control structure is Markovian, . . . A large number of

theses assumptions are questionable, but some of them may be addressed.

We refer the reader to 11 for a discussion on these issues and to 7 for a

recent survey on the architecture-based software reliability.

An important issue in reliability theory, specifically for software systems,

is what happens when the failure parameters tend to be smaller and smaller.

Littlewood claimed:14

As all failure parameters µ(i),µ(i, j) tend to zero, the failure process

described above is asymptotically an HPP with intensity

λ =
∑

i

π(i)

(∑

j

Q(i, j)µ(i, j) + µ(i)

)
(1)

where Q = (Q(i, j)), π are the generator and the stationary distribution of

X , respectively. This statement is well-known in the community of software

reliability and has widely supported the hierarchical approach for assessing

the dependability of modular softwares.7 However, to the best of our knowl-

edge, no proof of this fact is reported in the applied probability literature.

The purpose of this chapter is to provide precise statements on the

asymptotic properties of the failure point process associated with the Lit-

tlewood model. Firstly, we discuss its time-stationary version. Intuitively,

this corresponds to place the origin of the observation of the process at

an“arbitrary time” t (with large t). Secondly, we focus on the main contri-
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butions of this chapter, which are : first, a rigorous proof to the convergence

results announced by Littlewood14,15; second, a rate of convergence. The

derivation of our results will be based on the martingale approach for ana-

lyzing point processes.

The chapter is organized as follows. Section 2 gives the mathemati-

cal specification of the Littlewood model. Section 3 addresses the time-

stationary version of the failure point process. Section 4 is devoted to its

Poisson approximation. First, we give the compensator and the stochastic

intensity of the point process. Then, we prove the convergence of the finite-

dimensional distributions of the counting process to those of a homogeneous

Poisson process with intensity λ in (1). In the final part, a convergence rate

for the convergence of these finite-dimensional distributions is provided.

2. Mathematical Formulation of the Failure Point Process

Let us consider the successive times at which a failure occurs Tn, n ≥ 1,

and assume that T0 = 0. We denote the number of failures in the interval

]0, t] by Nt

Nt =

{
max{n ≥ 1 : Tn ≤ t} if T1 ≤ t

0 if T1 > t.

We denote the finite set of modules {1, . . . , M} by M. X will be called

the environment or execution process. Considering the bivariate process

Z = (Nt, Xt)t≥0 is very appealing from a mathematical and computational

point of view. Indeed, it is easily seen from the assumptions on Littlewood’s

model, that Z is a jump Markov process over the state space S = N ×M.

The infinitesimal generator of this Markov process is

G =




D0 D1 0 · · ·

0 D0 D1
. . .

...
. . .

. . .
. . .




when the states in S are listed in lexicographic order. Matrices D0 and D1

are defined by

if i 6= j : D0(i, j) = Q(i, j)(1 − µ(i, j)) D1(i, j) = Q(i, j)µ(i, j),

D0(i, i) = −
∑

j 6=i Q(i, j) − µ(i) D1(i, i) = µ(i).

Note that Q = D0 +D1 and λ = πD11I
t (see (1)), where 1It denotes the M -

dimensional column vector having all components equal to 1. We point out

that we deal with a failure point process that is a Markovian Arrival Process
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(MAP) as defined by Neuts.19,17 The Littlewood model has the (doubly-

stochastic) Poisson process (driven) modulated by a Markov process as a

special instance (setting parameters µ(·, ·) to 0). We refer the reader to 12

for the computational issue of various reliability metrics using the bivariate

process Z.

As the observation duration t tends to be large, we have the following

asymptotic formula for the mean number of failures:12

E[Nt] = λ t + (α − π)
(
1Itπ − Q

)−1
D11I

t + o(1),

where α is the probability distribution of the random variable X0 and λ is

defined in (1). We have as a result

lim
t→+∞

E[Nt]

t
= λ = πD11I

t.

Thus, the mean value of the random variable Nt has a linear asymptote

when t growths to infinity. As it can be expected from the last formula, the

first moment of the counting process is λ t when the environment process

X is stationary (that is, the probability distribution of Xn’s is π). In such a

case, we are concerned with the time-stationary version of the point process.

This the core of the next section.

3. Time-Stationary Version of the Failure Point Process

In this section, we discuss the time-stationary version of the failure point

process. That is, we give conditions under which the counting processes

(Nt+s − Nt)s≥0 (the point process viewed from time t onwards) have the

same distribution for all t. It is known that we get the time-stationary ver-

sion of a MAP when its environment process X is stationary.19,2 In fact,

the question of time-stationarity for an MAP is related to the asymptotic

properties of an associated Markov Renewal Process (MRP). Specifically,

we need the stationary version of this MRP, which is stochastically equiva-

lent to the MRP corresponding to an MAP with a stationary environment

process X . This last property is well known (e.g. see 19) but the details

of the derivation are never reported. We give here, the main steps of the

derivation to emphasize the interest in Markov modeling to get an ana-

lytic model that is tractable. Intensity λ given in (1), also appears in the

moments of the stationary version of the point process.

The MRP associated with Littlewood’s failure model is defined as

follows.17 Let us consider the marked point process (Tn, Jn)n≥0 where Jn is

the active module just after the nth failure time Tn. It is easily seen from the
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assumptions on Littlewood’s model, that (Tn, Jn)n≥0 is a recurrent finite

MRP with semi-Markov kernel (Qt)t≥0 on M

Qt = (Qt(i, j))i,j∈M =

∫ t

0

exp(D0s)ds D1 (2)

=
(
I − exp(D0t)

)
(−D0)

−1D1.

That is, we have P{Jn+1 = j, Tn+1 − Tn ≤ t | Jn = i} = Qt(i, j) for any

n ≥ 0. We refer the reader to 13 for the basic properties of Markov renewal

processes. The Markov chain (Jn)n≥0, with the state space M, has the

following transition probability matrix

Q∞ = (Q∞(i, j))i,j∈M =

∫ ∞

0

exp(D0s)ds D1 = (−D0)
−1D1.

We note that

Qt = Q∞ − exp(D0t)Q∞. (3)

The distribution function of the sojourn time in state i ∈ M is given by

Ht(i) =
∑

j∈M

Qt(i, j) = 1 −
(
exp(D0t)1I

t
)
(i).

Then, the mean sojourn time in state i is

m(i) = −(D0
−11It

)
(i). (4)

We associate with the semi-kernel (Qt)t≥0, its semi-Markov process

(JNt)t≥0:

t ≥ 0, JNt = Jn if Tn ≤ t < Tn+1.

We need the forward recurrence time process (Vt)t≥0 defined by

Vt = TNt+1 − t

(i.e. time until the next failure after t) and the process (JNt+1)t≥0 (the

active module just after the next failure after time t).

Now, we are interested in the stationary version of the MRP (Tn, Jn)n≥0.

In the definition of an MRP, the origin of the observation of the process

is assumed to be an epoch of failure (T0 = 0). Intuitively, considering the

stationary version corresponds to start the observation at an arbitrary time

t (with large t). Thus, the MRP is assumed to be in progress for a long

time at the beginning of its observation. Formally, we get from the initial

MRP (Tn, Jn)n≥0, a delayed MRP (T̃n, J̃n)n≥0, for which the probability

distribution of (J̃Nt , J̃Nt+1, Ṽt) (and of (J̃Nt , Ṽt)) does not depend on time
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t.20,4 The first transition of the new MRP is governed by the semi-Markov

matrix

Q̃t(i, j) =
1

m(i)

∫ t

0

(
Q∞(i, j) − Qs(i, j)

)
ds.

The others jumps are governed by the initial semi-Markov kernel (Qt)t≥0

(see (2)). The probability distribution π̃ of J̃0 is

∀i ∈ M, π̃(i) = lim
t→∞

P{JNt = i} =
ν(i)m(i)

νmt
. (5)

where ν is the stationary distribution of the Markov chain (Jn)n≥0. It is

easily checked by a direct computation that

ν =
−πD0

−πD01I
t =

πD1

πD11I
t (6)

with the stationary distribution π of X (π(D0 + D1) = 0). Note that4

π̃(i)Q̃t(i, j) = lim
x→∞

P{JNx = i, JNx+1 = j, Vx ≤ t}

π̃Q̃t =
(

lim
x→∞

P{JNx+1 = j, Vx ≤ t}
)
j∈M

We check that the stationary MRP (T̃n, J̃n)n≥0 is stochastically equiva-

lent to the MRP (Tn, Jn)n≥0 with π as initial distribution for the Markovian

environment process X . Let us identify the (unconditional) probability dis-

tribution of (T̃1, J̃1):

π̃Q̃t =
1

νmt

∫ t

0

(
νQ∞ − νQs

)
ds from (5)

=
1

νmt

∫ t

0

−πD0

−πD01I
t exp(D0s)(−D0)

−1D1ds from (2), (3), (6)

=
1

νmt

1

πD11I
t

∫ t

0

π exp(D0s)D1ds.

Now, it follows from (4) and (6) that νmt = 1/πD11I
t. As a result of the

previous statements, we have

π̃Q̃t = πQt.

Therefore, if the probability distribution of X0 is π, then (T1, J1) and

(T̃1, J̃1) have the same distribution. Since the next failure times are gov-

erned by the same semi-Markov kernel (Qt)t≥0, we have the stochastic

equivalence between (T̃n, J̃n)n≥0 and the MRP (Tn, Jn)n≥0 with stationary

Markovian environment process X .
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We provide now, some results concerning the moments associated with

the stationary Littlewood model. The details of the derivation may be found

in 2,19 and are not reported here (see18 for the non-stationary case). We as-

sume until the end of this section that the execution process X is stationary.

The mean value function of the counting process N is given by

Eπ[Nt] = λ t ∀t ≥ 0.

We see that the mean function Eπ [Nt] is identical to that of a homogeneous

Poisson process with intensity λ. The scalar λ may be interpreted as the

mean number of failures per time unit for the stationary failure model. The

variance function σ2
π(t) for our counting process is

σ2
π(t) =

[
λ + 2πD0(1I

tπ − Q)−1D1 1It − 2λ2
]
t

−2πD1(I − 1Itπ)(1Itπ − Q)−2D1 1It

−2πD1(1I
tπ − exp(Qt))(1Itπ − Q)−2D1 1It ∀t ≥ 0.

The first two terms give the linear asymptote of the variance function when t

growths to infinity (the last term converges to zero). Note that the variance

σ2
π(t) cannot be identified to that of a Poisson process with intensity λ.

The last formula concerns the covariance function Cπ of the stationary

failure point process. If Cπ(t, t′; t0)
def
= Eπ

[
Nt(Nt′+t+t0 − Nt+t0)

]
− λ2tt′

with t, t′ > 0 and t0 ≥ 0, then

Cπ(t, t′; t0) = πD1

(
I − exp(Qt)

)
exp(Qt0)

(
I − exp(Qt′)

)
(1Itπ − Q)−2D1 1It.

When t0 tends to infinity, this covariance is negligible, i.e. Cπ(t, t′; t0) =

o(1). The number of observed failures in the two disjoint intervals ]0, t] and

]t + t0, t + t0 + t′] are asymptotically non-correlated with t0.

4. Asymptotic Property in case of Reliability Growth

We turn to the main contribution of this chapter. For software systems, it

can be expected that a phenomenon of reliability growth takes place with

the corrective actions. Thus, we are interested in the behavior of the failure

point process when the failure parameters become small. According to Lit-

tlewood, the point process tends to be an HPP with intensity λ given in (1).

A basic way to represent reliability growth is to introduce the perturbated

failure parameters

εµ(i), εµ(i, j), i, j ∈ M (7)

where ε > 0 is a small parameter. Then, we investigate the convergence of

the failure point process as ε tends to 0.
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First of all, we note that the Poisson approximation provided by Little-

wood cannot hold as it is stated in 14. Indeed, consider, as in 16, the time

to the first failure T1 for the model with the failure parameters in (7). Its

probability distribution cannot be asymptotically exponential with param-

eter λ as ǫ → 0. With the simple model of a Poisson process modulated by

a two-states Markov process, specified by

Q =

(
−1 1

1 −1

)
D

(ε)
1 =

(
µ(1)ε 0

0 µ(2)ε

)
D

(ε)
0 = Q − D

(ε)
1 (µ(1) 6= µ(2))

and a stationary environment X (L(X0) = π = (1/2, 1/2)), we have

lim
ε→0

P{T1 > t} = 1.

This agrees with intuition. But, if we investigate the asymptotic distribution

of T1 at time scale t/ε, then it is easily checked that

lim
ε→0

P
{
T1 > t/ε

}
= exp

(
−πD11I

t t
)
.

Therefore, this suggests to deal with the counting process N (ε) = (N
(ε)
t )t≥0

defined by

t ≥ 0 N
(ε)
t = Nt/ε

where Nt denotes, until the end of the section, the number of failures in the

interval ]0, t] for Littlewood’s model with system (7) of failure parameters.

We heavily use the so-called martingale approach to analyze the count-

ing process N (ε). The corresponding basic results used in this chapter are

reported in Bremaud’s book.3

4.1. Compensator and Stochastic Intensity of the Counting

Process N

Considering the bivariate process Z to analyze the counting process N , al-

lows one to deal with a Markov process with discrete state space. One more

time, we can take advantage of the powerful analytic theory for such a class

of processes. FZ = (FZ
t )t≥0 denotes the internal history of the bivariate

Markov process Z = (N, X). Due to the special structure of generator G of

Z, N may be interpreted as the following counter of specific transitions in

Z

Nt =
∑

(x,y)∈T

Nt(x, y) where T =
{(

(n, i); (n + 1, j)
)
, i, j ∈ M, n ≥ 0

}
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and Nt(x, y) is the number of transitions from state x to state y at time t.

It is well known3 that, for the counting process N(x, y) = (Nt(x, y))t≥0,

Nt(x, y) −

∫ t

0

1{Zs−=x}G(x, y)ds

is a FZ-martingale. We denote the left limit at t of Z by Zt−. The random

functions

λt(x, y) = 1{Zt−=x}G(x, y), At(x, y) =

∫ t

0

λs(x, y)ds

are the FZ-intensity and the FZ-compensator (FZ -dual predictable-

projection) of N(x, y), respectively. Then it is easily seen that (Nt −At)t≥0

where

At =
∑

(x,y)∈T

At(x, y),

is a FZ-martingale. The FZ-intensity of N is

λt =
∑

(x,y)∈T

1{Zt−=x}G(x, y) =
∑

j∈M

D1(Xt−, j)

= ε
(
µ(Xt−) +

∑

j 6=Xt−

Q(Xt−, j)µ(Xt−, j)
)
.

4.2. Convergence to a Poisson Process

The FN(ε),(Xt/ε)t-compensator of N (ε) is from the previous subsection

A
(ε)
t =

∑

i∈M

(
µ(i) +

∑

j 6=i

Q(i, j)µ(i, j)

)
ε

∫ t/ε

0

1{Xs−=i}ds (8)

with intensity λ
(ε)
t = µ(Xt/ε−) +

∑
j 6=Xt/ε−

Q(Xt/ε−, j)µ(Xt/ε−, j). We are

now in position to state the convergence of the Littlewood point process to

a Poisson process as the small parameter ε tends to zero.

Theorem 1: The probability vector π is such that πQ = 0. As ε tends

to 0, the counting process N (ε) converges in distribution to the counting

process (Pt)t≥0 of an HPP with an intensity λ defined by

λ =
∑

i

π(i)

(∑

j 6=i

Q(i, j)µ(i, j) + µ(i)

)
.
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Proof: From the well known time-average properties of the cumulative

process
∫ t

0 f(Xs)ds for an irreducible finite Markov process X , we have

lim
ε→0

ε

t

∫ t/ε

0

1{Xs=i}ds = π(i) a.s.

where π satisfies πQ = 0. Thus, we derive from (8)

lim
ε→0

A
(ε)
t = t

∑

i∈M

π(i)

(
µ(i) +

∑

j 6=i

Q(i, j)µ(i, j)

)
= λ t a.s. .

In particular, this implies the convergence in probability of A
(ε)
t to the

compensator of an HPP with an intensity λ as in (1). The theorem follows

from Th 18.

Remark 2: Littlewood extended his model15 to consider sojourn times

in each module with a general probability distribution. Thus, X was as-

sumed to be an irreducible semi-Markov process. He also identified15 the

asymptotic distribution of its counting process to that of an HPP with the

intensity

λ∗ =
1

νmt

∑

i∈M

ν(i)

(
µ(i)

∑

j

Q∞(i, j)m(i, j) +
∑

j 6=i

Q∞(i, j)µ(i, j)

)

where Q∞ is the transition probability matrix of the jump Markov chain

associated with the semi-Markov process X , ν is such that νQ∞ = Q∞ and

m(i, j) is the mean sojourn time in state i, given that the next state entered

is j. We emphasize that a compensator approach leads to the above limit-

ing Poisson process. Indeed, using the concept of compensator for marked

point processes, it can be shown that the FN(ε),(Xt/ε)t -compensator of the

counting process N (ε) is given by

ε
[ ∫ t/ε

0

µ(Xs−)ds +
∑

i

∑

j 6=i

µ(i, j)At/ε(i, j)
]

where At(i, j) is the compensator of the counting process Nt(i, j) of tran-

sitions from state i to state j for X . For the asymptotic behavior of

the first term, we just need time-average properties of cumulative process∫ t

0 f(Xs)ds for an irreducible finite semi-Markov process X , which are sim-

ilar to those for the Markovian case.13 Using strong laws of large numbers

for the second term, we get the convergence in distribution of N (ε) to an

HPP with the intensity λ∗. Note that Anisimov and Korolyuk1 dealt with

the case of a Poisson process with an intensity governed by an irreducible
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semi-Markov process X . This is the particular case where the FN(ε),(Xt/ε)t-

compensator of N (ε) is given by

ε

∫ t/ε

0

µ(Xs−)ds

(parameters µ(·, ·) are assumed to be 0).

Note that λ in (1) is the scalar product 〈π, D11I
t〉. Moreover, if Y

(ε)
s is

vector
(
1{Xs/ε=i}

)
i∈M

, then the compensator of N (ε) is from (8)

A
(ε)
t =

∫ t

0

〈Y
(ε)
s− , D11I

t〉ds. (9)

4.3. Convergence Rate with Distance in Variation

Let T be any positive scalar. T is a finite subdivision {t0, t1, . . . , tn} of the

interval [0, T ] (0 = t0 < t1 < · · · < tn = T ). To evaluate the proxim-

ity between the respective probability distributions L(N
(ε)
T

) and L(PT) of

N
(ε)
T

= (N
(ε)
t1 , . . . , N

(ε)
tn

) and PT = (Pt1 , . . . , Ptn), we use their distance in

total variation, denoted by dTV

(
L(N

(ε)
T

),L(PT)
)
:

dTV

(
L(N

(ε)
T

),L(PT)
) def

= sup
B⊂Nn

∣∣P{N (ε)
T

∈ B} − P{PT ∈ B}
∣∣.

For a locally bounded variation function f(·), the total variation in the

interval [0, T ] is

Var[0,T ](f)
def
= sup

T∈P([0,T ])

n∑

i=1

∣∣f(ti) − f(ti−1)
∣∣

where P([0, T ]) is the set of all finite subdivisions of the interval [0, T ].

The main result of this subsection is based on the following estimate

Th 3.19

dTV

(
L(N

(ε)
T

),L(PT)
)
≤ E Var[0,T ]

(
Â(ε) − A

)
(10)

where Â(ε), A are the FN(ε)

-compensator of N (ε) and the compensator of

the HPP in Theorem 1, respectively. Â(ε) is from (9) 3

Â
(ε)
t =

∫ t

0

〈Ŷ
(ε)
s− , D11I

t〉ds
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with Ŷ
(ε)
t =

(
P{Xt/ε = i | FN(ε)

t }
)
i∈M

. Therefore, we have from (10)

dTV

(
L(N

(ε)
T

),L(PT)
)
≤ E Var[0,T ]

( ∫ t

0

〈Ŷ
(ε)
s− − π, D11I

t〉ds
)

≤ E

∫ T

0

|〈Ŷ
(ε)
s− − π, D11I

t〉|ds.

Note that |〈Ŷ
(ε)
s −π, D11I

t〉| ≤ δ ‖Ŷ
(ε)
s −π‖1 with δ = maxi∈M

(
(D11I

t)(i)
)
−

mini∈M

(
(D11I

t)(i)
)

and ‖ · ‖1 denotes the l1-norm. Thus, it remains to

estimate the convergence rate of ‖Ŷ
(ε)
s − π‖1 to 0 when ε → 0. The first

step consists in writing a filtering equation for vector Y
(ε)
t (Ch IV3).

Lemma 3: Put Ŷ
(ε)
t = E[Y

(ε)
t | FN(ε)

t ]. We have for all t ≥ 0,

Ŷ
(ε)
t = α +

1

ε

∫ t

0

Ŷ
(ε)
s− Qds +

∫ t

0

v
(ε)
s−(dN (ε)

s − λ̂sds) (11)

where v
(ε)
s− = −Ŷ

(ε)
s− + Ŷ

(ε)
s− D1/λ̂s, λ̂s = 〈Ŷ

(ε)
s− , D11I

t〉 is the FN(ε)

-intensity

of N (ε) and α is the probability distribution of X0.

Proof: The MP X(ε) = (Xt/ε)t≥0 has the generator Q(ε) = Q/ε. It follows

from Dynkin formula that

Y
(ε)
t = Y

(ε)
0 +

1

ε

∫ t

0

Y (ε)
s Qds + Mt (12)

where (Mt)t≥0 is a FX(ε)

-martingale. Then applying (Ch IV, Th 13) to (12),

we get for Ŷ
(ε)
t

Ŷ
(ε)
t = α +

1

ε

∫ t

0

Ŷ (ε)
s Qds + M̂t

where M̂ = (M̂t)t≥0 is a FN(ε)

-martingale. Now, (Ch III, Th 173) gives us

the following representation of the FN(ε)

-martingale M̂

∫ t

0

Gs(dN (ε)
s − λ̂sds)

where (Gs)s≥0 is a FN(ε)

-predictable process, called the innovations pro-

cess. It remains to determine an explicit expression of Gs. This is similar

to the case of a Poisson process governed by a Markov process (see pages
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98,1073) else but X(ε) and N (ε) may have common jumps. So, we omit the

details of the derivation. We have Gs = G1,s − G2,s + G3,s with

G2,s = Ŷ
(ε)
s− and G1,s =

(
Ŷ

(ε)
s− (i)

(
D11I

t
)
(i)

λ̂s

)

i∈M

and G3,s =

(∑
k 6=i Ŷ

(ε)
s− (k)D1(k, i) − Ŷ

(ε)
s− (i)

∑
k 6=i D1(i, k)

λ̂s

)

i∈M

and the gain Gs is of the form reported in Lemma 3.

Equation (11) has the unique solution

Ŷ
(ε)
t = α exp

(
Qt/ε

)
+

∫ t

0

v
(ε)
s− exp

(
Q(t − s)/ε

)
(dN (ε)

s − λ̂sds); (13)

(check, with an integration by parts, that the right hand side term of (13)

is a solution of (11) and verify that the difference of the two terms in (13)

is a solution of a (first order) homogeneous linear differential equation with

initial condition 0).

Theorem 4: Let (Pt)t≥0 be the counting process of an HPP with the

intensity 〈π, D11I
t〉, where π is the probability distribution such that πQ =

0. For any T > 0, there exists a constant CT such that

dTV

(
L(N

(ε)
T

),L(PT)
)
≤ CT ε.

Proof: Since v
(ε)
s−1It = 0, we can write from (13)

‖Ŷ
(ε)
t − π‖1 ≤ ‖α exp

(
Qt/ε

)
− π‖1

+

∥∥∥∥
∫ t

0

v
(ε)
s−

[
exp

(
Q(t − s)/ε

)
− 1Itπ

]
(dN (ε)

s − λ̂sds)

∥∥∥∥
1

.

Since Q is irreducible, we have the well known exponential estimate:

t ≥ 0, ‖ exp
(
Qt
)
− 1Itπ‖1 ≤ C exp(−ρt) (14)

where ρ is positive and only depends on matrix Q.

In a first step, it follows from (14)

∫ T

0

‖α exp
(
Qt/ε

)
− π‖1dt ≤ C1 ε.
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In a second step, we have

E

∥∥∥∥
∫ t

0

v
(ε)
s−

[
exp

(
Q(t − s)/ε

)
− 1Itπ

]
(dN (ε)

s − λ̂sds)

∥∥∥∥
1

≤ 2E

∫ t

0

∥∥v(ε)
s−

[
exp

(
Q(t − s)/ε

)
− 1Itπ

] ∥∥
1
λ̂sds

since λ̂s is the FN(ε)

-intensity of N (ε) and v
(ε)
s− is FN(ε)

-predictable. Note

that ‖v
(ε)
s−‖1 λ̂s is uniformly bounded in ε, t. Moreover, using the exponential

estimate (14) for ‖ exp
(
Q(t − s)/ε

)
− 1Itπ‖1, we derive that, for all t ≥ 0,

E

∫ t

0

∥∥v(ε)
s−

[
exp

(
Q(t − s)/ε

)
− 1Itπ

] ∥∥
1
λ̂sds ≤ C2 t ε.

We deduce from the previous estimate (and Fubini’s theorem) that

E

∫ T

0

∥∥∥∥
∫ t

0

v
(ε)
s−

[
exp

(
Q(t − s)/ε − 1Itπ

]
(dN (ε)

s − λ̂sds)

∥∥∥∥
1

dt ≤ C2,T ε.

Remark 5: With respect to Theorem 1, note that Th 18 would give the

convergence in distribution of the counting process N (ε) to that of a Pois-

son process in the space of all counting processes, equipped with the Sko-

rokhod topology. Moreover, convergence in variation also takes place in this

space. Indeed, the distance in total variation over interval [0, T ] between

the distributions of N (ε) and P = (Pt)t≥0 is also bounded from above by

E Var[0,T ](Â
(ε) − A) (Th 4.19). Thus, it follows from Theorem 4 that the

rate of convergence is in ε.

Remark 6: The order of the convergence rate in Theorem 4 cannot be

improved in general. This follows from (Section 5, Example 1)5, where the

authors report a lower bound for the distance in variation, that has order

1 in ε for a Poisson process modulated by a 2-states Markov process. We

refer the reader to 5 for details.

5. Conclusion

In this chapter, we report some asymptotic properties of the well known

Littlewood reliability model for modular softwares. Firstly, we deal with the

stationary version of the failure point process, which is a classic concept in

point process theory. Secondly, we prove a Poisson approximation for the

point process when reliability growth takes place. This fact is reported in
14 but without proof (see15 in the semi-Markov context). We also provide
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a convergence rate for the convergence of the point process to its Poisson

limit.

All these results may be extended to a more general setting. For in-

stance, Theorems 1 and 4 have their counterpart6 for a general architecture-

based reliability model proposed by Ledoux.11 The purpose of this work was

to take into account the way the failures may affect the execution process.

We can also consider that failures can occur in batch. In such a case, using

the martingale approach for marked point process, we get different approx-

imating processes depending on the assumptions made on the batch size

distributions. In the usual case of independent and identically distributed

variables, we obtain a Compound Poisson process. This supports the use of

software reliability models as considered by Sahninoglu21, when clumping

of failures exists. Rate of convergence may also be provided. Details will be

reported elsewhere.
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