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Riemann problem for a particle-fluid coupling

Nina Aguillon, Université Paris Sud

May 2, 2014

Abstract

We present a model of coupling between a point wise particle and a compressible inviscid fluid
following the Euler equations. The interaction between the fluid and the particle is achieved through
a drag force. It writes as the product of a discontinuous function and a Dirac measure. After defining
the solution, we solve the Riemann problem with a fixed particle for arbitrary initial data. We exhibit
a set of conditions on the drag force under which there exists a unique self-similar solution.

Key words and phrases: Fluid-particle interaction; Euler equations; Riemann problem; noncon-
servative product.
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1 Introduction

In this paper we introduce and study a simple one-dimensional model of fluid-structure interaction.
We consider a compressible and inviscid fluid, which will be governed by the isothermal Euler
equations. At point x and time t, it has velocity u(t, x) and density ρ(t, x). The particle is assumed
to be pointwise, of mass m, and we denote by h(t), h′(t) and h′′(t) its position, velocity and
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acceleration at time t . The interaction between the fluid and the particle is achieved through a
drag force D, reflecting the fact that both tend to share the same velocity. Our model writes



























∂tρ+ ∂x(ρu) = 0, (1a)

∂t(ρu) + ∂x
(

ρu2 + p(ρ)
)

= −D(ρ, ρ(u− h′(t)))δh(t)(x), (1b)

mh′′(t) = D(ρ(t, h(t)), ρ(t, h(t))[u(t, h(t)) − h′(t)]), (1c)

(ρ(0, x), u(0, x)) = (ρ0(x), u0(x)),

(h(0), h′(0)) = (0, v0),

where p is the pressure law. We suppose that D has the same sign as u − h′ (and therefore than
ρ(u − h′)), which is natural for a drag force. As a result, Equation (1c) shows formally that the
particle accelerates (respectively decelerates) when the fluid’s velocity u(t, h(t)) at its position is
larger (respectively smaller) than its own velocity h′(t). We choose the isothermal pressure law
p(ρ) = c2ρ to avoid vacuum related issues, but the results could probably be extended without
major difficulty in the adiabatic case p(ρ) = ργ , 1 < γ ≤ 3. This model is a generalization of the
one first introduced in [LST08], and later deeply investigate in [AS12], [ALST10] and [ALST13], in
which the fluid followed a scalar Burgers equation.

In the past few years, the interaction between an incompressible and viscous fluid and rigid bodies
has been widely studied. Many papers deal with the existence of weak or strong solutions ([SMST02],
[GLS00], [Fei03b], [DE99] and [VZ03]). The matter of collision has also been extensively investigated
([VZ06], [Sta04], [Hil07], [HT09]). Some other works consider compressible fluid or elastic bodies
([BST12], [CDEG05], [DE00] and [Fei03a]). The model we study strongly differs from those works
as the equation governing the fluid is inviscid. In this framework, the d’Alembert’s paradox states
that in an incompressible and inviscid fluid, with vanishing circulation, no drag force exerts on a
body moving at a constant speed. Birds should therefore not be able to fly. An answer to this
paradox is that, even at very high Reynolds number, the effect of viscosity cannot be neglected in a
thin layer around the body. In our model, this paradox is somehow ignored, as we directly impose
a drag force D between the fluid and the particle. According to Newton’s law, the particle follows
the ordinary differential equation (1c)

mh′′(t) = D.

The action-reaction principle is taken into account in equation (1b) on the momentum of the Euler
equation: the particle applies the force −D on the fluid. We suppose that the interaction is local:
it applies only at point h(t). Equation (1a) ensures that the fluid mass is conserved. This approach
proved to be successful in the toy model [LST08] with a Burgers’ fluid. In particular, it allows
collisions between two particles having different velocities, unlike in the viscous case [VZ06]. For
example, a particle trapped in a shock (case V of Lemma 5.5 in [LST08]) will collide with a particle
placed in front of the first particle and sharing the velocity of the fluid. In [ALST10], the reader
can find numerical simulations of the drafting kissing tumbling phenomenon. This work is strongly
related to [BCG14], in which a coupling between a particle and the Euler equations is presented.
However, the modelization is quite different, the particle being taken into account through conser-
vation of mass and energy, while we enforce in the present work a drag force. Moreover, the nature
of the theoretical results are different and complementary. In [BCG14], a local in time existence to
the Cauchy problem for the fully coupled system is proved for small subsonic data. In the present
work, we consider the Riemann problem for a particle having constant velocity, without making any
assumption on the data.

We emphasize the fact that in model (1), the particle and the fluid do not share the same velocity.
We do not impose any no slip condition as in works presented above. It can be justified by saying
that the particle is porous and allows some fluid to pass through. It constitutes the main difficulty
of this model. Indeed, as shocks develop in finite time in hyperbolic systems like (1a)-(1b), even
with D = 0, the velocity u and the density ρ of the fluid have no reason to be continuous along
the particle trajectory h. A first consequence is that the source term in (1b) is not well defined.
A second one is that the ODE (1c) the particle satisfies must be considered in a weak sense. This
paper focuses on the Riemann problem for the uncoupled problem



















∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x
(

ρu2 + p(ρ)
)

= −D(ρ, ρ(u− h′(t)))δvt,

ρ(0, x) = ρL1x<0 + ρR1x>0,

u(0, x) = uL1x<0 + uR1x>0,

(2)
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where the particle has a constant speed v. The difficulties arising from the coupling between an
ODE and a PDE disappear, but the key point of the nonconservative source term remains. Another
main difficulty in the analysis of (2) is that the Dirac measure in the source term corresponds to a
linearly degenerate field and our system is not hyperbolic. This may lead to resonance phenomena
when two families of waves interact. Near resonance, Riemann problems with such source terms have
been investigated in a conservative framework in [IT92] and later extended in the nonconservative
framework in [GL04]. Away from resonance, the particle trajectory can be treated as a noncharac-
teristic boundary (see [BCG10], [BCG12] and [BCG14]). Our contribution is that, unlike in those
frameworks, we solve the Riemann problem for all choices of parameters (ρL, uL), (ρR, uR) and v,
without making any assumptions on their smallness or their resonant character.

Let us outline the organization of the paper and sketch the main results. The first section is
entirely devoted to the definition of the solutions of (1). We exhibit an entropy condition that takes
into account the particle. Then we give a rigorous definition of the nonconservative product

D(ρ, ρ(u− h′(t)))δh(t)

based on a thickening of the particle. Replacing the Dirac measure by one of its approximation,
it appears that the density and velocity of the fluid at the entry of the particle and at its exit are
always linked by the same relations. These relations are independent of the size and the shape
of the thickened particle. This allows us to see the particle as an interface, through which those
relations are imposed. They link the quantities u(t, h(t)±), ρ(t, h(t)±) and h′(t). A first relation
states that the quantity α := ρ(u − h′) is constant across the particle (this is why we express D
as a function of ρ and α). This is equivalent to the conservation of the fluid’s mass through the
particle. Another relation describes the influence of the particle on the flow and depends on D.
When the drag force is D(ρ, α) = α and the particle is motionless, it expresses that the loss of
charge ρu2 + c2ρ through the particle is proportional to the mass flow ρu. The second section is
devoted to the solution of the Riemann problem (2) for a particle moving at constant speed v. In
Theorem 3.1, we exhibit a two conditions on the drag force D that imply that (2) has a unique self-
similar entropy solution. The case of subsonic and supersonic initial datum are treated separately
in Propositions 3.11 and 3.13. In Subsection 3.4 we describe the two natural asymptotics when the
drag force vanishes or becomes very large. Eventually in Section 4, we discuss the case where the
hypothesis of Theorem 3.1 are not fulfilled. We recover, in some particular cases, the existence of
up to three solutions, as shown in a general framework in [IT92] and [GL04], and well known for
fluid in a nozzle with discontinuous cross-section [LT07] and for the shallow water equation with
discontinuous decreasing topography [LT03].

Acknowledgments The author warmly thanks Frédéric Lagoutière for his advice and support
during the achievement of this work.

2 Definition of the solutions

This section is devoted to the definition of the solution of the coupled system (1). The isothermal
Euler equations are inviscid, so ρ and u can be discontinuous along the particle’s trajectory h and
the product D(ρ, ρ(h′ − u))δh(x) does not make sense. Following [LST08], we consider two different
regularizations in Sections 2.1 and 2.2. The first one consists in adding a vanishing viscosity to
the equation. Passing to the non-regularized limit we deduce an entropy inequality for (1). The
second regularization is a thickening of the particle, which yields to an intrinsic definition of the
non-conservative source term as an interface.

2.1 Entropy inequality

Let us first focus on the following classical regularization of problem (1), where we add a vanishing
viscosity to the Euler equation:



























∂tρ
ε + ∂xq

ε = ε∂xxρ
ε,

∂tq + ∂x

(

(qε)2

ρε + c2ρε
)

= −D(ρε, αε)δh(t) + ε∂xxq
ε,

mh′′(t) = D(ρε(t, h(t)), αε(t, h(t))),
(ρε(0, x), qε(0, x)) = (ρε0(x), q

ε
0(x)),

(h(0), h′(0)) = (h0, v0).

(3)
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Here, q = ρu denotes the momentum of the fluid, α denotes the quantity ρ(u − h′) and we only
assume that the drag force D has the same sign than α (and hence than u − h′). In [LST08]
and [Dom02] it is proven that the system















∂tu
ε + ∂x

(uε)2

2 = ε∂xxu
ε − λ(uε − h′)δh(t)(x)

mh′′(t) = λ(uε − h′),
uε(0, x) = u0(x),
(h(0), h′(0)) = (h0, v0).

admits regular a solution when u0 is regular. In order to derive an entropy inequality for our fluid
particle coupling (1), we assume that if the initial data (ρ0, u0) are smooth and that the solutions
of its regularization (3) are also smooth. Let E(ρ, q) and G(ρ, q) be a flux-entropy flux pair, with E
convex, such that ∂qE is a function of u = q

ρ
denoted by J .

Example 2.1. The usual entropy-entropy flux pair

E(ρ, q) =
q2

2ρ
+ c2ρ log(ρ) and G(ρ, q) =

q

ρ
(E(ρ, q) + c2ρ)

fulfills this assumption: we have J(u) = u.

For the sake of simplicity we introduce

Uε
0 = (ρε0, q

ε
0), Uε = (ρε, qε) and F (Uε) =

(

qε,
(qε)2

ρε
+ c2ρε

)

.

Let Φ ∈ C∞
0 (R+ × R) be a non-negative smooth function, and multiply the first equation of (3) by

Φ∂ρE and the second equation by Φ∂qE = ΦJ . Let us add the two equations and integrate over
R+ × R. We obtain

∫∫

R+×R

Φ∇(ρ,q)E(Uε) · ∂tUε dt dx+

∫∫

R+×R

Φ∇(ρ,q)E(Uε) · ∂xF (Uε) dt dx

−ε

∫∫

R+×R

Φ∇(ρ,q)E(Uε) ·∆Uε dt dx = −
∫

R+

[D(ρε, αε)ΦJ(uε)] (t, h(t))dt.

(4)

We first treat the left hand side of (4) by integrating by parts. The first term gives
∫∫

R+×R

Φ∇(ρ,q)E(Uε) · ∂tUε dt dx =

∫∫

R+×R

Φ∂tE(Uε) dt dx

= −
∫∫

R+×R

E(Uε)∂tΦ dt dx−
∫

R

Φ(0, ·)E(Uε
0 )dx

and the second term yields
∫∫

R+×R

Φ∇(ρ,q)E(Uε) · ∂xF (Uε) dt dx =

∫∫

R+×R

Φ∇(ρ,q)E(Uε) · [DF (Uε)∂xU
ε] dt dx

=

∫∫

R+×R

Φ∇(ρ,q)G(Uε) · ∂xUε dt dx

=

∫∫

R+×R

Φ∂xG(Uε) dt dx

= −
∫∫

R+×R

G(Uε)∂xΦ dt dx.

Let us now tackle the third term. We have

∇(ρ,q)E(Uε) ·∆Uε =
2
∑

i=1

∂iE(Uε)∂xxU
ε
i

=

2
∑

i=1



∂x(∂iE(Uε)∂xU
ε
i )−





2
∑

j=1

∂jiE(Uε)∂xU
ε
j



 ∂xU
ε
i





= ∂xxE(Uε)−
2
∑

i=1

2
∑

j=1

(∂xU
ε
j )(∂jiE(Uε))(∂xU

ε
i ),

4



thus we obtain

−ε

∫∫

R+×R

Φ∇(ρ,q)E(Uε) ·∆Uε dt dx =− ε

∫∫

R+×R

ΦE(Uε)∂xxΦ dt dx

+ ε

∫∫

R+×R

Φ

2
∑

i=1

2
∑

j=1

(∂xU
ε
j )∂ijE(Uε)(∂xU

ε
i ) dt dx.

Remark that as Φ is non-negative and E is convex, the last term is non-negative. We now focus on the
right hand side of (15). Let us multiply the ODE in the third equation of (3) by J(h′(t))Φ(t, h(t)).
We have

∫

R+

−mh′′(t)J(h′(t))Φ(t, h(t)) +D(ρε, αε)(t, h(t))J(h′(t))Φ(t, h(t))dt = 0,

which reads, with P an antiderivative of J ,
∫

R+

−m[P (h′(t))]′Φ(t, h(t)) +D(ρε, αε)(t, h(t))J(h′(t))Φ(t, h(t))dt = 0.

We can therefore replace the right hand side of (15) by
∫

R+

mP (h′(t))∂t(Φ(t, h(t)))dt +

∫

R+

D(ρε, αε) (J(h′(t))− J(uε))Φ(h)dt+mP (v0)Φ(0, h0).

The function J(u) = ∂qE(1, u) is nondecreasing as the restriction of E to the line ρ = 1 is convex.
Moreover, D has the same sign as uε − h′. Thus the second term is non-positive. To conclude, we
add the different terms and drop the two non-positive ones to obtain

∫∫

R+×R

E(Uε)∂tΦ dt dx+

∫∫

R+×R

G(Uε)∂xΦ dt dx+

∫

R+

mP (h′(t))∂t(Φ(t, h(t)))dt

+

∫

R

Φ(0, ·)E(Uε
0 ) dx+mP (v0)Φ(0, h0) ≥ −ε

∫∫

R+×R

ΦE(Uε)∂xxΦ dt dx.

Last, we formally pass to the limit as ε −→ 0 and get the following entropy inequality for the coupled
problem (1):

∫∫

R+×R

E(U)∂tΦ dt dx+

∫∫

R+×R

G(U)∂xΦ dt dx+

∫

R+

mP (h′(t))∂t(Φ(t, h(t)))dt

+

∫

R

Φ(0, ·)E(U0) dx +mP (v0)Φ(0, h0) ≥ 0.

(5)

Remark 2.2. When the test function Φ is supported on {(t, x), x > h(t)} or on {(t, x), x < h(t)}, the
inequality (5) reduces to the classical entropy inequality for the isothermal Euler equation without
source term.

2.2 How to handle the nonconservative product

In this section we assume that the particle trajectory h is given, and more precisely that it moves at
constant speed v: h(t) = vt. We denote by H the Heaviside function H(x) = 1x>0. Introducing the
momentum q = ρu and the new unknown w(t, x) = H(x− vt) allows us to rewrite the system (1a)-
(1b) in the framework of hyperbolic equation,















∂tρ+ ∂xq = 0,

∂tq + ∂x

(

q2

ρ
+ c2ρ

)

+D(ρ, α)∂xw = 0,

∂tw + v∂xw = 0.

(6)

Its quasilinear form is

∂t





ρ
q
w



+





0 1 0
c2 − u2 2u D(ρ, α)

0 0 v



 ∂x





ρ
q
w



 = 0. (7)
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The eigenvalues of the Jacobian matrix are u + c, u − c and v. This system is strictly hyperbolic
whenever u 6= v ± c. In the resonant case u ± c = v, the matrix cannot be put in a diagonal form.
Such resonant systems have been studied in [GL04] and [IT92]. However, with this source term, our
system does not fall neither in the framework of [IT92], because it is not conservative, neither in the
framework of [GL04], because one of the hypothesis on the source term (namely 1.7) is not satisfied
when the drag force depends only on α. Following [LST08], [GL04], [IT92], [SV03] and [CLS04], we
use a thickening of the particle to define the nonconservative product. Let Hε be an approximation
of the Heaviside function such that:

• Hε ∈ C0(R) ∩ C1((−ε/2, ε/2));

• Hε is nondecreasing;

• Hε(x) = 0 if x ≤ −ε/2 and Hε(x) = 1 if x ≥ ε/2.

We replace the Dirac measure by its regularization (Hε)′ to obtain the regularized system

{

∂tρ
ε + ∂xq

ε = 0;

∂tq
ε + ∂x

(

(qε)2

ρε + c2ρε
)

= −D(ρε, αε)(Hε)′(x − vt).
(8)

We are interesting in what is happening inside the particle. In the spirit of traveling waves, we
look for solution only depending on x − vt. With such a regularized source term, the values of the
solutions at the extremities of the particle depend neither on the size of the thickened particle ε,
nor on the choice of the regularization Hε (satisfying the three hypotheses above). This allows us
to define the source term D(ρ, α)δh(t) as an interface condition.

In the sequel, for α 6= 0, we denote by Fα the function

Fα(ρ) =

∫ ρ

|α|
c

1

|D(r, α)|

(

−α2

r
+ c2

)

dr.

Remark that Fα decreasing on
(

0, |α|
c

)

and increasing on
(

|α|
c
,+∞

)

.

Lemma 2.3. Let (ρε, qε) be a piecewise C1 solution of (8) that only depends on ξ = x − vt and
defined for ξ in [−ε/2, ε/2]. Then, on every interval I where the solution is smooth, the quantity
αε = qε − vρε remains constant. If αε = 0 on I, the density also remains constant, while if αε 6= 0,
the evolution of ρε on I is given by

(Fαε(ρε(ξ)))
′
= −sign(αε)(Hε)′. (9)

If the solution is discontinuous at a point ξ0 ∈ (−ε/2, ε/2), then







αε(ξ0−) = αε(ξ0+) := αε(ξ0) ;
(

(αε(ξ0))2

ρε(ξ0−)
+ c2ρε(ξ0−)

)

−
(

(αε(ξ0))2

ρε(ξ0+)
+ c2ρε(ξ0+)

)

= 0
(10)

Proof. Let ρε(x− vt) and qε(x− vt) be a piecewise C1 solution of (8), only depending on ξ = x− vt.
If the solution is smooth on the interval I, it satisfies the following equations:

{ −v(ρε)′ + (qε)′ = 0,

−v(qε)′ +
(

(qε)2

ρε + c2ρε
)′

= −D(ρε, αε)(Hε)′(x − vt).
(11)

The first equation of (11) directly gives that αε remains constant on I. Replacing qε by αε + vρε in
the second line of (11) yields

−v2(ρε)′ +

(

(αε)2 + 2αεvρε + v2(ρε)2

ρε
+ c2ρε

)′

= −D(ρε, αε)(Hε)′.

As αε and v are constant, this expression simplifies in

(

− (αε)2

(ρε)2
+ c2

)

(ρε)′ = −D(ρε, αε)(Hε)′,

6



which rewrites, by definition of Fα,

[Fαε(ρε(ξ))]
′
=

1

|D(ρε, αε)|

(

− (αε)2

(ρε)2
+ c2

)

(ρε)′ = −sign(αε)(Hε)′.

On the other hand, if (ρε, qε) has a discontinuity at a point ξ0 ∈ (−ε/2, ε/2), it verifies the two
relations:







qε(ξ0+)− qε(ξ0−) = v(ρε(ξ0+)− ρε(ξ0−)),
(

(qε(ξ0+))
2

ρε(ξ0+)
+ c2ρε(ξ0+)

)

−
(

(qε(ξ0−))
2

ρε(ξ0−)
+ c2ρε(ξ0−)

)

= v(qε(ξ0+)− qε(ξ0−)),

and we obtain the result (10) by introducing the conserved quantity α(ξ0) = qε(ξ0−) − vρε(ξ0−) =
qε(ξ0+)− vρε(ξ0+).

Remark 2.4. The relations (10) are nothing but the Rankine-Hugoniot relations for a shock having
speed v in the isothermal Euler equations. The lemma below states that entropy shocks only link
supersonic states to subsonic states (from left to right if α > 0, from right to left if α < 0).

Lemma 2.5. The shock corresponding to the Rankine-Hugoniot relations (10) is an entropy satis-
fying shock in the Euler equations (without source term) for the entropy-entropy flux pair of Exam-
ple 2.1 if and only if αε(ξ0) > 0 and αε(ξ0) > cρε(ξ0−) or if αε(ξ0) < 0 and αε(ξ0) < −cρε(ξ0+).

Proof. Suppose that αε(ξ0) is positive. If cρε(ξ0−) > αε then ρε(ξ0−) > ρε(ξ0+). If the shock was a
Lax shock, it should be a 2-shock. Therefore we should have

v =
qε(ξ0+)

ρε(ξ0+)
+ c

√

ρε(ξ0−)

ρε(ξ0+)
,

which rewrites

c

√

ρε(ξ0−)

ρε(ξ0+)
= − αε

ρε(ξ0+)
,

and contradicts the fact that αε > 0. On the other hand if cρε(ξ0−) < αε, we have that ρε(ξ0−) <
ρε(ξ0+), and the discontinuity should be a 1-shock. We obtain

c

√

ρε(ξ0−)

ρε(ξ0+)
=

αε

ρε(ξ0+)
,

which does not contradict the sign of αε. Similarly, we obtain that if α is negative, the jump is an
entropy satisfying shock if and only if cρε(ξ0+) < |αε|.

Definition 2.6. The germ at speed v is the set GD(v) containing all the pairs ((ρ−, q−), (ρ+, q+))
of (R∗

+ × R)2 verifying the two following relations.

1. First,
q− − vρ− = q+ − vρ+.

We denote by α this quantity.

2. Second,

• either α = 0, ρ− = ρ+ and q− = q+;

• or 0 < α , (α
c
− ρ+)(

α
c
− ρ−) ≥ 0 and

Fα(ρ−)− Fα(ρ+) = 1;

• or α < 0, ( |α|
c

− ρ+)(
|α|
c

− ρ−) ≥ 0 and

Fα(ρ+)− Fα(ρ−) = 1;
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• or cρ− < α, ρ+ ≥ α
c
, and there exists ρ ∈ (ρ−,

α
c
) and θ ∈ [0, 1] such that

{

Fα(ρ−)− Fα(ρ) = θ,

Fα(
α2

c2ρ
)− Fα(ρ+) = (1 − θ);

• or α < −cρ+, ρ− ≥ |α|
c

and there exists ρ ∈ (ρ+,
|α|
c
) and θ ∈ [0, 1] such that

{

Fα(ρ+)− Fα(ρ) = θ,

Fα(
α2

c2ρ
)− Fα(ρ−) = (1− θ).

Theorem 2.7. Suppose that ((ρ−, q−), (ρ+, q+)) belongs to GD(v). Then for all positive ε and for all
regularization Hε fulfilling the hypothesis of (8), there exists a piecewise C1 entropy solution of (8)
only depending on ξ = x − vt, such that (qε(−ε/2), ρε(−ε/2)) = (q−, ρ−) and (qε(ε/2), ρε(ε/2)) =
(q+, ρ+). By entropy solution, we mean that each discontinuity in the solution corresponds to a
entropy satisfying shock in the Euler equations.

Conversly, if (ρ−, q−) and (ρ+, q+) are the values in −ε/2 and ε/2 of such a solution of (8),
then they verify the two relations stated above.

Proof. Let (ρε, qε) be a solution of (8) which depends only on ξ = x− vt, is piecewise C1 and whose
discontinuities are entropy shocks. A straightforward consequence of Lemma 2.3 is that the quantity
αε (equals to ρε(uε−v)) is constant on the whole interval [−ε/2, ε/2]. In the sequel we suppose that
αε is positive. In that case the fluid’s velocity uε is everywhere larger than the particle’s velocity v
and the “entry” of the particle is on its right at ξ = −ε/2. We fix a state (ρ−, q−) ∈ R∗

+ × R at the
entry of the particle, and look for the (ρ+, q+) ∈ R∗

+ ×R at its exit. The reasoning is the same with
αε < 0 (and trivial if αε = 0), but the entry of the particle is on its right and it is more convenient
to fix the state (ρ+, q+).

There is only one solution which is smooth on the entire interval [−ε/2, ε/2]. We integrate (9)
on this interval to obtain

Fαε(ρ−)− Fαε(ρ+) = 1.

As depicted on Figure 1, the function Fαε decreases on (0, αε

c
) and increases on (α

ε

c
,+∞). Its

minimum is reached for αε

c
. Moreover, the regularization Hε of the Heaviside function is increasing.

As a consequence, ξ 7→ Fαε(ρε(ξ)) decreases, and ρε cannot cross continuously αε/c. On its interval
of smoothness, a solution of (8) is always subsonic (i.e |uε − v| ≤ c or equivalently cρε ≥ αε)
or always supersonic (i.e |uε − v| ≥ c or equivalently cρε ≤ αε). This explains the condition
(α
c
− ρ+)(

α
c
− ρ−) ≥ 0 in the second point of 2 in Definition 2.6.

On the other hand by Lemma 2.5, a discontinuity at a point ξ0 is entropy satisfying if and only
if αε(ξ0) > cρε(ξ0−). Therefore a solution has no discontinuity if α− ≤ cρ− and has at most one
discontinuity if α− > cρ−. We focus on this last case. The solution is smooth on (−ε/2, ξ0) and (9)
yields:

Fα(ρ−)− Fα(ρ
ε(ξ0−)) = Hε(ξ0).

There is a shock in ξ0, and Rankine-Hugoniot relations (10) imply that

ρε(ξ0−)ρ
ε(ξ0+) =

(αε)2

c2
.

In particular, cρε(ξ0+) ≥ αε and there is no shock after ξ0. We integrate (9) on (ξ0, ε/2) to get

Fα(ρ
ε(ξ0+))− Fα(ρ

ε
+) = 1−Hε(ξ0).

We obtain the third point with ρ = ρε(ξ0−) and θ = Hε(ξ0). The two types of solutions, continuous
everywhere or containing a single entropy shock, are described on Figure 1.
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1

1

ρρ

θ
θ

1− θ
1− θ

|α|
c

|α|
c

entropy shocknon entropy shock

ρ 7→ Fα(ρ)ρ 7→ Fα(ρ)

Figure 1: How to reach the density ρ+ (white circles) from the density ρ− (black circles) when α is
positive. On the left is the supersonic case cρ− < α; on the right is the subsonic case α ≤ cρ−.

In the following Corollary we extract properties of the germ GD(v).

Corollary 2.8. If the pair ((ρ−, q−), (ρ+, q+)) belongs to the germ GD(v), then we necessary have:

• α− = α+ := α;

• if α > 0 and cρ− ≥ α, then cρ− ≥ cρ+ ≥ α;

• if α < 0 and cρ+ ≥ |α|, then cρ+ ≥ cρ− ≥ |α|;

Proof. Suppose that α is positive. We already emphasized in the proof of Theorem 2.7 that if the
velocity at the entry of the particle is subsonic (i.e. cρ− ≥ α) then there is no discontinuity in the
solution and the solution remains subsonic: cρ− ≥ α. In that case, Fα(ρ−) − Fα(ρ+) = 1, and as
Fα increases on (α/c,+∞) we obtain that ρ− ≥ ρ+.

Remark 2.9. When the drag force depends only on α,

Fα(ρ) =
1

|D(ρ, α)|

(

α2

ρ
+ c2ρ

)

for some real C, and Fα has the remarkable property of being compatible with shocks at speed v in
the Euler equations:

∀α 6= 0, ∀ρ > 0, Fα

(

α2

c2ρ

)

= Fα(ρ).

It follows that a shock corresponds to a horizontal jump on the graph of Fα, which is not the case in
general. A consequence is that the right state (ρ+, q+) is the same whatever the value of θ is. The
contrast between the two situations is depicted on Figure 2 below.

9



ρρ|α
−
|

c

|α
−
|

c

ρ 7→ Fα(ρ) ρ 7→ Fα(ρ)

Figure 2: Densities ρ+ (white dots) accessible from ρ− with θ = 0 (light grey) 0 < θ < 1 (medium grey)
and θ = 1 (black). On the left, the drag force depends only on α, while on the right, it also depends on
ρ.

In that case, the germ GD(v) can be described more concisely: the second point of Definition 2.6
becomes

(

α2

ρ−
+ c2ρ−

)

−
(

α2

ρ+
+ c2ρ+

)

= sign(α)D(ρ, α), (12)

and we still have the two inequalities of Corollary 2.8

Remark 2.10. System (8) may not have any solution continuous on the whole interval [−ε/2, ε/2] if
ρ− is too close from α/c when α > 0. In the case of the linear drag force D(ρ, α) = λα, where λ ≥ 0
is a friction coefficient, an explicit computation shows that when α is positive there is no solution
ρ− belongs to

[

α

c
+

λα − α
√
4cλ+ λ2

2c2
,
α

c
+

λα+ α
√
4cλ+ λ2

2c2

]

.

2.3 Definition of the solution

Let us now reformulate the ODE (1c). The source term in (1b) is the exact opposite of the left hand
side in (1c), so the total impulsion is formally conserved through time:

d

dt

[∫

R

ρ(t, x)u(t, x)dx +mh′(t)

]

= 0. (13)

We can use this additional property of the model to give a precise definition of the ODE (1c).

Proposition 2.11. Let (ρ, u) be a solution of (1a)-(1b) such that for almost every t > 0, the traces
around the particle exist and are such that

((ρ−(t), q−(t)), (ρ+(t), q+(t))) ∈ GD(h′(t)).

Then, it satisfies the conservation of total impulsion (13) if and only if for almost every t > 0,

mh′′(t) = c2(ρ−(t)− ρ+(t))

(

1− (u−(t)− h′(t))(u+(t)− h′(t))

c2

)

, (14)

where the subscripts ± indicates the left and right traces around the particle: ρ±(t) = ρ(t, h(t)±).

Proof. If ((ρ−(t), q−(t)), (ρ+(t), q+(t))) belongs to GD(h′(t)), then q−(t) − h′(t)ρ−(t) is equal to
q+(t) − h′(t)ρ+(t). As usual, we denote by α(t) this quantity, and replace q = ρu by α + h′ρ. We
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have

mh′′(t) = −∂t

∫

R

ρ(t, x)u(t, x)dx

= −∂t

∫ h(t)

−∞

ρ(t, x)u(t, x)dx − ∂t

∫ +∞

h(t)

ρ(t, x)u(t, x)dx

= h′(ρ+u+ − ρ−u−) + (ρ−u
2
− + c2ρ−)− (ρ+u

2
+ + c2ρ+)

= h′2(ρ+ − ρ−) + ρ−

(

α2

ρ2−
+ 2h′ α

ρ−
+ h′2

)

− ρ+

(

α2

ρ2+
+ 2h′ α

ρ+
+ h′2

)

+ c2(ρ− − ρ+)

= h′2(ρ+ − ρ−) + α2

(

1

ρ−
− 1

ρ+

)

+ h′2(ρ− − ρ+) + c2(ρ− − ρ+)

= (ρ− − ρ+)

(

c2 − α2

ρ−ρ+

)

= c2(ρ− − ρ+)

(

1− (u− − h′)(u+ − h′)

c2

)

.

Remark 2.12. The ODE (14) does not seem to depend on the drag force: this dependence is hidden
in the assumption

((ρ−(t), q−(t)), (ρ+(t), q+(t))) ∈ GD(h′(t))

because the germ does depend on the drag force.

Remark 2.13. When the drag force depends only on α, which is conserved through the particle, the
initial ODE (1c) makes sense. In that case, it is not difficult to use the more concise description of
the germ (12) to prove that (1c) and (14) are equivalent.

Thanks to the previous reformulation of the ODE and on the entropy inequality (5), we define
the entropy solutions of the coupled problem (1):

Definition 2.14. Assume that (ρ0, q0) ∈ L∞(R)2 and v0 ∈ R. A triplet (ρ, q, h) ∈ L∞(R+ × R)×
L∞(R+ × R)×W 2,∞

loc (R+) is called an entropy solution of the problem (1) if:

• (ρ, q) is a weak solution of the isothermal Euler equations on the sets {(t, x) ∈ R∗
+ × R : x >

h(t)} and {(t, x) ∈ R∗
+ × R : x < h(t)}.

• For any entropy-entropy flux pair (E,G) such that E is convex and ∂qE(ρ, q) = J

(

q

ρ

)

, for

any non-negative test function Φ ∈ C∞
0 (R+ × R), we have

∫∫

R+×R

E(U)∂tΦ dt dx+

∫∫

R+×R

G(U)∂xΦ dt dx+

∫

R+

mP (h′(t))∂t(Φ(t, h(t)))dt

+

∫

R

Φ(0, ·)E(U0) dx+mP (v0)Φ(0, v0) ≥ 0

(15)

where P is a given antiderivative of J ;

• For almost every t > 0, the traces around the particle exist and belong to the germ at speed
h′(t):

((ρ(t, h(t)−), q(t, h(t)−)), (ρ(t, h(t)+), q(t, h(t)+))) ∈ GD(h′(t));

• For almost every t > 0, the particle is driven by the ODE:

mh′′(t) = c2(ρ−(t)− ρ+(t))

(

1− (u−(t)− h′(t))(u+(t)− h′(t))

c2

)

.

Remark 2.15. The entropy inequality (15) implies that the solution is an entropy solution of
the Euler equations on the sets {x < h(t)} and {x > h(t)}. Moreover, when the test function
Φ tends to a Dirac measure at (t, h(t)) for which the traces exist, (15) yields that

h′(t)(E(U−)− E(U+))− (G(U−)−G(U+)) +mh′′(t)P ′(h(t)) ≤ 0 (16)

where we denote by U± the left and right traces around the particle:

U− = (ρ(t, h(t)−), q(t, h(t)−)).
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In other words, the total energy is dissipated through the particle. This property is consistent
with the Definition 2.6 of the germ and the ODE (14). Indeed, if we introduce α and replace
h′′ by its expression in (14), Equation (16) becomes

α

[

α2 ρ
2
− − ρ2+
2ρ2−ρ

2
+

+ c2(ln(ρ+)− ln(ρ−))

]

≤ 0.

This holds true if (U0
−, U

0
+) belongs to GD(h′(t0)). This can be checked by treating sperately

the subsonic case and the supersonic case. In the latter case, we have to use that ρ+ ≤ α2

c2ρ−

which is easily deduced from Definition 2.6.

Remark 2.16. In the case of the scalar conservation law, it is not necessary to require the
existence of the traces. Indeed, as the solution is a classic solution on {x < h′}, strong traces
exist (see [Pan07] and [Vas01]). However, such a result is much harder to obtain in the system
case.

3 Riemann problem for a particle with a constant fixed veloc-

ity

In this section we focus on the uncoupled problem where the particle has a constant speed equal
to some given v in R. Moreover, we consider a class of very specific initial datum, which consists
in piecewise constant functions for the density ρ and for the momentum q = ρu, with a single
discontinuity falling exactly on the initial position of the particle. The problem under study in this
section is the Riemann problem:



















∂tρ+ ∂xq = 0,

∂tq + ∂x

(

q2

ρ
+ c2ρ

)

= −D(ρ, α)δvt,

ρ(0, x) = ρL1x<0 + ρR1x>0,
q(0, x) = qL1x<0 + qR1x>0,

(17)

where (ρL, qL) and (ρR, qR) belong to R∗
+ × R. We recall once for all that α denotes the quantity

q − vρ. As the particle’s trajectory is a straight line, we look for self-similar solutions of (17), i.e.
solutions that only depend on x/t. This section is devoted to the proof of the following theorem.

Theorem 3.1. Consider a drag force

D : R∗
+ × R −→ R

(ρ, α) 7→ D(ρ, α)

having the same sign as α, vanishing in α = 0 and C1. Suppose that D is an increasing function of
α and that |D| is a decreasing function of ρ. Then for all states (ρL, qL) and (ρR, qR) in R∗

+ × R

and for every particle velocity v in R, the Riemann problem (17) has a unique self-similar solution.

Example 3.2. All frictions of the form

Γ(ρ, u, h′) = ρn|u− h′|m−1(u− h′) = ρn−m|α|m−1α

with n ≥ 0, m ≥ 1 and m ≥ n, verify the two conditions of Theorem 3.1.

Let (ρ, q) be a self-similar solution of (17) and denote by (ρ−, q−) (respectively (ρ+, q+)) the
traces of the density and the momentum on the left (respectively on the right) of the particle, i.e.
on the line (t, (vt)−) (respectively on the line (t, (vt)+)). Then

(ρ|L, q|L) =
{

(ρ, q) on x < vt

(ρ−, q−) on x ≥ vt
and (ρ|R, q|R) =

{

(ρ+, q+) on x ≤ vt

(ρ, q) on x > vt

are self-similar solution of the classical isothermal Euler equations (without source term) for the
initial datum

(ρ(0, x), q(0, x)) = (ρL1x<0 + ρ−1x>0, qL1x<0 + q−1x>0)
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and
(ρ(0, x), q(0, x)) = (ρ+1x<0 + ρR1x>0, q+1x<0 + qR1x>0).

Therefore, on {(t, x), x < vt}, a solution of (17), is just the restriction on this set of a Riemann
problem for the Euler equations. The same holds true on {(t, x), x > vt}, for a different Riemann
problem.

In Section 3.1 we describe the set U−(ρL, qL, v) of all the values that a Riemann solution for
the classical Euler equations between (ρL, qL) and a state (ρ, q) ∈ R+ × R can take on the line
x = vt and the set U+(ρR, qR, v) of all the values that a Riemann solution for the classical Euler
equations between (ρ̄, q̄) ∈ R+ × R and (ρR, qR) can take on the line x = vt. The traces (ρ−, q−)
and (ρ+, q+) around the particle should be respectively chosen in those sets. The existence and
uniqueness to the Riemann problem (17) boils down to prove that there is a unique way to pick
(ρ−, q−) in U−(ρL, qL, v) and (ρ+, q+) in U+(ρR, qR, v) such that ((ρ−, q−), (ρ+, q+)) belongs to the
germ GD(v). In Section 3.2, we prove that if uL − v ≤ c and uR − v ≥ −c, any potential traces
(ρ±, q±) around the particle inherits the property |u± − v| ≤ c and conclude in that case. It will be
referred to as the subsonic case. The other case, referred to as the supersonic case and studied in
Section 3.3, is more complicated because different types of solutions arise.

Remark 3.3. In all the sequel, the terms subsonic and supersonic are used in the framework of the
particle. For example we say that a solution is subsonic if the difference between the velocity of the
particle and the fluid’s velocity on both side of the particle is smaller than the speed of sound c.

3.1 Accessible states around the particle

Let us start with some very classical results on the isothermal Euler equations without source term
that will be useful to determine the solution of (17).

Lemma 3.4. The isothermal Euler equations without source term

{

∂tρ+ ∂xq = 0,

∂tq + ∂x(
q2

ρ
+ c2ρ) = 0,

is a strictly hyperbolic system. The eigenvalues of its Jacobian matrix are

λi(ρ, q) =
q

ρ
+ (−1)ic

and the corresponding normalized eigenvectors are

ri(ρ, q) =

(

(−1)iρ
c

(−1)iq
c

+ ρ

)

.

They define two genuinely nonlinear fields. The i-th rarefaction waves express

ρ(s) =











ρL if s ≤ sL = qL
ρL

+ (−1)ic,

ρLe
(−1)i

c
(s−sL) if sL ≤ s ≤ sR,

ρR = ρLe
(−1)i

c
(sR−sL) if sR ≤ s,

and

q(s) =











qL if s ≤ sL = qL
ρL

+ (−1)ic,

[qL + ρL(s− sL)] e
(−1)i

c
(s−sL) if sL ≤ s ≤ sR,

qR = [qL + ρL(sR − sL)] e
(−1)i

c
(sR−sL) if sR ≤ s.

The speed of the i-shock is

σi =
qL
ρL

+ (−1)ic

√

ρR
ρL

and shocks are entropy satisfying if and only if uL ≥ uR.

We recall below a well-known result on the structure of the Riemann solution.
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Proposition 3.5. For all (ρa, qa) and (ρb, qb) in R∗
+ ×R, there exists a unique self-similar entropy

solution of the Riemann problem



















∂tρ+ ∂xq = 0,

∂tq + ∂x

(

q2

ρ
+ c2ρ

)

= 0,

ρ(0, x) = ρa1x<0 + ρb1x>0,
q(0, x) = qa1x<0 + qb1x>0.

It consists of the succession of a 1-wave (rarefaction or shock) linking (ρL, qL) to an intermediate
state (ρ∗, q∗) followed by a 2-wave (rarefaction or shock) linking (ρ∗, q∗) to (ρR, qR). We denote by

W (x/t; (ρa, qa), (ρb, qb))

this unique solution.

Proof. The proof of those two results are classical and can be found for example in [GR96].

Those tools allow us to describe the set of the accessible states from (ρL, qL) on the left of a
particle moving at speed v

U−(ρL, qL, v) =
{

W (v−; (ρL, qL), (ρ, q)), (ρ, q) ∈ R∗
+ × R

}

.

and the set of the accessible states from (ρR, qR) on the right of a particle moving at speed v

U+(ρR, qR, v) =
{

W (v+; (ρ̄, q̄), (ρR, qR)), (ρ̄, q̄) ∈ R∗
+ × R

}

in which the left and right traces around the particle must be chosen. According to Definition 2.6,
the quantity q− vρ must be conserved through the particle, so it is more convenient to reason with
the variables (ρ, q − vρ) rather than with the initial unknowns (ρ, q). We introduce the sets

V−(ρL, αL, v) = {(ρ−, q− − vρ−) : (ρ−, q−) ∈ U−(ρL, αL + vρL, v)} (18)

and
V+(ρR, αR, v) = {(ρ+, q+ − vρ+) : (ρ+, q+) ∈ U+(ρR, αR + vρR, v)} . (19)

Proving that there exists a unique solution to the Riemann problem (17) is equivalent to prove that

GD(v) ∩ (U−(ρL, qL, v)× U+(ρR, qR, v))

consists in a unique pair of states ((ρ−, q−), (ρ+, q+)). We now give a precise description of the sets
V−(ρL, αL, v) and V+(ρR, αR, v).

Lemma 3.6. Let (ρL, αL) ∈ R∗
+ × R and v ∈ R. Then

V−(ρL, αL, v) = {(ρL, αL)} ∪ Γsub
− ∪Ωsup

− ,

where Γsub
− is the graph of a decreasing function fsub

− : [ρL,ex,+∞] → R for some ρL,ex > 0,
included in {(ρ, α) : −cρ ≤ α ≤ cρ}, and Ωsup

− is the strict hypograph of a decreasing function
f sup
− : (0,+∞) → R, included in {(ρ, α) : α < −cρ}.

Lemma 3.7. Let (ρR, αR) ∈ R∗
+ × R and v ∈ R. Then

V+(ρR, αR, v) = {(ρR, αR)} ∪ Γsub
+ ∪ Ωsup

+

where Γsub
+ is the graph of a increasing function f sub

+ : [ρR,ex,+∞] → R for some ρR,ex > 0,
included in {(ρ, α) : −cρ ≤ α ≤ cρ}, and Ωsup

+ is the strict epigraph of a increasing function
f sup
+ : (0,+∞) → R, included in {(ρ, α) : α > cρ}.

Those sets are respectively depicted on the left and on the right of Figure 3. The subscript ex
refers to the extremity of Γsub

− and Γsub
+ .
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α α

ρ

ρ

Γsub
−

Ωsup
−

Γsub
+

Ωsup
+

(ρL, αL)
ρL,ex

ρR,ex

(ρR, αR)

α = cρ

α = cρ

α = −cρ α = −cρ

Figure 3: On the left, the set V−(ρL, αL, v) when −cρL < αL < cρL. On the right, the set V+(ρR, αR, v)
when αR < cρR.

Remark 3.8. By definition of α we have

{(ρ, α) : −cρ ≤ α ≤ cρ} = {(ρ, u)− c ≤ u− v ≤ c},

so Γsub
− and Γsub

+ contain only subsonic states (in the framework of the particle), while Ωsup
− and

Ωsup
+ contain only supersonic states (in the framework of the particle).

Proof (Lemma 3.6). We fix the particle velocity v and a left state (ρL, αL). The element of (ρ, α)
of the set V−(ρL, αL, v) is the value on the line x = vt of a Riemann problem with (ρL, αL) on its
left. Thus it is linked with (ρL, αL) by a succession of two waves, both traveling slower than v. Let
us first exhibit all the states (ρ∗, q∗) that can be linked to (ρL, qL) with a 1-wave traveling at speed
smaller than v. According to Lemma (3.4), with a 1-rarefaction wave we can reach all the states
(ρ, q) in the set

{(

ρLe
−

(s−(uL−c))

c , [qL + ρL(s− (uL − c))] e−
(s−(uL−c))

c

)

, uL − c ≤ s ≤ v
}

.

This set is empty if uL − c > v. Parametrized by ρ it rewrites

{(

ρ,

[

uL − c ln

(

ρ

ρL

)]

ρ

)

, ρLe
−

v−(uL−c)

c ≤ ρ ≤ ρL

}

.

Let us denote in this case ρL,ex = ρLe
−

v−(uL−c)

c . The states (ρ∗, q∗) accessible through a 1-shock
traveling slower than v satisfy







qL
ρL

− c
√

ρ∗

ρL
< v and ρ∗ > ρL,

q∗ = qL +
(

qL
ρL

− c
√

ρ∗

ρL

)

(ρ∗ − ρL).

We easily pass to the (ρ, α) variable: with a 1-wave traveling slower than v, we can reach all the
states (ρ, α) with α = f−(ρ), where

f−(ρ) =







[

αL

ρL
− c ln

(

ρ
ρL

)]

ρ if ρL,ex ≤ ρ ≤ ρL,

αL +
(

αL

ρL
− c
√

ρ
ρL

)

(ρ− ρL) if max(ρL,ex, ρL) < ρ,

and

ρL,ex =

{

ρLe
−

v−sL

c if sL = uL − c ≤ v,
(

uL−v
c

)2
ρL if uL − c > v.

If uL − v < c, this graph regroups all the 1-shocks and the 1-rarefaction waves leading to a density

higher than ρL,ex = ρLe
−

v−(uL−c)

c , while if uL − v ≥ c, this graphs contains only the 1-shocks

leading to a density higher than ρL,ex = ρL

(

uL − v

c

)2

=
αL

c2ρL
. We check that f− is concave and
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decreasing. Moreover, if uL − c ≤ v, f−(ρL,ex) = cρL,ex and f ′
−(ρL,ex) = 0, while if uL − c > v,

f−(ρL,ex) = αL. In particular, f−(ρ) < cρ for any ρ > ρL,ex as shown on Figure (4).

αα

ρρ ρL,exρL,ex

α = cρ

α = cρ

α = −cρ
α = −cρ

Figure 4: Accessible states via a 1-wave starting from (ρL, qL)(black dot) in the (ρ, α)-plane. Left, the
case uL − v ≤ c and right, the case uL − v > c. In gray are the 1-rarefaction waves and in black are the
1-shocks.

Let us now stop at any state (ρ∗, q∗) belonging to the graph of f−, and continue with a 2-wave
traveling at speed smaller than v. The set of all the states (ρ−, q−) that can be joined from (ρ∗, q∗)
with a 2-wave traveling at speed smaller than v is

{(

ρ∗e
(s−(u∗+c))

c , [q∗ + ρL(s− s∗)] e
(s−(u∗+c))

c

)

, u∗ + c ≤ s ≤ v
}

.

This set is empty if u∗ + c > v, and can be parametrized by ρ by
{(

ρ,

[

u∗ + c ln

(

ρ

ρ∗

)]

ρ

)

, ρ∗ ≤ ρ ≤ ρ∗e
v−(u∗+c)

c

}

.

With a 2-shock slower than v, we can reach all the states (ρ−, q−) such that






q∗
ρ∗

+ c
√

ρ−

ρ∗
< v and ρ− < ρ∗,

q− = q∗ +
(

q∗
ρ∗

+ c
√

ρ−

ρ∗

)

(ρ− − ρ∗).

Therefore the 2-waves traveling at speed smaller than v, starting from (ρ∗, q∗), are:

• If u∗ − v ≤ −c, all the 2-shocks and the 2-rarefaction waves leading to a density smaller than

ρ∗e
v−(u∗+c)

c ;

• If −c < u∗ − v < 0, only the 2-shock leading to a density smaller than

ρ∗,ex = ρ∗

(

v − u∗

c

)2

=
α2
∗

c2ρ∗
;

• If u∗ − v ≥ 0, there are no such 2-waves.

The Figure (5) resumes the first two cases.

αα

ρρ

ρ∗ρ∗,exρ∗,ex = ρ∗

α = cρ

α = cρ

α = −cρ
α = −cρ

Figure 5: Accessible states from (ρL, qL) (black dot) via a 1-wave stopped in (ρ∗, q∗) (white dots) followed
by a 2-wave in the (ρ, α)-plane. Left, the case where u∗ − v ≤ −c and right, the case −c < uL∗ − v < 0.
In gray are the 2-rarefaction waves and in black are the 2-shocks.
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We now prove that, as emphasized in Figure 5, all the states reached from (ρ∗, q∗) through a
2-wave traveling at speed smaller than v are such that α ≤ −cρ. This is easy to check for the
2-rarefaction waves and for the 2-shock when u∗ − v ≤ −c. When −c < u∗ − v < 0, the reachable

densities are smaller than
α2

∗

c2ρ∗
< ρ∗. We want to prove that

α = ρ

(

α∗

ρ∗
+ c

√

ρ

ρ∗
− c

√

ρ∗
ρ

)

≤ −cρ.

This is true because the function ρ 7→ α∗

ρ∗
+ c
√

ρ
ρ∗

− c
√

ρ∗

ρ
is increasing, and is equal to −c2ρ∗

|α∗|
, which

is smaller than −c.
To conclude, the set of the states reached from (ρL, αL) through a 1-wave slower than the particle

is the graph of f−. The set of the stated reached from (ρL, αL) through a 1-wave followed by a 2-
wave, both of them traveling at speed smaller than v, is a family of curves, entirely included in
{(ρ, α), α ≤ −cρ}. Those curves are portions of Lax curves, which fill the half plane R∗

+ ×R and do
not cross each other. For a fixes α < 0 such that f−(ρ) ≥ −cρ, it is not possible to reach densities

higher than the density obtain thanks to a shock at speed v, which is f−(ρ)2

c2ρ
. We can separate those

states in two categories, as depicted on the left of Figure 3:

• the subsonic ones (i.e the ones such that −cρ ≤ α ≤ cρ), which constitute the graph of the
function

f sub
− (ρ) =

{

f−(ρ) if ρL,exρ ≤ ρ−c

−cρ if ρ−c ≤ ρ

where ρ−c is the only density such that f−(ρ−c) = −cρ. We regroup those states in Γsub
− ;

• the supersonic ones, and more precisely the states such that α < −cρ, which formed the
hypograph of the function

f sup
− (ρ) =

{

f−

(

f−(ρ)2

c2ρ

)

if 0 < ρ < ρ−c

−cρ if ρ−c ≤ ρ.

We regroup those states in Ωsup
− .

Proof (Lemma 3.7). We do not prove this lemma which is exactly similar to Lemma 3.6. The
curve of the states accessible by a 2-wave traveling faster than v and ending in (ρR, qR), can be
parametrized by

f+(ρ) =







[

αR

ρR
+ c ln

(

ρ
ρR

)]

ρ if ρR,ex ≤ ρ ≤ ρR,

αR +
(

αR

ρR
+ c
√

ρ
ρR

)

(ρ− ρR) if max(ρR,ex, ρR) < ρ,

where

ρR,ex =

{

ρRe
v−(uR+c)

c if uR + c ≥ v,
(

v−uR

c

)2
ρR if uR + c < v.

If uR − v ≥ −c it is possible to follow all the 2-shocks and some 2-rarefaction waves. In this case
f+(ρR,ex) belongs to the line α = −cρ and f ′

+(ρR,ex) = 0. On the contrary if uR − v < −c, we can
only follow 2-shocks, and the state (ρR,ex, αR,ex) with the highest density we can reach verifies

αR,ex = αR and ρR,ex =
α2
R

c2ρR
.

We easily check that that f+ is convex, increasing and crosses the line α = cρ for a unique density
that we denote by ρc.

After similar computations for the 1-wave ending on a state (ρ∗, q∗ = f+(ρ∗)) we obtain

f sub
+ (ρ) =

{

f+(ρ) if ρR,ex ≤ ρ ≤ ρc,

cρ if ρc ≤ ρ,

and

f sup
+ =

{

f+

(

f+(ρ)2

c2ρ

)

if 0 < ρ < ρc,

cρ if ρc ≤ ρ.
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3.2 Resolution of the Riemann problem in the subsonic case

We are now in position to solve the Riemann problem (17) for a particle moving at speed v. In the
sequel, we denote by (ρ+, q+) the trace on the left of the particle, i.e. on the line x = (vt)− and by
(ρ−, q−) the trace on its right, i.e. on the line x = (vt)+. In this section, we treat a special case
implying that (ρL, αL) does not belong to Ωsup

+ and (ρR, αR) does not belong to Ωsup
− . A consequence

is that the left trace belongs to Γsub
− and the right trace belong to Γsub

+ .

Lemma 3.9. If (ρL, qL) and (ρR, qR) verify

uL − v ≤ c and − c ≤ uR − v

then (ρ−, q−) and (ρ+, q+) are necessary subsonic, i.e,

−c ≤ u− − v ≤ c and − c ≤ u+ − v ≤ c.

Proof. This is a straightforward consequence of the form of V−(ρL, αL, v) and V+(ρR, αR, v) exhib-
ited in Lemmas 3.6 and 3.7 and resumed on Figure 3. Definition 2.6 implies that q−−vρ− = q+−vρ+.
We denote by α this quantity. If α = 0 there is nothing to prove. Suppose α > 0. Lemma 3.6 shows
that V−(ρL, αL, v) contains only states such that u − v ≤ c. As a consequence, we necessary have
that cρ− ≥ α. The velocity at the entry of the particle is subsonic, thus it is also subsonic at its
exit: ρ+ ≥ α

c
(see Corollary 2.8). If α < 0, Lemma 3.6 shows that V+(ρR, αR, v) contains only states

verifying u − v ≥ −c. Using Corollary 2.8 again, we obtain that both ρ+ and ρ− are larger than
|α|
c

.

We are now looking for (ρ−, α−) in Γsub
− and (ρ+, α+) in Γsub

+ . The quantity α = q − vρ being
conserved through the particle, it is more convenient to parametrize the accessible sets Γsub

− and
Γsub
+ by α rather than by ρ. For this purpose, we introduce gsub− and gsub+ , the inverses of f sub

− and
f sub
+ . They exist because these two functions are strictly monotone. We now have

Γsub
− = {(ρ, α), ρ = gsub− (α), α ≤ f sub

− (ρL,ex)}

and
Γsub
+ = {(ρ, α), ρ = gsub+ (α), α ≥ f sub

+ (ρR,ex)}.
Lemma 3.10. If D has the same sign as α an is a nondecreasing function of α, the function

∆(α) = Fα(g
sub
− (α)) − Fα(g

sub
+ (α))

is strictly decreasing on any interval included in (0,+∞) where gsub− ≥ gsub+ and on any interval
included in (−∞, 0) where gsub− ≤ gsub+ ;

Proof. We compute the derivative of ∆:

[

Fα(g
sub
− (α)) − Fα(g

sub
+ (α))

]′
=F ′

α(g
sub
− (α))(gsub− )′(α) +

[

∂

∂α
Fα

]

(gsub− (α))

− F ′
α(g

sub
+ (α))(gsub+ )′(α)−

[

∂

∂α
Fα

]

(gsub+ (α))

On the one hand, α 7→ gsub− (α) decreases, α 7→ gsub+ (α) increases. We recall that for all α in there
interval of definition, cgsub± (α) ≥ |α|. If cρ is larger than |α|,

F ′
α(ρ) =

1

|D(ρ, α)|

(

c2 − α2

ρ2

)

≥ 0.

and it follows that
F ′
α(g

sub
− (α))(gsub− )′(α)− F ′

α(g
sub
+ (α))(gsub+ )′(α) ≤ 0.

On the other hand, by definition of Fα, we have
[

∂

∂α
Fα

]

(ρ2)−
[

∂

∂α
Fα

]

(ρ2) =

∫ ρ2

ρ1

∂

∂α

[

1

|D(r, α)|

(

c2 − α2

r2

)]

dr

=

∫ ρ2

ρ1

[−sign(D(r, α))∂αD(r, α)

|D(r, α)|2
(

c2 − α2

r2

)

− 2α

r2|D(r, α)|

]

dr.
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If cρ1 and cρ2 are both larger than α, the term c2− α2

r2
is nonnegative. Moreover D(r, α) and α have

the same sign and D is an non-decreasing function of α. Thus the integral has the opposite sign as
α(ρ2 − ρ1). In particular, on any interval where α is positive and gsub− ≥ gsub+ and on any interval
where α is negative and gsub− ≤ gsub+ ,

[

∂

∂α
Fα

]

(gsub− (α))−
[

∂

∂α
Fα

]

(gsub+ (α)) ≤ 0,

which proves the lemma.

We are now in position to state the result in the subsonic case.

Proposition 3.11. Let v ∈ R, (ρL, αL) ∈ R∗
+ × R and (ρR, αR) ∈ R∗

+ × R such that

−c ≤ uL − v ≤ c and − c ≤ uR − v ≤ c.

Then the set
GD(v) ∩ (V−(ρL, αL, v)× V+(ρR, αR, v))

is reduced to a unique element. Moreover, both traces belong to the subsonic triangle

{(ρ, α),−cρ ≤ α ≤ cρ} = {(ρ, u),−c ≤ u− v ≤ c}.

In other words, the Riemann problem (17) admits a unique solution, which is entirely subsonic.

Proof. Step 1: Properties of the traces.
Suppose that

((ρ−, α−), (ρ+, α+)) ∈ GD(v) ∩ (V−(ρL, αL, v)× V+(ρR, αR, v))

then α− = α+. We denote by α this quantity. In Lemma 3.9 we proved that

−c ≤ u− − v ≤ c and − c ≤ u+ − v ≤ c.

Thus we can use Corollary 2.8 to obtain that

• If α = 0 then ρ− = ρ+ and q− = q+;

• If α > 0, then ρ− > ρ+;

• If α < 0, then ρ− < ρ+.

Step 2: It exists a unique α0 such that gsub− (α0) = gsub+ (α0).
As cρL ≥ α, the upper extremity of gsub− is the point (ρL,ex, cρL,ex) (see the left of Figure 4,

ρL,ex has been defined in Lemma 3.6). Similarly as cρR ≥ |α|, the lower extremity of gsub+ is the
point (ρR,ex,−cρR,ex). If (ρL,ex, cρL,ex) belongs to Γsub

+ , as depicted on the left of Figure 6, we
directly obtain the existence of α0 = cρL,ex. Similarly if (ρR,ex,−cρR,ex) belong to Γsub

+ we have
α0 = −cρR,ex.

α α

ρ ρ

Γsub
−

Γsub
−

Γsub
+

(ρL, αL) (ρL, αL)

(ρ0, α0)

(ρ0, α0)

(ρR, αR) (ρR, αR)

Figure 6: In black, the graph of gsub− , in grey the graph of gsub+ . The intersection point (ρ0 = gsub± (α0), α0)
is either on the sonic line α = cρ or somewhere inside the triangle.
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If we are not on one of these cases, as in the right of Figure 6, we have

gsub− (cρL,ex) < gsub+ (cρL,ex) and gsub+ (−cρR,ex) < gsub− (−cρR,ex),

and α0 exists continuity of gsub− − gsub+ .

Step 3: Conclusion. Let us suppose that α0 > 0. According to the first step, the solution lies in
the set 0 ≤ α ≤ α0 (we check on Figure 6 that the relative positions of gsub− (α) and gsub+ (α) are only
correct in that zone). Moreover ∆(α0) = 0 and

∆(α) =

∫ gsub

− (α)

gsub

+ (α)

1

|D(α, ρ)|

(

c2 − α2

r2

)

dr −→
α→0+

+∞,

because D(ρ, 0) = 0 and gsub+ (0) 6= gsub− (0). By Lemma 3.10, the function ∆ is monotonous, thus
there exists a unique α in [0, α0] such that gsub+ (α)− gsub− (0) = 1. Therefore, (ρ−, α−) = (gsub− (α), α)
and (ρ+, α+) = (gsub+ (α), α) verify Definition 2.6 and give a solution.

3.3 Resolution of the Riemann problem in the supersonic case

In this Section we prove Theorem 3.1 when αL > cρL or αR < −cρR. Without loss of generality, let
us assume that αL > cρL; the case αR < −cρL may be treated in a symmetrical way. Lemma 2.8
does not hold anymore. We must study in detail the case where (ρL, αL) belongs to V+(ρR, αR, v),
which was excluded in the subsonic case. For this purpose, we introduce some notation, summarized
on Figure 7, which also recall the notation introduced in Lemmas 3.6 and 3.7. In the sequel we
denote by:

• for any subscript i and for any point (ρi, αi), we denote by (ρ̃i :=
α2

i

c2ρi
, αi) the state reached

with a shock at speed v. Remark that ˜̃ρi = ρi;

• ρL,ex the extremity of the curve gsub− . Lemma 3.6 shows that when uL − v > c, ρL,ex = ρ̃L ,
and that

∀α < 0, (gsup− (α), α) = ( ˜gsub− (α), α) and ∀α > 0, (gsup+ (α), α) = ( ˜gsub+ (α), α).

• ρE = gsup+ (αL) the intersection of the line α = αL with Γsup
+ . Note that ρ̃E = gsub+ (αL).

• (ρR,ex, αR,ex) the extremity of the curve gsub+ . We recall that, by Lemma 3.7, if αR < −cρR,

αR,ex = αR and ρR,ex =
α2

R

c2ρR
; and that if αR ≥ −cρR, ρR,ex ≤ ρR and αR,ex = −cρR,ex.

• ρF = gsup− (αR,ex) the intersection of the line α = αR,ex with Γsup
− . Note that ρ̃F = gsub+ (αR,ex).

ρ

gsub+

gsup+

gsub−

gsup−

ρL ρ̃L = ρL,exρE

ρ̃E

ρR ρR,exρF ρ̃F

α

αL

αR,ex

Ωsup
+

Ωsup
−

Figure 7: Notation for the supersonic case αL > cρL. V+(v, ρR, αR) is the union of the open set Ωsub
+

above the graph of gsup+ and of the graph of gsub+ ; V−(v, ρL, αL) is the union of the open set Ωsub
− below

the graph of gsup− and of the graph of gsub− .

We first exhibit a link between the position of (ρL, αL) and the position of (ρR, αR).
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Lemma 3.12. Let (ρL, αL) ∈ R∗
+ ×R and (ρR, αR) ∈ R∗

+ ×R such that αL > cρL and αR < −cρR.
It is not possible to have

(ρL, αL) ∈ Ωsup
+ and (ρR, αR) ∈ Ωsup

− .

Proof. The hypothesis αR < −cρR implies that ρR,ex = ρ̃R. Suppose that (ρL, αL) belongs to Ωsup
+ .

Then ρL < ρE , and we have ρ̃E < ρ̃L. The monotonicity of gsub+ and gsub− gives ρ̃R = ρR,ex < ρ̃F .
Thus ρR > ρF , which means that (ρR, αR) does not belong to Ωsup

− .

It allows us to exclude the case (ρR, αR) ∈ Ωsup
− of our study. Indeed, if (ρR, αR) ∈ Ωsup

− , then
αR < −cρ and (ρL, αL) does not belong to Ωsup

− , and we treat that case by symmetry. We now state
the result in the supersonic case.

Proposition 3.13. Let (ρL, αL) ∈ R∗
+ × R and (ρR, αR) ∈ R∗

+ × R such that αL > cρL and
(ρR, αR) /∈ Ωsup

− Then the set

GD(λ) ∩ (V−(ρL, αL, v)× V+(ρR, αR, v))

is reduced to a unique element ((ρ−, α−), (ρ+, α+)).

Proof. We prove the result for a drag force only depend on α, in which case we simply denote it
by D(α). Because of the compatibility between the germ GD(v) and the shocks at speed v, the
germ is smaller and easier to describe. Instead of Definition (2.6), we can use the three relations of
Corollary 2.8 and (12). Even though it simplifies the proof, all the key ingredients are present in
that case. The proof of Theorem 3.1 in the general case is given in Appendix A.

The proof relies on the relative positions of ρL and ρE , and on the fact that the transformation

(ρ, α) 7→
(

ρ̃ = α2

c2ρ
, α
)

reverses the positions of points around the point (α/c, α), as depicted on

Figure 7.
Case 1: ρL ≤ ρE, or equivalently (ρL, αL) ∈ Ωsup

+ .
In that case, we can chose (ρ−, α−) = (ρL, αL) if and only if

(

α2
L

ρL
+ c2ρL

)

−
(

α2
L

ρE
+ c2ρE

)

> D(αL).

Assume that this inequality is fulfilled. Then, as fαL
: ρ 7→ α2

L

ρ
+ c2ρ decreases on (0, αL

c
), there

exists a unique ρ+ ∈ (ρL, ρE) such that

(

α2
L

ρL
+ c2ρL

)

−
(

α2
L

ρ+
+ c2ρ+

)

= D(αL).

Therefore we obtain the solution

((ρL, αL), (ρ+, αL)) ∈ GD(v) ∩ (V−(ρL, αL, v)× V+(ρR, αR, v)) .

In that case we have
(

α2
L

ρ̃L
+ c2ρ̃L

)

−
(

α2
L

ρ̃E
+ c2ρ̃E

)

> D(αL),

so ∆(αL) > 1. The function gsub− − gsub+ decreases, so it remain positive on (0, αL). Therefore,
Lemma 3.9 shows that there is no other solution. Suppose now that

(

α2
L

ρL
+ c2ρL

)

−
(

α2
L

ρE
+ c2ρE

)

< D(αL).

Thus we have that ∆(αL) < 1 and ∆(0) = +∞ and we conclude for the existence and the uniqueness
as in Proposition 3.11.

Case 2: ρL > ρE, or equivalently (ρL, αL) /∈ Ωsup
+ .

It implies that ρ̃E > ρ̃L. Moreover, (ρR, αR) does not belong to Ωsup
− . The fact that ρF < ρR

implies that ρ̃F ≥ ρR,ex and that ∆(αL) < 0. We conclude exactly as in the subsonic case, see the
proof of Proposition 3.11.
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3.4 Asymptotics

Depending on the intensity of the drag force D, the model (1) exhibit a whole range of behavior,
from the lack of particle to the presence of a solid wall.

Proposition 3.14. Suppose that the drag force writes D(α) = λD0(α), with D0 a fixed drag force.
When λ tends to infinity, the solution of (17) tends to the solution of the Riemann problem with
the same initial data for the Euler equation with a solid wall along x = vt. When λ vanishes, the
solution of (17) tends to the solution of the Riemann problem with the same initial data for the
Euler equation without particle.
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Figure 8: Exact solutions of the same Riemann problem for different friction coefficients λ

Proof. Let us begin by the case λ −→ +∞. Then in the supersonic case, it becomes impossible to
chose (ρ−, α−) = (ρL, αL) because the inequality

(

α2
L

ρL
+ c2ρL

)

−
(

α2
L

ρE
+ c2ρE

)

> λD0(αL)

will always fail. This is illustrated by Figure 9, where the drag force is D(α) = λα: this property
holds for λ = 1, while it is lost for λ = 20. In the subsonic case, as gsub− and gsub+ take value in
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Figure 9: Two types of solutions when αL > cρL, for the drag force D(α) = λα. For small enough λ
there is no wave on the left of the particle. As λ becomes greater, we recover the subsonic solution.

a bounded interval, for all non null α, ∆(α) tends to 0 as λ tends to infinity. Therefore, (ρ−, α−)
tends to (gsub− (0), 0) while (ρ+, α+) tends to (gsub+ (0), 0). This is exactly the solution for the Riemann
problem with a solid wall. When λ tends to zero, remark that in the subsonic case (or the supersonic
case when (ρL, αL) is not in Ωsup

+ ) the solution of ∆(α) = 0 tends to the crossing point α0. In the
supersonic case when (ρL, αL) ∈ Ωsup

+ , the inequality

(

α2
L

ρL
+ c2ρL

)

−
(

α2
L

ρE
+ c2ρE

)

> λD0(αL)
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is verified for small enough λ, and (ρ−, α−) is (ρL, αL) while (ρ+, α+) tends to (ρL, αL). It corre-
sponds to the value of the solution of the Euler equation without particle on the line x = vt. Those
two asymptotics behaviors are depicted, in the subsonic case, on Figure 8.

4 Existence of up to three solutions when |D| is not a decreas-

ing function of ρ

When |D| is not a decreasing function of ρ, Condition (22) may not hold and we can lose uniqueness
and obtain up to three solutions. This is not surprising: the choice D(ρ, u−v) = ρ is, up to a change
of variable and pressure law, similar to the problem of the shallow water with a discontinuous
topography, where these three solutions arise. In a more general framework, hyperbolic systems
with resonant source term like ours have been investigate in [IT92] and [GL04], where the possible
coexistence of three solutions is proved.

Suppose that this condition is reversed in

∀α, ∀ρ1 < ρ2 ≤ |α|
c
, Fα(ρ1)− Fα(ρ2) ≥ Fα(ρ̃1)− Fα(ρ̃2). (20)

Fix αL > 0 and ρL < αL

c
. For 0 ≤ θ1 ≤ θ2 ≤ 1, consider ρ1 and ρ2 such that

FαL
(ρL)− FαL

(ρi) = θi,

and ρ̄1 and ρ̄2 such that
FαL

(ρ̃i)− FαL
(ρ̄i) = 1− θi.

We recall that ρ̃i =
α2

L

c2ρi
. Then we have

FαL
(ρ̄1)− FαL

(ρ̄2) = (FαL
(ρ̄1)− FαL

(ρ̃1)) + (FαL
(ρ̃1)− FαL

(ρ̃2)) + (FαL
(ρ̃2)− FαL

(ρ̄2))

≤ −(1− θ1) + (FαL
(ρ1)− FαL

(ρ2)) + (1− θ2) with (20)

≤ 0.

It makes possible the coexistence of three facts that exclude each other under Hypothesis (22).

• First, there exists (ρ0, αL) ∈ Ωsup
+ such that:

FαL
(ρL)− FαL

(ρ0) = 1.

Thus (ρ−, α−) = (ρL, αL) and (ρ+, α+) = (ρ0, αL) gives a solution that has no wave on the
left of the particle, and two supersonic waves on its right, as depicted in Figure 10;

• Second,
FαL

(ρ̃L)− FαL
(ρ̃E) ≤ 1.

If D is still an increasing function of α, we can apply the proof of Proposition 3.11 to obtain
the existence of a pair of subsonic traces. This solution has a 1-wave on the left of the particle,
and a 2-wave on its right, as depicted in Figure 11;

• Finally, the state reached on the right of the particle by jumping immediately (ξ0 = −ε/2
or θ = 0 in Theorem 2.7) is smaller than ρ̃E , while the state reached by jumping in the end
(ξ0 = ε/2 or θ = 1) is larger than ρ̃E . Then (ρ−, α−) = (ρI , αL) and (ρ+, α+) = (ρ̃E , αL) are
admissible traces around the particle. The corresponding solution has no wave on its left, and
just a 2-wave on its right, as depicted in Figure 12.
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Figure 10: Solution with two supersonic traces
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Figure 11: Solution with two subsonic traces
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Figure 12: Solution with one supersonic trace (on the left) and one subsonic trace (on the right)

Figures 10, 12 and 11 represent the three exact solutions at time T = 1 that are obtained for the
Riemann problem



















∂tρ+ ∂xq = 0,

∂tq + ∂x

(

q2

ρ
+ 4ρ

)

= −0.9ρ2uδ0,

ρ(0, x) = 1 1x<0 + 5 1x>0,
q(0, x) = 5 1x<0 + 9 1x>0.

(21)

In that case we have Fα(ρ) =
α
2ρ2 + c2

α
log(ρ). The traces have been numerically computed thanks

to the previous analysis. Another way to see that we can lose uniqueness, and obtain up to three
solutions, is depicted on Figure 13. Following [GL04], we introduce a merged 1-wave, which regroups
all the state (ρI , αI) that can be reached from (ρL, αL) through three successive steps:

• From (ρL, αL) we reach a state (ρ−, α−) on the left of the particle, by following a 1-wave and
a 2-wave, both traveling at a speed smaller than the particle’s velocity v:

(ρ−, α−) ∈ V−(ρL, αL, v);

• From (ρ−, α−) we reach, through the particle, a state (ρ+, α+):

((ρ−, α−), (ρ+, α+)) ∈ GD(v);

• From (ρ+, α+) we reach (ρI , αI) with a 1-wave traveling faster than v.

The solutions of the Riemann problem (17) are the intersections between this merged 1-wave and
the usual curve of 2-waves arriving in (ρR, αR). In the case of a supersonic left state the merged
1-wave contains three different types of state:

• Those obtained by taking (ρ−, α−) = (ρL, αL), then by decreasing continuously the quantity
FαL

of 1 inside the particle. In that case (ρ+, α+) is supersonic, and we can carry on with any
1-rarefaction wave and some 1-shocks to reach (ρI , αI). This is part 1 of the black curve on
Figures 13 and 14.

• Those obtained by taking (ρ−, α−) = (ρL, αL), then by decreasing continuously the quantity
FαL

of θ for some θ ∈ [0, 1], making a shock inside the particle, and finally continuously
decreasing of (1 − θ) along FαL

. In that case (ρ+, q+) is subsonic and there exists no 1-wave
faster than v starting from (ρ+, q+). This is part 2 of the black curve on Figures 13 and 14.
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• Those obtained by starting from (ρL, αL) with a 1-shock slower than the particle. There exists
no such 1-rarefaction wave and we reach a subsonic state (ρ−, α−), which lies on the dashed
gray line on Figure 13. The state (ρ+, α+) is necessarily obtained by decreasing continuously
of 1 along the graph of Fα− . Therefore, (ρ+, α+) is subsonic and there exists no 1-wave faster
than v starting from (ρ+, q+). This is part 3 of the black curve on Figures 13 and 14.

As we can see on Figures 13 and 14, the shape of the merged 1-wave depends on the relative positions
of the densities ρ0,+ and ρ1,+. The Hypothesis (22) ensures that ρ0,+ ≤ ρ1,+, and the merged 1-wave
curve can be parametrized by ρ as in Figure 14. If this hypothesis does not hold, it becomes possible
that ρ0,+ > ρ1,+, in which case the merged 1-wave curve has a Z-shape and can intersect the 2-waves
curve up to three times as in Figure 13.

Remark 4.1. When D depends only on α, ρ0,+ = ρ1,+ and the segment disappears.
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Figure 13: Example of non uniqueness with the friction D(ρ, q, h′) = ρ2(u− h′) = ρα. The gray line is
the usual curve of 2-wave arriving in (ρR, αR) (gray star). The black line is the merged 1-curve from
(ρL, αL) (black star).
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Figure 14: Example of uniqueness with the friction Γ(ρ, q, h′) = u− h′ = α
ρ
. The gray line is the usual

curve of 2-wave arriving in (ρR, αR) (gray star). The black line is the merged 1-curve from (ρL, αL)
(black star).

Appendix A Proof of Proposition 3.13 when D also depends

on the density

When D also depends on ρ, the germ is much larger than when it depends only of α. For (ρ−, α) is
fixed, with α > 0 and cρ− < α, it contains one supersonic state (ρ0, α), and a whole set of subsonic
states (ρ, α) with ρ taking values in some interval [ρ0+, ρ1+]. When D depends only on α, this
interval reduces to a single point ρ0+ = ρ1+ = ρ̃0. In that case we only had to worry about the
relative positions of ρ0, ρE and ρL on the one hand, and of ρ̃0, ρ̃E and ρ̃L on the other hand (see
Figure 7 for the notation). Those relative positions were easy to deduce from one another. In the
general case, we have to study the relative positions of ρ0, ρE and ρL on the one hand, and of the
whole interval [ρ0+, ρ1+] with ρ̃E and ρ̃L on the other hand. The following property insures that
those relative are linked to each other nicely.

Proposition A.1. if |D| is a decreasing function of ρ, then for every α ∈ R, for all states (ρ1, α)

and (ρ2, α) in R∗
+ × R∗ with ρ1 < ρ2 ≤ |α|

c
we have

Fα(ρ1)− Fα(ρ2) ≤ Fα

(

α2

c2ρ1

)

− Fα

(

α2

c2ρ2

)

. (22)

Proof. To prove (22) it is sufficient to prove that the function

ρ 7→ Fα(ρ)− Fα

(

α2

c2ρ

)
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increases on (0, |α|
c
). We compute its derivative:

∂

∂ρ

[

Fα(ρ)− Fα

(

α2

c2ρ

)]

= F ′
α(ρ) +

α2

c2ρ2
F ′
α

(

α2

c2ρ

)

=
1

|D|(ρ, α)

(

c2 − α2

ρ2

)

+

α2

c2ρ2

|D|( α2

c2ρ
, α)

(

c2 − α2

α4

c4ρ2

)

=

[

1

|D|(ρ, α) −
1

|D|( α2

c2ρ
, α)

]

(

c2 − α2

ρ2

)

.

On (0, |α|
c
), this quantity has same sign as

|D|(ρ, α)− |D|
(

α2

c2ρ
, α

)

,

which is positive if |D| is a decreasing function of ρ, because ρ ≤ α2

c2ρ
on (0, |α|

c
).

In the sequel we use the notation of Section 3.3 summarized on Figure 7. We recall in particular

that for any (ρ, α), the state denoting by (ρ̃, α) is reached with a shock at speed v: ρ̃ = α2

c2ρ
. Let us

first describe the form of the germ imposed by Hypothesis (22).

Lemma A.2. Suppose that the drag force D verifies the Hypothesis (22). Fix (ρ−, q−) such that
α− = q− − vρ− is positive and that ρ− ≤ α−

c
. Then:

• If it exists ρ0 ≤ α−

c
such that Fα−(ρ−)−Fα−(ρ0) = 1, there exists a unique density ρ1,+ greater

than α−

c
, such that Fα−(ρ̃−)− Fα−(ρ1,+) = 1. Then solutions of (8) in ξ = ε/2 can take the

values (ρ+, q+) with
ρ+ ∈ [ρ0,+, ρ1,+] and q+ = α− + vρ+,

where we denote by ρ0,+ = ρ̃0;

• If ρ0 does not exist but ρ1,+ does, the solutions of (8) in ξ = ε/2 can take the values (ρ+, q+)
with

ρ+ ∈
[α−

c
, ρ1,+

]

and q+ = α− + vρ+,

and we denote by ρ0,+ = α−

c
;

• If neither ρ0 nor ρ1,+ exist, system (8) does not admit any solution on the whole interval
(−ε/2, ε/2).

Those three cases are illustrated in Figure 15 below.

1 1
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c

α
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c

ρ−ρ−

ρ−
ρ̃−

ρ̃−
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ρ0

ρ0,+

ρ1,+

ρ1,+

Figure 15: The three cases of Lemma A.2 from left to right. The bold arrows are entropy shocks at
speed v.

28



Proof (Lemma A.2). We first suppose that, as in top of Figure 16,

FαL
(ρL)− FαL

(ρE) ≥ 1.

Then, there exists ρ0 ∈ [ρL, ρE ] such that

FαL
(ρL)− FαL

(ρ0) = 1,

and the state (ρ0, αL) belongs to Ωsup
+ and provides an admissible state on the right of the particle.

Let us prove that it is the unique solution. As ρ0 < ρE , Hypothesis (22) yields ρ0,+ > ρ̃E . We also
proved in Lemma A.2 that ρ1,+ ≥ ρ0,+. Therefore, the interval [ρ0,+, ρ1,+] does not intersect Γsub

+ .
Eventually, Hypothesis (22) gives that Fα(ρ̃L) − Fα(ρ̃E) ≥ 1. Thus we cannot choose any subsonic
traces by Lemma 3.10. We now suppose that

FαL
(ρL)− FαL

(ρE) < 1.

ρ

ρ

ρ
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+
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+
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+
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−
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−
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Figure 16: Relative positions of ρ0,+ and ρ1,+.

If Fα(ρ̃L)−Fα(ρ̃E) < 1 (Figure 16, in the middle), which rewrites ∆(αL) < 0, Lemma 3.10 implies
that there exists a unique solution inside the subsonic triangle |α| < c. Moreover, Hypothesis (22)
yield Fα(ρL) − Fα(ρE) < 1, and [ρ0,+, ρ1,+] is included in [αL

c
, ρ̃E ], so there is no solution with
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(ρL, αL) for the left trace. Eventually, if Fα(ρ̃L)−Fα(ρ̃E) > 1 (at the bottom of Figure 16), there is
no solution in the subsonic triangle. But in that case, ρ1,+ exists and is greater than ρ̃E , while ρ0,+
is smaller than ρ̃E (and might be equal to αL

c
). Therefore we can take (ρL, αL) for the left trace

and (ρ̃E , αL) for the right trace.
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