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Abstract

We consider a Markovian model, proposed by Littlewood, to assess the reliability of a modular
software. Specifically, we analyze the failure point process corresponding to, when reliability
growth takes place. We prove the convergence in distribution of the point process to a Poisson
process. Moreover, we provide a convergence rate using distance in variation. This is heavily
based on a similar result of Kabanov, Liptser and Shiryaev, for a doubly-stochastic Poisson
process whose intensity is driven by a Markov chain.

1 Littlewood model

Littlewood proposed in (Littlewood 1975) a Markov-type model for reliability assessment of a modular

software. Basically, for a software with a finite number of modules :

• the structure of the software is represented by a finite continuous time Markov chain X = (Xt)t≥0
where Xt is the active module at time t;

• when module i is active, failures times are part of a homogeneous Poisson Process (HPP) with

intensity µ(i);

• when control switches from module i to module j a failure may happen with probability µ(i, j);

• when any failure appears, it does not affect the software because the execution is assumed to be

restarted instantaneously.

An important issue in reliability theory, specifically for software systems, is what happens when the

failure parameters tend to be smaller and smaller. Littlewood stated in (Littlewood 1975)

As all failure parameters µ(i),µ(i, j) tend to zero, the failure process described above

is asymptotically a HPP with intensity

λ =
∑

i

π(i)
[∑

j

Q(i, j)µ(i, j) + µ(i)
]

(1)

where Q = (Q(i, j)) and π are the generator (assumed to be irreducible) and the stationary distribution

of X , respectively. This statement is well-known in the community of software reliability and has widely

supported the hierarchical approach for modeling modular software (see e.g. (Goseva-Popstojanova and

Trivedi 2001) for details). However, to the best of our knowledge, no proof of this fact is reported in the

applied probability literature. The aim of this note is to provide precise statements for the asymptotic

of the failure point process.

Let us denote the number of failures in interval ]0, t] by Nt ((N(0) = 0)). Considering the bivariate

process Z = (Nt, Xt)t≥0 is very appealing from a mathematical and computational point of view. This

is a jump Markov process over state space S = N×M. M denotes the finite set of modules {1, . . . ,M}.



The infinitesimal generator of this Markov process is

G =




D0 D1 0 · · ·

0 D0 D1
. . .

...
. . .

. . .
. . .




using a lexicographic order on state space S. Matrices D0 and D1 are defined by

D0(i, j) =

{
Q(i, j)(1− µ(i, j)) if i 6= j,

−
∑
j 6=iQ(i, j)− µ(i) if i = j,

D1(i, j) =

{
Q(i, j)µ(i, j) if i 6= j,

µ(i) if i = j.

Note that Q = D0 + D1. We refer to (Ledoux and Rubino 1997) for computational issue of various

reliability metrics using the bivariate process Z.

FN ,FZ denote the internal histories of the counting process N = (Nt)t≥0 and the bivariate Markov

process Z = (N,X), respectively. Due to the special structure of the generator G of Z, N may be

interpreted as the following counter of specific transitions of Z

Nt =
∑

(x,y)∈T

∑

0<s≤t

1{Zs−=x,Zs=y} =
∑

(x,y)∈T

Nt(x, y).

where T =
{
((n, i); (n + 1, j)), i, j ∈ M, n ≥ 0

}
. It is well-known (see e.g. (Bremaud 1981)) that

(Nt(x, y) −
∫ t
0
1{Zs−=x}G(x, y)ds)t≥0 is a F

Z martingale. Then it follows that (Nt − At)t≥0 is a F
Z -

martingale, where

At =

∫ t

0

∑

j∈M

D1(Xs−, j)ds =
∑

i∈M

[
µ(i) +

∑

j 6=i

Q(i, j)µ(i, j)
] ∫ t

0

1{Xs−=i}ds. (2)

Process A = (At)t≥0 is called the F
Z -compensator of the counting process N .

2 Convergence to a Poisson process

A basic way to represent reliability growth is to introduce perturbated failure parameters

εµ(i), εµ(i, j), i, j ∈M

where ε > 0 is a small parameter. Then we investigate convergence of the failure point process as ε

tends to 0. First of all, we have to consider the counting process of the perturbated point process at

time scale t/ε. That is, we investigate the convergence of the process N (ε) defined by N
(ε)
t = N t

ε
. Its

FN
(ε),X -compensator is from (2)

A
(ε)
t =

∑

i∈M

[
µ(i) +

∑

j 6=i

Q(i, j)µ(i, j)
]
ε

∫ t/ε

0

1{Xs−=i}ds. (3)

From the well-known time-average properties of cumulative process
∫ t
0
f(Xs)ds for an irreducible Markov

process X, we have (ε/t)
∫ t/ε
0
1{Xs=i}ds converges a.s. to π(i) where π satisfies πQ = 0. Thus, we derive

that

A
(ε)
t

a.s.
−→
ε→0
t
∑

i∈M

π(i)
[
µ(i) +

∑

j 6=i

Q(i, j)µ(i, j)
]
.

In particular, this implies the convergence in probability of A
(ε)
t to the compensator of a HPP with

intensity λ as in (1). The next theorem follows from (Kabanov, Liptser, and Shiryayev 1980, Th 1)



Theorem 1 Probability vector π is such that πQ = 0. As ε tends to 0, the counting process N (ε) =
(
Nt/ε
)

converges in distribution to the counting process P = (Pt)t≥0 of a HPP with intensity λ defined by (1)

Note that λ in (1) is the scalar product 〈π,D11I
t〉, where 1It is theM -dimensional column vector whose

all entries are 1. Moreover, if Y
(ε)
s is vector

(
1{Xs/ε=i}

)
i∈M
, the compensator of N (ε) is from (3)

A
(ε)
t =

∫ t

0

〈Y
(ε)
s− ,D11I

t〉ds. (4)

3 Convergence rate with distance in variation

Let T be any positive scalar. T is a finite subdivision {t0, t1, . . . , tn} of interval [0, T ] (0 = t0 <

t1 < · · · < tn = T ). To evaluate proximity between the respective distributions L(N
(ε)
T
) and L(PT)

of N
(ε)
T
= (N

(ε)
t1 , . . . , N

(ε)
tn ) and PT = (Pt1 , . . . , Ptn), we use their distance in total variation, denoted by

dTV
(
L(N

(ε)
T
),L(PT)

)
, that is

dTV
(
L(N

(ε)
T
),L(PT)

) def
= sup

B⊂Nn

∣∣∣P{N (ε)
T
∈ B} − P{PT ∈ B}

∣∣∣

For a locally bounded variation function t→ f(t), the total variation in the interval [0, T ] is

Var[0,T ](f)
def
= sup
T∈P([0,T ])

n∑

i=1

|f(ti)− f(ti−1)|

where P([0, T ]) is the set of all the finite subdivisions of the interval [0, T ].

The main result is based on the following estimate (Kabanov, Liptser, and Shiryayev 1983, Th 3.1)

dTV
(
L(N

(ε)
T
),L(PT)

)
≤ E Var[0,T ](Â

(ε) − A). (5)

where Â(ε) and A are the FN
(ε)

-compensator of N (ε) and the compensator of the HPP in Theorem 1,

respectively. Â(ε) is from (4) (Bremaud 1981)

Â
(ε)
t =

∫ t

0

〈Ŷ
(ε)
s− , D11I

t〉ds

with Ŷ
(ε)
t =

(
P{Xt/ε = i | F

N (ε)

t }
)
i∈M
. Therefore, we have from (5)

dTV
(
L(N

(ε)
T
),L(PT)

)
≤ E

∫ T

0

|〈Ŷ
(ε)
s− − π,D11I

t〉|ds.

Note that |〈Ŷ
(ε)
s −π,D11I

t〉| ≤ δ ‖Ŷ
(ε)
s −π‖1 with δ = max

(
(D11I

t)(i)
)
−min

(
(D11I

t)(i)
)
and ‖·‖1 denotes

the l1-norm. So that, it remains to estimate the convergence rate of ‖Ŷ
(ε)
s − π‖1 to 0 when ε → 0. The

first step consists in writing a filtering equation for vector Y
(ε)
t (Bremaud 1981, Ch IV).

Lemma 1 Define Ŷ
(ε)
t = E[Y

(ε)
t | FN

(ε)

t ]. We have for all t ≥ 0

Ŷ
(ε)
t = α+

1

ε

∫ t

0

Ŷ
(ε)
s− Qds+

∫ t

0

v
(ε)
s−(dN

(ε)
s − λ̂sds) (6)

where v
(ε)
s− =

Ŷ
(ε)
s− D1

λ̂s
− Ŷ

(ε)
s− and λ̂s = 〈Ŷ

(ε)
s− ,D11I

t〉 is the FN
(ε)

-intensity of N (ε).



Equation (6) has the unique solution

Ŷ
(ε)
t = α exp

(
Qt/ε

)
+

∫ t

0

v
(ε)
s− exp

(
Q(t− s)/ε

)
(dN (ε)s − λ̂sds); (7)

Theorem 2 P = (Pt) is the counting process of a HPP with intensity 〈π,D11I
t〉 where π is the probability

distribution such that πQ = 0. For any T > 0, there exists a constant CT such that

dTV
(
L(N

(ε)
T
),L(PT)

)
≤ CT ε.

Proof. Since v
(ε)
s−1I

t = 0, we can write from (7)

‖Ŷ
(ε)
t − π‖1 ≤ ‖α exp

(
Qt/ε

)
− π‖1 +

∥∥∥∥
∫ t

0

v
(ε)
s−

[
exp
(
Q(t− s)/ε

)
− 1Itπ

]
(dN (ε)s − λ̂sds)

∥∥∥∥
1

.

Since Q is irreducible, we have the well-known exponential estimate: for all t ≥ 0

‖ exp
(
Qt
)
− 1Itπ‖1 ≤ C exp(−ρt) (8)

where ρ is positive and only depends on matrix Q.

In a first step, we get from (8)
∫ T

0

‖α exp
(
Qt/ε

)
− π‖1dt ≤ C1,T ε.

In a second step, we have

E

∥∥∥∥
∫ t

0

v
(ε)
s−

[
exp
(
Q(t− s)/ε

)
− 1Itπ

]
(dN (ε)s − λ̂sds)

∥∥∥∥
1

≤ 2E

∫ t

0

∥∥v(ε)s−
[
exp
(
Q(t− s)/ε

)
− 1Itπ

] ∥∥
1
λ̂sds

since λ̂s is the F
N(ε)-intensity of N (ε) and v

(ε)
s− is F

N(ε) predictable. Note that ‖v
(ε)
s−‖1 λ̂s is uniformly

bounded in ε, t. Moreover, using exponential estimate (8) for ‖ exp
(
Q(t− s)/ε

)
− 1Itπ‖1, we derive that,

for all t ≥ 0

E

∫ t

0

∥∥v(ε)s−
[
exp
(
Q(t− s)/ε

)
− 1Itπ

] ∥∥
1
λ̂sds ≤ C2tε.

We deduce from the previous estimate (and Fubini’s theorem) that
∫ T

0

E

∥∥∥∥
∫ t

0

v
(ε)
s− exp

(
Q∗(t− s)/ε− 1Itπ

)
(dN (ε)s − λ̂sds)

∥∥∥∥
1

dt ≤ C2,T ε.
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