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aMaia Eolis, Tour de Lille, Boulevard de Turin, Lille, 59000, France
bFEMTO-ST, ENSMM, rue de l’Epitaphe, Besancon, F-25000, France.

cLaMCoS, INSA-Lyon, University of Lyon, 18 rue des Sciences, Villeurbanne, F-69621, France
dLVA, INSA-Lyon, University of Lyon, 25 bis avenue Jean Capelle, Villeurbanne, F-69621, France

Abstract
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Nomenclature

IAS Instantaneous Angular Speed
Fc Zero crossing detection clock speed

Tc = 1/Fc Time separating two counter pulses
R Resolution of the encoder, number of encoder segments
N Length of the measurement (number of points)
fθ Cyclic frequency (rad−1)
θi Encoder segments angular position (starting from θ0 at the beginning of the measurement)

∆θ = 2π/R Angular increment between two segments of the encoder
ti = t(θi) Actual time for the ith segment
τi = τ(θi) Actual time difference between the segments respectively labelled i and i−1
ωi = ω(θi) Actual IAS at the exact position θi

ω̄(θ) Actual IAS issued from moving average along ∆θ : virtual signal to be sampled by E.T. measurement
t̂i, τ̂i, ω̂i Measured time, measured time difference and measured angular speed
X(θ ,ξ ) Corresponds to a set of sequence of the discrete variable θ , the set being indexed by the variable ξ

A random signal is a bivariate quantity, depending both on the angular position θ and the trial ξ

X(θ ,ξi) = Xi(θ) Random process realisation obtained once the trial is fixed (ie ξ = ξi).
X(θi,ξ ) = Xi Random process reduced to a simple random variable once the variable θ is fixed

X̃( fθ ) Discrete Fourier Transform of realisation Xξ (θ) normalized by the length of the realisation
DXX ( fθ ) Power spectral density of random signal X at cyclic frequency fθ

d e Rounding to the highest integer value
x∗ Complex conjugate

Introduction

In the last twenty years, Instantaneous Angular Speed (IAS) has been prospected for different purposes and by dif-
ferent means. The spectral observation of the IAS signal has been revealed as an effective tool for engine combustion
related diagnosis [1] and recently appeared as a promising tool for bearing heath monitoring, the running conditions
being stationary or not [2]. Yuhua et al. reviewed angular speed measurement methods by categorizing them into
two broad groups: timer/counter-based methods and ADC-based methods. It will be shown in this paper that this
categorization could rather be made between the system counting the number of pulses in a given time duration and
those measuring the Elapsed Time for a single cycle of encoder signal [3]. This simplification therefore distinguishes
the speed measurement systems sampling data in the time domain from those sampling data in the angular domain.
The latter is the only concerned with the results obtained in the present paper. Angular signals are especially suited to
deal with non stationary rotating mechanism and IAS based monitoring is even more attracting since it is remarkably
easy to obtain through these techniques [4].

As far as the authors know, there is no way to analogically filter an angular domain IAS signal; this makes it prone
to aliasing, a phenomenon that has not been detailed yet regarding this technique, the only proposed answer being to
increase the angular sensor resolution to the highest possible value [5]. This solution may yield a counter productive
effect over the signal spectral observation since other sources of perturbation could depend on the sensor resolution
in a negative way. In this regard, Youssef et al. brought a visual description of the spectral noise of the IAS obtained
through an angular domain observation, distinguishing the discrete error coming from the angular sensor irregularities
and the large band perturbation induced by the derivation phenomenon [6]. Nevertheless, the relation between the
system parameters and the signal-to-noise ratio has not been studied and this ignorance appears as a major drawback
for this attractive technique, especially since the observed IAS amplitude of variation have appeared alarmingly weak.

This paper proposes an other step towards the determination of the overall precision of the IAS obtained through
the Elapsed Time technique. Once the measurement methods have been described, the existence of aliasing and its
influence is theoretically presented. This first step aims at understanding the relation between the actual IAS variations
and those, possibly aliased, observed on its spectral observation. Subsequently, the quantization phenomenon is
tackled: the case of stationary speed is shown to lead to inevitable perturbations which take the shape of spectral ghost
components. The theory of non stationary speed condition is eventually addressed with a statistical approach. The
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results are finally validated numerically and experimentally on an automotive gear-box test rig. Amongst the practical
and beneficial results, the speed variations experienced by the mechanical system along with the quantization process
will now be understood as valuable for the monitoring process.

1. Instantaneous Angular Speed monitoring system

1.1. Angular speed sensor
IAS can be obtained from several methods. All of them are based on the observation of a rotating system through

a sensor able to convert the angular position into an electrical signal. Most of these sensors are optical encoders, mag-
netic pick-ups and hall effect tooth wheels [7]. If optical sensors are known to reach higher resolution and precision,
the other two can often be set in more extreme conditions. Typically, optical encoders are of common use to precisely
synchronise asynchronous generator converter with the rotor speed while phonic wheels are used to warn the operator
in the extreme case of a mechanical coupling breakdown. Other measurements are done with costly laser vibrometers
[8], low resolution resistive potentiometric sensor [9] or resolver whose precision and magnetic sensibility decrease
as soon as the resolution increase [10].

The terminology angular sensor is of use in this article to associate every elements able to convert an angular
position into an electrical signal with the results presented hereafter. The signal conditioning applied on these angular
sensor includes several common steps, resumed in Fig. 1, possibly ameliorated by an interpolation process to yield a
square signal whose resolution is higher than the physical one, as mentioned in [11].

Amplifier Filter ComparatorAngular sensor

v (t)v (t) v (t) v (t)

tt tt

f

∣ vs

ve∣

Figure 1: Conditioning process of an angular sensor.

Although the result quality may depend on the selected sensor type, it is important to notice that this technological
choice is almost independent of the method chosen to compute the instantaneous angular speed.

1.2. IAS Computation methods
According to the acquisition system available to acquire the electrical signal coming from the angular sensor,

several methods have been developed to estimate the IAS. In [3], Li et al. give an exhaustive list of these methods that
could be sorted in another relevant manner, aiming at distinguishing those able to deal with non stationary conditions.

1.2.1. Time dependant methods
This group of methods represents all those aiming at sampling the speed signal in the time domain. The intuitive

frequency meter technique measures the angle displacement of the monitored shaft during a steady period of time
counting the number of angular signal pulses obtained from the angular sensor. More efficiently, the IAS can be
estimated along with the instantaneous frequency of the time sampled angular sensor signal. This method relies on
the use of tools dedicated to the analysis of frequency modulated signal, such as the phase and amplitude envelope
demodulation [12]. Although this method is easy to implement, it is limited by the following drawbacks:
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• the carrier frequency must be stable enough not to out-range the bandwidth of the filter used to demodulate the
angular sensor signal. This method is dedicated to mechanisms whose speed trend is stationary.

• The filter used to extract the carrier frequency must be correctly chosen and parametrized. Although the Gaus-
sian window has been shown to yield the best results for the peculiar application described in [13], its width is
still difficult to tune since it has a direct influence over the signal to noise ratio.

• If IAS is used to monitor cyclic components running at varying speed conditions, the signal must be re-sampled
in the angular domain before the mechanical elements can be monitored along their respective characteristic
frequencies.

The time dependant methods present clear weaknesses when applied on non stationary mechanisms, although the
authors are aware that their relevance is not to be proven in the more common case of steady speed machinery. This
section introduces the need to work with the Elapsed Time method, since it is intrinsically carried in the angle domain.

1.2.2. Angle dependant methods
On the opposite, the angle dependant methods stand for all those aiming at sampling the speed signal in the angle

domain. From a general point of view, angular speed in the angular domain can be expressed as follows:

ω(θ) =
dθ

dt
(θ). (1)

This is practically achieved through the measurement of the Elapsed Time τ(θ) between two consecutive rising
edges issued from the angular sensor describing the angle ∆θ .

ω̄(θ) =
∆θ

τ(θ)
. (2)

In a first embodiment, illustrated in Fig. 2 the rising edges can be located on a classical ADC acquisition board,
through the use of zero crossing techniques. This method is peculiarly adapted to computing IAS from angular sensor
delivering sinus shape signals [14]. In a second embodiment, illustrated in Fig. 3, where the encoder signal feeds a
digital acquisition board and directly manages a high frequency counter, the signal can be processed by counting rates
from megahertz to gigahertz. This method will be of use in the rest of the paper.

i

s[i]

i+1

s[i+1]

θ jθ j−2

θ j+1
θ j θ j+2

θ j+1 θ j+3i
i+1

s[i]

s[i+1]

(a) (b)

θ j−1

Figure 2: Schematic example of signal edges detection using an ADC acquisition board applyed on: (a) sinus shape signal, (b) square signal.

Whether the angular sensor is considered to deliver a digital or an analogical signal, the rotating speed is always
estimated for each rising edge of the encoder signal with respect to Eq. (3),

ω̄i =
2π

R · τi
, ω̂i =

2π

R · τ̂i
, (3)

where R is the resolution of the encoder and τi is the time difference between the ith and the (i−1)th segment delivered
by the tachometer which, disregarding geometrical errors in the tachometer gratings, exactly correlates with the IAS
of the shaft carrying the sensor.
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Figure 3: Instantaneous Angular Speed measurement with the Elapsed Time method. (a) square voltage from the tachometer. (b) High frequency
clock pulses. (c) IAS estimation.

Besides, it must be understood that all the traditional habits linked to classical work in the spectral domain must be
revised since the signal is not sampled in the time domain but in the angular one. The angular sampling nature of the
measurement allows the small speed variations induced by a fault to be steadily correlated to the IAS measurement,
the global speed of the mechanism being stationary or not. The IAS Fourier transform is the distribution of the IAS
variations along the cyclic frequency axis. The sampling cyclic frequency is ruled by the encoder resolution rather
than the counting/sampling frequency of the acquisition board.

Then, regarding Eq. (3) and Fig. 2, two specificities of the Elapsed Time measurement can be emphasized: the
measured IAS is an averaged one according to time difference on angular increments, and the time difference is a
discrete value limited by counter clock frequency. Next sections detail how the IAS spectrum is affected by this two
specificities, especially the filtering effect due to average and the quantization effect due to counter clock frequency.

2. Filtering effect due to Elapsed Time measurement

2.1. Filtering effect

According to Eq. (2), the measured IAS is an averaged value of the actual IAS, i.e. the latter will be low-pass
filtered by the measurement. The aim of this part is to demonstrate exactly the shape of this filtering effect. The
hypothesis is made that IAS is quite constant, so as to develop first order approximations. Equations related to this
hypothesis are:

ω(θ) = ω0 +δω(θ), (4)

with: ∣∣∣∣δω(θ)

ω0

∣∣∣∣<< 1 ∀θ . (5)

Considering this hypothesis, the first-order approximated spectrum of the estimated IAS can be simply expressed as
the following equation, as demonstrate in Appendix A:

Ω̄( fθ ) = Ω( fθ ) · e− jπ fθ ∆θ · sincπ( fθ ∆θ). (6)

As a conclusion, it can be observed that, for an angular speed with small variations, the Elapsed Time technique
creates a low-pass filter with a sincπ shape based on ∆θ resolution of the encoder.
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2.2. Aliasing consideration and numerical validations

To the authors knowledge, there is yet no solution to analogically filter the IAS signal before the sampling process.
Previous part shows that the Elapsed Time technique provides low-pass filter effect, which can be used to correctly
design the experimental set-up and limit aliasing.

Considering the case of an angular sampled IAS obtained with Elapsed Time technique, the spectrum of the
measured IAS corresponds to Eq. (7). It is noted that angular sensor resolution ∆θ drives both filter and aliasing.

Ω̂( fθ ) = Ω( fθ ) · e− jπ fθ ∆θ · sincπ( fθ ∆θ)∗δ 1
∆θ

( fθ ). (7)

To illustrate Elapsed Time technique effect under angular sampling conditions, numerical simulations of IAS are
defined as follows:

ω = ω0 +0.5 ·
2.R/9

∑
k=1

sin(3kθ), (8)

with R = 256pulses/rev, the encoder resolution, and ω0 that can be set to 200, 100, 50.
The numerical IAS and the corresponding (simulated) measured signal for ω0 = 200 can be observed in the

angular domain in Fig. 4. It is noted that the IAS variation amplitude is of about 60 (|δω < 30|). The small variation
assumption is variously verified for the IAS as |δω/ω0| varies from 15% to 55%.
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Figure 4: Effect of measurement of angular speed on signal spectrum.

Spectra of the simulated true and measured IAS are presented in Fig. 5. The cardinal sine shape attenuation is
observed for all the measured signals. When the mean value of angular speed is of the same order of magnitude as the
angular speed variation, spectral values are a bit higher than expected, but the cardinal shape is globally respected.

Aliasing is also clearly present, as a second cardinal sine envelope centred on sampling frequency is observed.
Consequently, the spectrum of the measured IAS may provide a good picture of the true IAS spectrum at low fre-
quency, but it appears that peaks near Nyquist frequency will be of the same amplitude, whatever they are from direct
part or aliasing part.

If the frequency content of the IAS is neither known nor expected, the best approach to analyse IAS spectrum is
to consider the first quarter spectrum (cyclic frequencies lower than 1/(4.∆θ)), for which aliased peak amplitudes are
14 dB less compared to direct part of the spectrum. Resolution of the angular encoder can also be choose as four times
the higher frequency expected.

However, when the resolution of the sensor cannot be increased to such a level, it is now possible to rectify the
observed IAS variation amplitude corresponding to any cyclic phenomenon as soon as the original cyclic frequency
(i.e. before aliasing) is known. This might be of extreme help with the use of low resolution encoder such as classical
tooth wheel inductive sensor.

6



0 32 64 96 128 160 192 224 256
0

0.05

0.1

0.15

0.2

0.25

Cyclic frequency (rev−1)

|F
F

T
| (

rp
m

)

 

 

� ���� ������� ����
	������ ���� �����

Figure 5: Numerical validation of cardinal sine shape attenuation in amplitude spectrum for different mean speed values.

2.3. Experimental considerations

2.3.1. Presentation of the test rig
The test bench dedicated to this study can be observed in Fig. 6. It is made up of an automotive gearbox, driven

by an electrical motor mounted in an open loop design allowing generation of an acyclic excitation as well as a
speed ramp. The gearbox is loaded by means of an electrical generator which is torque monitored. Most of torsional
vibrations induced by the generator are mechanically filtered with a torsion rod surrounded by two inertia wheels.
Revolution speed of the whole kinematic chain can be controlled over a large range of operating conditions. The
gearbox presents two reduction stage. The first reduction stage with four different gear ratios is set to a 27/31 gear
ratio, using the 3rd gear. The second stage is fixed and loaded with a 15/64 gear ratio.

R1   Defective bearing
CM1 Input Shaft Torque Meter
CM2  Output Shaft Torque Meter
C1 Optical Encoder

Gear Box

Electrical Engine
Torsional 

Filter

Generator

27
31

15
64

C1

CM2

CM1
R1

Figure 6: Kinematic scheme of the automotive test rig.

The gearbox is equipped with different transducers on the three shafts as shown in Fig. 6. Two torqueme-
ters/tachometers are located around the gearbox to serve the command feedback loop. One optical encoder offering
through shaft design is mounted on the transmission input shaft and delivers 2048 pulses per revolution through a
regular TTL signal. The FPGA based acquisition system can read the digital input with a rate up to 120 MHz and can
artificially reduce the resolution of the encoder.

The typical experimental test is a run up from 200 to 1000 rpm, as shown in Fig. 7. For the validation of filter
effect and aliasing results, the signal with the best precision is used: resolution of 2048 ppr and counting frequency of
120 MHz. Based on this latter, low resolution encoders are simulated to observe the effect of aliasing on gear mesh
frequency peaks, with the aim to restore the correct amplitude of the monitored peaks. Signals corresponding to low
resolution encoder are obtained by cumulating many consecutive τi.
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Figure 7: Running speed conditions).

2.3.2. Experimental validations of Elapsed Time filter effect under angular sampling
The spectrum of the full resolution signal (R=2048 ppr, Fc=120 MHz) can be observed in Fig. 8. It is considered as

the true one in the observed zone, since values of the direct cardinal sine are about one, values of the aliased cardinal
sine are very low and the signal may provide no harmonic at very high frequencies (2000 events per revolution). The
two first main peaks at 13.065 rev−1 and 27 rev−1 correspond to gear mesh frequencies of second stage (15 teeth gear)
and first stage (27 teeth gear) respectively, observed through C1 optical encoder. These peaks will be tracked through
filtering and aliasing effect, with the reduction of encoder resolution.
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Figure 8: Spectral contents of the experimental test signal.

Amplitude spectrum of the measurement simulated with 8 points per revolution is plotted in Fig. 9, in comparison
with true spectrum. In that case, gear mesh frequencies occur at 2.935 rev−1 (second stage) and 3 rev−1 (first stage),
and their amplitudes become very small. Theoretical formula (cardinal sine shape, Eq. (7)) is used to find the original
amplitude for different simulated resolution. Results can be analysed in table 2.3.2.

It comes that for the second stage, the amplitude of gear mesh frequency is corrected with a very high precision
(error lower than 2%). Nevertheless for the first stage, the error in the corrected values raises over 40% as soon
as the peak aliased. Indeed, as the encoder is mounted on the 27 teeth gear shaft, the peak will always aliased on a
harmonic of the rotation, whose amplitude is not negligible: Ω̂(5) and Ω̂(3) respectively are quite equivalent whatever
a mesh frequency aliased (R=32 and R=8 respectively) or not (R=2048). In the particular case of the Fig. 9, it can
be seen that a peak exists at cyclic frequency 3 rev−1, that will mix with the aliased peak of 27. Moreover, the peak
at cyclic frequency 5 rev−1 will also aliased on cyclic frequency 3 rev−1. It can be conclude that the estimation
of true amplitude of peculiar harmonic with low resolution encoder is possible only if it aliases on a free cyclic
frequency. Mesh frequencies that don’t concern encoder shaft and bearing frequencies are part of these peaks that can
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Figure 9: Experimental validation of aliased shape spectrum.

be estimated.

Resolution 2048 128 64 32 16 8
sinc[13.065;R] 1 0.983 0.933 0.748 0.213 0.178

Ω̂(13.065) 0.292 0.287 0.272 0.219 - -
Ω̂(2.935) 0 0 0 0 0.0621 0.0512

Ωest.(13.065) 0.292 0.292 0.292 0.293 0.292 0.288
error 0 0 0 0.3% 0 1.4%

sinc[27;R] 1 0.928 0.732 0.178 0.157 0.087
Ω̂(27) 0.491 0.457 0.355 - - -
Ω̂(5) 0.081 0.081 0.080 0.123 0.117 -
Ω̂(3) 0.061 0.061 0.061 0.066 0.060 0.0629

Ωest.(27) 0.491 0.492 0.485 0.691 0.745 0.723
error 0 0.2% 1.2% 40% 52% 47%

Table 1: Estimation of the actual amplitude of gear mesh frequency peaks with low resolution encoder. Cardinal sine are used to find the original
value before attenuation. If the signal aliased, value is read at the aliased position.

To resume, the Elapsed Time measurement works as a low-pass filter based on sincπ shape and encoder resolution.
Thus, a correction is possible to restore the correct amplitude of peculiar peaks if spectral content is known. If the
tracked peak aliased, it mustn’t superpose with a low frequency peak if the correction is expected. Low resolution
encoder can thus be used for monitoring bearing and gears that doesn’t belong to shaft encoder (non-integer ratio from
the encoder point of view).

These results about Elapsed Time technique concern the global behaviour of the measurement, thanks to time lap
estimation between two successive angular positions of the encoder. This time increment was considered as the exact
value, but it is experimentally estimated through countering high frequency clock. The aim of next part is to quantify
the effect of the precision of time increment estimation on the measured signal.

3. Quantization precision

The estimation of the time separating two consecutive rising edges is rounded accordingly to the counting fre-
quency and introduces a quantization error. In other words, this phenomenon is induced by the error made during the
measurement of an instant through the use of a counter. It is very unlikely that the impulses delivered by the counter
are perfectly synchronised with those delivered by the angular sensor. Enlightened in Fig. 3, τ̂(θi)−τ(θi) gathers the
delays taken by the counter to observe the rising edge of two consecutive angular sensor impulses. This difference is
what the authors call the quantization error.
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The instantaneous angular speed monitoring is based on the spectral observation of the speed signal. The aim of
this part is therefore to understand the influence of this phenomenon over the speed signal once it has been transformed
in the spectral domain. In a first approach, the IAS is considered constant. Although the chance to deal with such
conditions are very low in reality, this case aims at introducing the statistical approach which is used in a second step.

3.1. Stationary system

In order to dress properties on the quantization phenomenon when the IAS is constant, two different cases are to
be distinguished:

• an integer number of clock tops exactly separates two consecutive segment of the encoder,

• a rational and non integer number of clock tops exactly separates two consecutive segments.

The third case where the number of clock ticks separating two consecutive segments is neither integer nor rational is
not considered. This last option does not seem of any interest since the two first cases are already very unlikely to
happen in real world.

3.1.1. Integer number of clock tops
By assumption that a whole number of clock tops exactly separates two consecutive encoder segments, it comes:

τ = p ·Tc, (9)

where p is a positive integer. Thus, the real time between the ith rising edge and the beginning of the acquisition start
depends on t0 = t(θ0), the time between the first rising edge and the counter start. There exist p ∈ N and t0 an integer
between 0 and p ·T c such as:

∀i ∈ [|1,n|] , ti = i · p ·Tc + t0. (10)

The quantization phenomenon is introduced with the use of the ceiling function dxe, which rounds x to the next integer.
The time separating the ith rising edge and the counter start is equal to:

t̂i =
⌈

i · pTc + t0
Tc

⌉
Tc = i · p ·Tc +

⌈
t0
Tc

⌉
·Tc. (11)

As illustrated in Fig. 3, the measured time τ̂i corresponding to every segment θi is obtained from finite difference of
the consecutive rising time t̂i−1 and t̂i. From the previous equations, it finally comes:

τ̂i = p ·Tc = τi. (12)

The equality τ̂i = τi is then verified and will be preserved by the Fourier Transform. In this very unlikely case, the
spectral observation of the IAS is not affected by the quantization approximation.

3.1.2. Rational number of clock tops
Assuming that a rational and non integer number of clock ticks exactly separates two consecutive segments, it

comes:
∃p,q ∈ N2/τi =

p
q
·Tc, (13)

with p and q coprimes. In this case, the quantization perturbation is shown in Appendix B.1 to be non zero and
periodic of period q. The quantization phenomenon is therefore enlightened on the spectral observation of the IAS
through, at least, the set of harmonic whose fundamental frequency equals R/q events per revolutions. It is clear that
this proof does not mean this angle-periodic perturbation is the only one induced by the quantization phenomenon.
One of them is enhanced, maybe the easiest to point out, and indicates that the quantization process induces perturba-
tions that might be wrongly interpreted as mechanical cyclic phenomena on the amplitude spectrum of the IAS. These
properties are numerically shown for a better understanding.
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3.1.3. Numerical validation
Two signals are simulated accordingly to the parameters presented in Tab. 2. Although the signals present very

close angular speed, the first simulation meets the criteria detailed in part 3.1.1 and the second meets those presented
in part 3.1.2. The sequence τi and τ̂i of both simulations are respectively displayed in Fig. 10 . In the first case, the
relation τi = τ̂i is verified and the spectral observation of the IAS does not tell more than the average rotating speed.
In the second case, the periodicity of the sequence is evidenced as a sawtooth wave. The amplitude of this wave is
equal to the quantization spacing: Tc. The curve labeled ti− t̂i−1 represents the time separating the ith rising edge and
the previous measured rising edge. Taking the form of a sawtooth curve, the resetting of the accumulated quantization
error is made once the time constant of the counter is reached.
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Figure 10: Simulations with (a) an integer number of counter pulses, (b) a rational number of pulses along each angular sensor period.

Parameters Signal 1 Signal 2
Counter frequency (Fc in Hz) 1 ·106 1 ·106

Angular sensor Resolution (R in Pulse.rev−1) 100 100
Signal length (N) 1000 1000
angular speed (ω in rad.s−1) 80.6 80.65
Numerator (p) 124 1613
Denominator (q) 1 13

Table 2: Parameters used for the numerical simulation.

The amplitude spectrum corresponding to the second simulation is presented in Fig. 11 where the spectral compo-
nents multiple of R/q are evidently visible. Although this result is unambiguously validated with simulated measure-
ments, experimental testing will hardly present such a steady operating speed. This comb perturbation is more likely
to threaten simulations obtained from a mechanical system model.

Without mentioning the unlikely case of a speed exactly synchronised with the counter frequency, the quantization
phenomena creates non zero angle-periodic artefacts even on a steady speed IAS signals. It is possible to localize the
cyclic frequency of some of these artefacts using the denominator of the ratio between the angular speed and the
counting frequency. Unfortunately, the slightest angular speed deviation affects this ratio R/q in an unforeseeable
manner which will be qualified as random by the authors. Hence, the angular speed variations of the trend as it is seen
in Fig. 7 are suspected to introduce a random component in the cyclic frequency localization of the artefacts induced
by the quantization.

3.2. Non stationnary case

A statistical approach is undertaken to manipulate the random perturbation of the quantization, in case of non
stationary behaviour. Practically, this approach is expected to estimate a threshold distinguishing the spectral compo-
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Cyclic frequency fq

Figure 11: Amplitude spectrum of the simulation presenting a rational number of impulses along each angular sensor period (R/q = 7.7rev−1).

nents induced by the quantization perturbation from the real mechanical information. The tools used to reach this aim
are detailed in a first section

3.2.1. Statistics basics
In probability theory, the central limit theorem states that the average of a sufficiently large number of independent

random variables, each with finite mean and variance, will be approximately normally distributed. Let X1,X2, ...,Xn
be a sequence of n independent and identically distributed random variables each having finite valued expectation µ

and variance σ . The sum of the n random variables converges in distribution to the standard normal distribution of
expectation nµ and standard deviation σ

√
n. This theorem is irrespective of the shape of the common distribution of

the individual terms of the sequence.
Moreover, the chi-square distribution with k degrees of freedom is the distribution of a sum of the squares of k

independent standard normal random variables. Let X1,X2, ...,Xn be a sequence of n independent, standard normal
random variables. Then, the sum of their squares is distributed according to the chi-square distribution with k degrees
of freedom.

3.2.2. Quantization error in a simple form
In a first step, the simpler case of a unique random variable is considered. This corresponds to the quantization

error εi induced during the estimation of the variable ti:

εi = ti− t̄i = ti−
⌈

ti
Tc

⌉
·Tc. (14)

The random variable εi is assumed to follow an uniform law on the interval [0,Tc]. Commonly proposed in quantization
theory, this assumption is especially realistic if the quantization spacing Tc is small in front of the dynamic of the
signal and if the signal stands relatively uniformly in this dynamic. Hence, this assumption is strong and it has to
be enlightened that a steady speed measurement is intrinsically opposed to this criterion: results obtained from this
hypothesis are expected to differ from those obtained in part 3.1.

The previous hypothesis let the authors assume the random signal ε is stationary and ergodic, it can therefore
be characterised by means of the successive moments of the random variable εi. Similarly, this random signal is
characterised in the spectral domain through the use of its PSD Dεε( fθ ). This will be enough to define the quantization
threshold νεε( fθ ) that might eventually be compared to the PSD Dττ( fθ ) of the signal representative of the mechanism
speed variations. From the periodogram of a realisation εi(θ), the random signal PSD is estimated such as:

Dεε( fθ ), N
(
Ẽ( fθ ) · Ẽ ∗ ( fθ )

)
. (15)

12



The complex spectral coefficients Ẽ( fθ ) are obtained after summation of every terms of the random process εi(θ)
respectively weighted by a complex exponential. Let a( fθ ) and b( fθ ) be the independent random processes standing
for the real part and the imaginary part of the process E( fθ ). The central limit theorem states that a( fθ ) and b( fθ )
converge in distribution to the standard normal distribution of expectation 0 and variance σ2/2N = T 2

c /24N. The PSD
Dεε( fθ ) is estimated from the random process realisation εi(θ) by the reduced relation:

Dεε( fθ ),
σ2

2
·

(a( fθ ) ·
√

2N
σ

)2

+

(
b( fθ ) ·

√
2N
σ

)2
 . (16)

Let X( fθ ) be the sum of two squared variables, respectively following two standardised Gaussian laws, and defined
such as:

X( fθ ) =

(
a( fθ ) ·

√
2N
σ

)2

+

(
b( fθ ) ·

√
2N
σ

)2

. (17)

The chi-square theorem states that X( fθ ) is distributed according to the chi-square distribution with 2 degrees of
freedom. Therefore, the probability density of X( fθ ), fX = 1/2 · exp(−t/2) can be used to determine the threshold
ηX of the random variable X(θ) able to distinguish quantization noise from real information, under the probability α:

P(X < ηX ) = 1−α

P(X < ηX ) =
∫ ηX

0 fχ2(2)(t)dt

}
=⇒ ηX =−2lnα. (18)

From Eq. (16) and (18), the threshold ηDεε
is defined to test the hypothesis that a spectral component can be

induced by the quantization error under the probability α:

ηDεε
=−σ

2 · ln(α). (19)

In practical terms, the PSD Dεε( fθ ) has a ratio of spectral components exceeding the threshold ηDεε
close to

α . The influence of the quantization over the random process εi(θ) is similar to the one over the real measurement
ti(θ). The following paragraph aims at describing the influence of quantization over the spectral observation of the
measurement signal τi(θ).

3.2.3. Quantization error in a finite difference form
In the previous section the quantization noise has been described when applied on the variable ti. Nevertheless,

the IAS monitoring is performed on the time difference τi, another random variable defined by the finite difference.
ti and ti−1 are considered independent variables, and once again, this assumption can not be applied to the stationary
case presented in section 3.1. The results presented in Eq. (19) will be used to determine the same kind of distinction
criterion for the random signal ∆ε , defined by its random variable:

∆εi = τi− τ̂i
τ̂i = t̂i− t̂i−1
τi = ti− ti−1

=⇒ ∆εi = εi− εi−1. (20)

The demonstration, available in Appendix B.2, draws a relation between the PSD of ∆ε and the PSD of ε:

D∆ε∆ε( fθ ) = 4 ·Dεε ( fθ ) · sin(π fθ ∆θ)2. (21)

From Eqs. (19) and (21), it is possible to estimate the threshold ηD∆ε∆ε

ηD∆ε∆ε
( fθ ) =−4σ

2 · lnα · sin(π fθ ∆θ)2 =− lnα · T
2

c

3
· sin(π fθ ∆θ)2. (22)

Assuming the quantization noise has most influence over the speed measurement, IAS noise is stated to follow
an uniform law in the same way as the quantization error, ηDττ

( fθ ) = ηD∆ε∆ε
( fθ ). It should be understood that these

thresholds have not the same signification:
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• the quantization threshold ηD∆ε∆ε
( fθ ) estimates, for every cyclic frequency, the amplitude separating the spec-

tral components of a realisation D∆ε∆ε( fθ ) in two complementary groups of respective ratio α and 1−α . This
assertion will be validated in the next paragraph,

• the quantization threshold ηDττ
( fθ ) distinguishes the quantization noise perturbing the spectral observation of

a realisation τi(θ) from the real IAS variations experienced by the mechanism, under the probability α .

The quantization threshold is formulated by the power spectral density of a time variation. However, the physical
interpretation of a cyclic phenomenon is preferably done over angular speed variations. Eq. (A.10) can be used to
scale the PSD of a time variation in rad/s, although the Fourier transform is not directly applied on the speed signal.

ηDω̂ω̂
( fθ ) =

ω4
0

∆θ 2 ·ηDττ ( fθ ). (23)

3.3. Numerical validation
The results are numerically put to the test accordingly to a statistical approach. A set containing 100 process

realisations of random noise distributed according to a uniform distribution is numerically generated. Each realisation
is made of 105 points distributed over the interval [0,1] and will be observed directly as the quantization error in
simple form or processed by finite difference to simulate the quantization error in a finite difference form. The power
spectral densities computed from each of these process realisations are respectively presented in Fig. 12a-b. The
probability rate of different thresholds are defined in the left part of Table 3. The numerical results are presented in
the right part of the same table, through the empirical mean and variance of the rate of spectral components whose
amplitude is higher than the threshold. For example, over the 100 process realisations, 10.09 percent of the spectral
components obtained after finite differentiation of the uniform distribution are higher than the threshold defined using
a probability rate of 10%, which is coloured in green in Fig. 12. The statistical approach of the quantization noise
estimation is numerically validated.
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Figure 12: PSD of the quantization error when sutdied in a) a simple form and in b) a finite difference form.

3.4. Experimental confirmation
3.4.1. Broad band perturbation

The test rig presented in part 2.3.1 has been run under non stationary conditions. Since this paper considers
the quantization perturbation, the experiment is tuned in order to enlighten this peculiar phenomenon in comparison
to the geometric and electrical perturbations which are not considered. Ergo, measurement of the Elapsed Time is
simultaneously performed by the help of two different clock frequencies of 105 kHz and 20 kHz. These simultaneous
measurements will allow to appraise the precision of the noise estimation for different set-up conditions where the
quantization is insured to predominate both the geometrical error and the electrical noise. The two different counter
clocks brought different rates of quantization error.
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quantization threshold Numerical results (in %)

α in %

quantization Error quantization Error
Color simple form finite difference

(Fig. 12) Empirical Empirical Empirical Empirical
Mean Variance Mean Variance

Red 50 49.97 3.43 ·10−2 50.08 3.7 ·10−2

Green 10 10.00 1.43 ·10−2 10.09 1.6 ·10−2

Cyan 1 1.00 1.13 ·10−2 1.06 3.6 ·10−3

Yellow 0.1 0.10 1.75 ·10−3 0.15 1.6 ·10−3

Table 3: Descriptions and results of the numerical simulations.

As it can be seen in Fig. 7, the experimental validation is made on a run up from 200 to 1000 rpm. For the
acquisition to succeed, the counting process must produce at least 2 pulses between two consecutive encoder segments.
Thus, the highest rotating speed sets a minimal value on the counting frequency or alternatively, a maximal value on the
resolution: Fc > R ·ω/π . Therefore, the encoder resolution has been artificially reduced to 512 pulses per revolution.
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Figure 13: PSD of the measurements scaled (a) in time and (b) in speed. Counter frequency: Fc = 20kHz in blue, Fc = 105kHz in red. α = 0.1%

Power spectral densities obtained from each measurement are superposed in Fig. 13-a) with a quantization thresh-
old obtained for α = 0.1%. To estimate the validity of the approach, the rates of spectral component whose amplitude
are above the threshold have been measured over the interval 100 rev−1 and 256 rev−1. These rates are respectively
equal to 0.103% (Fc = 105 kHz) and 0.059% (Fc = 20 kHz). Practically, this means that quantization noise is flooding
the angular speed variations whose angular frequency is above 100 rev−1 for both measurements. In Fig. 13 -b), both
power spectral densities and quantization thresholds have been approximately translated into angular speed variations
density using Eq. (23). This approximation enlightens the influence of the quantization noise over the angular speed
variations. The angular periodic speed variations that are visible in the measurement made with the 20 kHz counting
frequency are always visible with the 105 kHz frequency, and furthermore, they are very close in amplitude. For
example, the amplitudes of the cyclic frequency components corresponding to the first three gear mesh harmonics
between the output shaft and the axle shaft do not exceed 10% in relative difference (almost not visible on a logarith-
mic scale). Information within each signal may be different due to the difference in term of counting frequency, the
threshold is well correlated with the experiments. The statistical approach is experimentally validated.

3.4.2. Periodic perturbation
As this phenomenon clearly appears only when speed is absolutely constant, these perturbations are more likely

to occur in simulations than in actual measurements, and therefore are not studied here.
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Figure 14: Evolution of quantization error ηω (a) as a function of the tunable parameters and the environment parameters (b).

3.5. Numerical application

Once the statistical approach is validated numerically and experimentally, these results can be used to design
an IAS monitoring system with regards to the cyclic phenomena expected in a peculiar mechanism. Indeed, the
quantization threshold has been shown to depend on four different parameters, which can be classified within two
groups:

• the cyclic frequency of a cyclic phenomena and the average speed during the measurement; these are the envi-
ronment parameters and are dictated by the application itself,

• oppositely, the encoder resolution and the counting frequency can be tuned to reach a targeted noise level.

In Fig. 14 are plotted the evolution of the induced quantization noise as a function of the parameters of each group
when the parameters of the other group are fixed. These figures directly result from the application of Eq.(22). The
experimental results have shown the predominance of quantization noise amongst other kinds of perturbation listed in
the introduction. However, the experiments have been run for relatively slow counting frequencies and this result has
no claim to be general. Although some conditions are proven to enlighten quantization noise and have therefore been
used to validate the work in the present paper, other conditions are expected to set other balance between the different
sources of noise. This will be the subject of further works.

4. Conclusion

This paper has distinguished the IAS methodologies that yield a signal sampled in the time domain from those
sampled in the angular domain. Because the study of mechanisms run under non stationary operating conditions is
nowadays subject to an increasing attention, the latters need to be properly defined before an industrial development
could be achieved. This paper focused on the Elapse Time measurement technique, and two major unawarenesses
limiting this technique have been studied.

First, the aliasing process has been detailed. This phenomenon peculiarly limits the angular domain methodology
based on a conventional angular sensor and is today impossible to be fully tackled since no analog filter can be
successfully applied to the digital signal before it is sampled. However, its influence on the spectral observation has
been thoroughly appraised and the following conclusions have been drawn:

• the measured spectrum is attenuated by a cardinal sine shape as compared to the spectrum of IAS,

• aliased phenomena are attenuated by more than 14dB in the first quarter of the cyclic spectrum.

• it is possible to estimate the actual IAS variations of any cyclic phenomenon whose original cyclic frequency is
known and subjected to aliasing in the case of low resolution encoder.
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Afterwards, the quantization phenomenon study has been conducted in two consecutive steps. The stationary case
has been necessary to prove and to understand the influence of quantization on the spectral observation of the Elapse
Time IAS signal. The spectral ghosts induced during these peculiar operation might not be observed in reality, except
in case of very stationary mechanism or in case the counting clock is very slow.

Non-stationary operation generalization has been handled with the help of statistical tools. The quantization phe-
nomenon becomes a spread noise and the signal to noise ratio has been accurately quantified on the spectral amplitude
either scaled in time or in angular speed. Several parameters have been identified to have a precise impact on the
quantization measurement, and the authors think this study will be of valuable help to efficiently design a IAS ac-
quisition system based on the Elapse Time methodology depending on the characteristic of the mechanism operating
parameters.

Some improvements are still to be done to improve IAS precision and general understanding. The geometrical
errors of the tachometer gratings due to manufacturing process are still very difficult to dissociate from some mechan-
ical phenomena of interest. The interpolation process incorporated in most of the angular sensors also introduces a
cyclic pattern in the signal that might also hide synchronous phenomena. In the mean time, the IAS measurement
process has uncertainties and thermal noise due to the conversion from mechanical motion into an electrical signal,
the amplification of the sensor and the digitalisation of the signal, whose influence over the Elapse Time signal is not
fully understood...

So many subjects that still need to be studied more deeply to appreciate the achievable performance of IAS signal
in the wide and demanding fields of control and monitoring.
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Appendix A. Theory of attenuation of IAS spectrum

This appendix demonstrates the filtering effect due to Elapsed Time measurement. The first subsection details
hypothesis of little variations, and the second one gives the correspondance between the actual IAS spectrum and
the measured one. Quantization effect induced by the truncation of the Elapsed Time measurement is not taken into
account.

Appendix A.1. Assumption on angular speed

The hypothesis is made that IAS is quite constant, so as to develop first order approximations. Then, it comes:

ω(θ) = ω0 +δω(θ), (A.1)

with ∣∣∣∣δω(θ)

ω0

∣∣∣∣<< 1 ∀θ . (A.2)

Using Eq.(1), it comes:

dt =
dθ

ω0 +δω(θ)
≈ 1

ω0
·
(

1− δω(θ)

ω0

)
·dθ (A.3)

Then, the time laps between two consecutive encoder pulses is noted as:

τ(θ) =
1

ω0
·
∫

∆θ

(
1− δω(θ)

ω0

)
·dθ ,

τ(θ) =
1

ω0
·
(

∆θ − [δω(θ)]∆θ

ω0

)
, (A.4)

with

[δω(θ)]∆θ =
∫

∆θ

δω(θ) ·dθ and
[δω(θ)]∆θ

ω0
<< ∆θ . (A.5)

The constant and variable parts of time laps are defined as:

τ0 =
∆θ

ω0
δ t(θ) =

[δω(θ)]∆θ

ω2
0

, (A.6)

and then :
τ(θ) = τ0 +δ t(θ). (A.7)

It is verified that : ∣∣∣∣δ t(θ)
τ0

∣∣∣∣<< 1 ∀θ . (A.8)

Appendix A.2. Effect of counting technique method

Regarding Eq. (2) and previous assumptions, it comes:

ω̄(θ) =
∆θ

τ0
· 1

1+ δ t(θ)
τ0

≈ ∆θ

τ0
·
(

1− δ t(θ)
τ0

)

ω̄(θ) = ω0 ·
(

1− τ(θ)− τ0

τ0

)

ω̄(θ) = 2 ·ω0−
ω2

0
∆θ
· τ(θ). (A.9)
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It is noted that in a first order approximation, the measured IAS is directly proportional to the elapsed time. Thus,
measured IAS spectrum can be estimated directly through Elapsed Time method if the small angular speed variation
is verified:

Ω̄( fθ ) = 2 ·ω0 ·δ ( fθ )−
ω2

0
∆θ
·T ( fθ ). (A.10)

For the end of demonstration, elapsed time will be replaced by its expression τ(θ)= t(θ)−t(θ−∆θ). Considering
T ( fθ ) the Fourier transform of t(θ), the amplitude spectrum in the cyclic frequency domain of the measured IAS at
the first-order approximation is:

Ω̄( fθ ) = 2 ·ω0 ·δ ( fθ )−
ω2

0
∆θ
·T ( fθ ) ·

(
1− e− j2π fθ ∆θ

)
. (A.11)

Furthermore, T ( fθ ) can be found using Eq. (1) and first order approximation:

t ′(θ) =
dt
dθ

(θ) =
1

ω(θ)
=

1
ω0
·
(

1− δω(θ)

ω0

)
=

1
ω0
·
(

2− ω(θ)

ω0

)
. (A.12)

Then, in the cyclic frequency domain:

T ( fθ ) =
1

j2π fθ

· 1
ω2

0
· (2ω0 ·δ ( fθ )−Ω( fθ )) . (A.13)

Using this last equation, the measured IAS can be expressed as a function of the actual IAS:

Ω̄( fθ ) = 2 ·ω0 ·δ ( fθ )−
ω2

0
∆θ
· 1

j2π fθ

· 1
ω2

0
· (2 ·ω0 ·δ ( fθ )−Ω( fθ )) ·

(
1− e− j2π fθ ∆θ

)

Ω̄( fθ ) = 2 ·ω0 ·δ ( fθ )− (2 ·ω0 ·δ ( fθ )−Ω( fθ )) · e− jπ fθ ∆θ · e
jπ fθ ∆θ − e− jπ fθ ∆θ

2 jπ fθ ∆θ

Ω̄( fθ ) = 2 ·ω0 ·δ ( fθ )− (2 ·ω0 ·δ ( fθ )−Ω( fθ )) · e− jπ fθ ∆θ · sincπ( fθ ∆θ).

Finally, the spectrum of the first-order approximated measured angular speed can be simply expressed as:

Ω̄( fθ ) = Ω( fθ ) · e− jπ fθ ∆θ · sincπ( fθ ∆θ). (A.14)

As a conclusion, it can be observed that, for an angular speed signal with negligible variations, the counting
technique creates a low-pass filter with a sincπ shape based on ∆θ resolution of the encoder.

Appendix B. Quantization precision

Appendix B.1. periodic artefact induced by the stationary case
The real time separating the ith rising edge and the counter start is defined such as:

ti =
ip
q
·Tc + t0 (B.1)

As previously, quantization error is introduced through the measured time t̂(θi),

t̂i =
⌈

ip
q
+

t0
Tc

⌉
·Tc, (B.2)

where i · p/q is not integer a priori. Therefore, the measured time between consecutive rising edges is given by:

τ̂i =

(⌈
ip
q
+

t0
Tc

⌉
−
⌈
(i−1) · p

q
+

t0
Tc

⌉)
·Tc. (B.3)
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Since the measured time can only equals an integer multiple of period Tc, there is ∀i∈ [|1;N|], τ̂(θi) 6= τ(θi). Precisely,
τ̂(θi) equals the integer values surrounding τ(θi). Moreover, it is known that ∀i ∈ N,∃!(n,r) ∈ N× [|0;q− 1|]/i =
n ·q+ r. From Eq. (B.2), there is one and only one couple (n,r) ∈ N× [|0;q−1|] such as

t̂(θi) =
⌈
(nq+r)·p

q + t0
Tc

⌉
·Tc

=⇒ t̂(θi) = nt(θq)+ t̂(θr)
=⇒ τ̂(θi) = nt(θq)+ t̂(θr)− (nt(θq)+ t̂(θr−1))
=⇒ τ̂(θi+n·q) = τ̂(θi) , i ∈ N.

(B.4)

The quantization phenomenon is proven to induce angle periodic variations of the IAS signal.

Appendix B.2. Quantization error in a finite difference form

The Wiener Khintchine Theorem implies that the power spectral density of the random signal ∆ε can be estimated
from ∆E( fθ ), the Fourier transform of one realisation ∆εi(θ) by the relation:

D∆ε∆ε( fθ ), ∆E( fθ ) ·∆E ∗ ( fθ ). (B.5)

The Fourier transform being linear, the previous equation is associated to Eq. (20) to obtain:

D∆ε∆ε( fθ ),
(

E( fθ )−E( fθ ) · e−2 jπ fθ ∆θ

)
·
(

E( fθ )−E( fθ ) · e−2 jπ fθ ∆θ

) ∗
. (B.6)

Knowing that X ∗ ( fθ ) = (X( fθ ))
∗ , we get:

D∆ε∆ε( fθ ), (E( fθ ) ·E( fθ )
∗ ) ·

(
2− e−2 jπ fθ ∆θ − e2 jπ fθ ∆θ

)
, (B.7)

with sin(x)2 = ( e jx−e− jx

−2 j )2, we get:

D∆ε∆ε( fθ ), (E( fθ ) ·E( fθ )
∗ ) · (2 · sin(π fθ ∆θ))2 . (B.8)

Using once again Wiener Khintchine theorem,

D∆ε∆ε( fθ ), Dεε( fθ ) ·
(

2 · sin(π fθ ∆θ)2
)2

. (B.9)
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