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Abstract

We survey some recent mathematical works we have contributed to that are
related to the modeling of defects in materials science at different scales. We em-
phasize the similarities (need of a reference, often periodic system; renormalization
procedure; etc) shared by models arising in different contexts. Our illustrative
examples are taken from electronic structure models, atomistic models, homoge-
nization problems. The exposition is pedagogic and deliberately kept elementary.
Both theoretical and numerical aspects are addressed.
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1 Introduction

This article is not a state-of-the-art survey of all existing mathematical approaches for
addressing the question of the modeling of defects in materials science. The field is enor-
mous. International conferences, thematic programs worldwide are organized around this
topic. Our article is rather a recollection of some of our own works and the works by
the group of researchers we belong to in this direction. Because we have no expertise in
Physics, Chemistry or Mechanics, we will keep the exposition on a purely mathematical
footing. We are interested in mathematical methodologies that allow, starting from an
ideal medium, to model the same medium in the presence of imperfections. On pur-
pose, we say here “medium” and “imperfections”, in order not to let our mathematical
constructions unintentionally carry a physical meaning. We do not want to discuss the
physical relevance of the models we study or derive. Our colleagues from other disci-
plines will assess this. However, we acknowledge that the primary applications we have
in mind concern “materials” as examples of “media”. Likewise, if one wants to equip our
mathematical discussion with a physical relevance, “point defects” (such as a vacancy in a
crystalline structure) rather than general defects in these materials are to be born in mind.
Thus our specific choice of title for this article and the slight abuse of terminology we allow
ourselves. The modeling of more sophisticated defects (such as dislocations), or the ap-
plication to other contexts, is perhaps possible using similar techniques, or improvements
of those. We will not claim this is the case, nor proceed further in this direction.

Before we definitively turn to exclusively mathematical considerations, we would like
to make the following points on the relevance of our mathematical endeavour for materials
science, or other applied contexts. The defects we are considering are essential elements
of the modeling because they allow to pass from an idealized model, which nowhere exists
in the real world, to a practically relevant model. In that sense, they are not defects but
just part of reality. In addition to this, and for what specifically regards materials science,
the point defects we consider here have been much less studied than other types of defects,
such as e.g. dislocations, for which the mathematical literature is much broader (at least
for phenomenological models at the mesoscale). An important remark we would like to
emphasize is that we do realize that there exists an extensive literature in mechanical
engineering, nuclear engineering and materials science about all types of defects and all
possible modeling strategies for those. Our endeavour is systematic and mathematical,
and therefore is, to this extent, different and new.

In order to readily present our line of thought, we start with a simple example: a set
of interacting particles clamped on the real line. Consider 2N + 1 point particles, at the
positions Xk, k = −N,−N + 1, · · ·N − 1, N , with the convention X−N ≤ X−N+1 ≤ · · · ≤
XN . Assume that a given particle inXk only interacts with the particles inXk−1 and Xk+1

(with the obvious adaptation when k = −N or N). The interaction is a nearest neighbor
interaction modeled by a potential V (|Xj−Xi|) for |i− j| = 1, and zero otherwise. When
N is finite (as in a finite size molecular system), the energy of the system is clearly

EN =
N−1∑

k=−N

V (|Xk+1 −Xk|). (1.1)
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Suppose now that the particles are clamped at integer positions, Xk = k, and let their
number N grow to infinity. The energy EN clearly diverges: it has value E0

N = 2NV (1)

since the interparticle distance is everywhere set to 1. Only the energy per particle
E0
N

2N+1

(also equal to the energy per unit “volume” in that simplified case) converges, to the
value V (1). The latter value can be given the name of energy of the periodic system, since
it evidently models the energy of the infinite periodic system we have just constructed
letting N grow to infinity.

Let us now depart from this ideal (that is, periodic) system. We have, at least, two
ways to do so.

First, we may modify the positions of all particles. This may be achieved assuming
now that the k-th particle has a random position Xk(ω) = k + Yk(ω) where, say, all
the random variables Yk, −N ≤ k ≤ N , are independent and identically distributed.
The same argument as above, this time formalized by the law of large numbers, yields
the expectation value E(V (1 + Y1 − Y0)) (when this exists) as the energy of the infinite,
now imperfect, system we have constructed. Note that randomness, although a possible
track, is not the only track. For instance, the deterministic system Xk = k + 1/2 for
(2n)2 < |k| ≤ (2n+ 1)2, Xk = k for (2n+ 1)2 < |k| ≤ (2n+ 2)2, clearly admits an energy
per particle (which, incidentally, is identical to that of the original periodic system), even
though the system is by no means periodic and the “perturbation”, measured with respect
to the original system, does not vanish at infinity. In other terms, the perturbation is
global, as in the random case, although entirely deterministic. We leave to the reader the
exercise of constructing a similar perturbation that does modify the energy per particle
obtained in the limit and likewise an example of an infinite system that does not have an
energy per particle for a generic interaction potential V .

Another direction we may take is to modify our periodic system locally. Instead of,
as above, perturbing each and every position Xk = k of the particles, we leave all the
particles unperturbed except one, say the particle k = 0. This is now a local perturbation.
We assume that X0 = a 6= 0. The energy of the finite system with 2N +1 particles is now

Edefect
N =

−2∑

k=−N

V (|Xk+1 −Xk|) + V (|1 + a|) + V (|1 − a|) +
N−1∑

k=1

V (|Xk+1 −Xk|). (1.2)

Of course, if we now mimic the argument of the previous paragraph and consider
Edefect
N

2N+1
,

we immediately find that this quantity shares the same limit as
E0
N

2N + 1
when N grows

to infinity. Our “defect” being unique and localized, it does not show up in the limit of
an infinite number of particles. In order to get a nontrivial effect, we have to proceed
otherwise and model the energy of the perturbed system differently. Considering the
difference

Edefect
N − E0

N = V (|1 + a|) + V (|1 − a|) − 2V (1) (1.3)

allows for all unperturbed terms (those for |k| > 1) to cancel out, leaving a quantity that
has a limit when N goes to infinity (in this simplified case, it is even independent of N).
Clearly, V (|1 + a|) + V (|1− a|)− 2V (1) may be seen as the energy of the periodic system
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with a defect at zero, being understood that the energy is counted with reference to the
ideal periodic system.

One step further is to combine the above two directions of perturbation and either
randomly perturb a periodic system, or deterministically perturb a perfect random system
(or both!). Since we do not want to bore our reader with unnecessary technicalities, we
will postpone such developments. Likewise, we may combine all the ideas briefly outlined
above with the notion of change of scale: the same thinking allows to derive models at
the macroscale from the models manipulated at the microscale. Again, we postpone ...

In a nutshell, our whole article is devoted to showing that the above line of thought
is quite general. It allows one to obtain energy models in the presence of defects, for a
large range of models (atomistic models as above, quantum models such as Thomas-Fermi
type and Kohn-Sham type models) and at different scales. It also allows one to define
homogenized limits of some elliptic problems with oscillatory, not necessarily periodic
coefficients with the same degree of “explicitness” as that of the periodic case.

Our article is articulated as follows. The formal simplified argument above has demon-
strated the need to have an appropriate renormalized notion of energy, whether it is an
energy per unit volume (or per particle), or an energy counted with respect to some ref-
erence “perfect” system. Often, the latter system is a periodic system. Occasionally, it
can be a random ergodic stationary system. To start with, we therefore have to, at least
briefly, survey the mathematical modeling of such periodic, or random, systems, all ideal
in some sense. We will first do so in the context of homogenization theory in Section 2.
The same issue, this time in the context of electronic structure models for materials, is
postponed until Section 5. As is well known, the questions of limit energy for an infinite
system of particles and homogenization limit for a partial differential equation are inti-
mately related to one another, and this is why we consider both contexts in this review
article. In addition, the question of change of scale for a microscopic system (with the pur-
pose to obtain theories for the energy at the macroscopic scale) is also very much related
to homogenization. When perfect (meaning, periodic or random stationary) models are
recalled, we are in position to progressively introduce imperfections in our ideal settings.
We will do so using random modeling in Section 3 and entirely deterministic modeling
in Section 4, both in the context of homogenization (with the exception of Section 4.2
which considers the adaptation of our arguments to electronic structure theory). Then,
after Section 5 we already mentioned, we will consider in Section 6 defects for materials
and their effect on the electronic structure.

We conclude this introduction emphasizing that we will simply outline, or even sketch
the mathematical derivations and results. The reader is referred to the publications in
reference for all the mathematical details. Our purpose here is to give the reader a flavour
of what the difficulties are and how they have been solved or circumvented to give rise to
a consistent scientific scheme that allows to model, in particular, defects in materials.
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2 Periodic and random homogenization

As mentioned in the introduction, we cannot address the modeling of defects embedded
in a perfect structure without being able to model this perfect structure beforehand.
The present section therefore starts with, in Section 2.1, an extremely brief survey of
the homogenization of elliptic equation with periodic coefficients. We then proceed with
Section 2.2 to the case of random (stationary ergodic) coefficients. Of course, this setting
itself can be seen as a perturbation of the periodic setting, although it is quite a major
perturbation! It can alternatively be seen as a perfect structure itself, where defects can
be possibly superimposed. We will not go in the latter direction. We will rather use the
random setting as a general context and consider within this general context some specific
situations that can indeed model small (in a sense made precise in the body of Section 3)
perturbations (therefore defects) of the periodic setting.

2.1 Periodic homogenization

To begin with, we recall some basic ingredients of elliptic homogenization theory in the
periodic setting. We refer e.g. to the monographs [9, 27, 43] for more details on homoge-
nization theory.

We consider, in a regular domain D in R
d, the problem





−div
[
Aper

(
x
ε

)
∇uε

]
= f in D,

uε = 0 on ∂D,
(2.1)

where f ∈ H−1(D) and the matrix Aper is symmetric and Z
d-periodic. We manipulate for

simplicity symmetric matrices, but the discussion carries over to non symmetric matrices
up to slight modifications. We assume Aper satisfies the usual properties of coercivity and
boundedness (made precise in (3.1)-(3.2) below).

The corrector problem associated to (2.1) reads, for p fixed in R
d,





−div (Aper(y) (p+ ∇wp)) = 0,

wp is Z
d-periodic.

(2.2)

It has a unique solution up to the addition of a constant. Then, the homogenized coeffi-
cients read

[A∗]ij =

∫

Q

(ei + ∇wei
(y))T Aper(y)

(
ej + ∇wej

(y)
)
dy =

∫

Q

eTi Aper(y)
(
ej + ∇wej

(y)
)
dy,

where ei, i = 1, . . . , d, denote the canonical vectors of R
d and Q is the unit cube. The

main result of periodic homogenization theory is that, as ε goes to zero, the solution uε

to (2.1) converges to u∗ solution to




−div [A∗∇u∗] = f in D,

u∗ = 0 on ∂D.
(2.3)
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The convergence holds in L2(D), and weakly in H1
0 (D). The correctors wei

may then
also be used to “correct” u∗ in order to identify the behavior of uε in the strong topology

H1
0 (D). Several other convergences on various products involving Aper

(x
ε

)
and uε also

hold. All this is well documented.

The practical interest of the approach is evident. No small scale ε is present in the
homogenized problem (2.3). At the price of only computing d periodic problems (2.2)
(as many problems as dimensions in the ambient space, take indeed p the vectors of the
canonical basis of R

d), the solution to problem (2.1) can be efficiently approached for ε
small. A direct attack of problem (2.1) would require taking a meshsize smaller than ε.
The difficulty has been circumvented. Of course, many improvements and alternatives
exist in the literature.

2.2 Random ergodic stationary homogenization

The present section introduces the classical stationary ergodic setting. We choose to
present the theory in a discrete stationary setting, which is more appropriate for our
specific purpose in the next sections. Random homogenization is more often presented
in the continuous stationary setting. Although the two settings are different (neither of
them being an extension of the other), the modifications needed to pass from one setting
to the other are easy.

Let (Ω,F ,P) denote a probability space. For any random variable X ∈ L1(Ω, dP),
we denote by E(X) =

∫
Ω
X(ω)dP(ω) its expectation value. We fix d ∈ N

∗, and assume
that the group (Zd,+) acts on Ω. We denote by (τk)k∈Zd this action, and assume that it
preserves the measure P, i.e

∀k ∈ Z
d, ∀A ∈ F , P(τkA) = P(A).

We assume that τ is ergodic, that is,

∀A ∈ F ,
(
∀k ∈ Z

d, τkA = A
)
⇒ (P(A) = 0 or 1).

In addition, we define the following notion of stationarity: any F ∈ L1
loc

(
R
d, L1(Ω)

)
is

said to be stationary if

∀k ∈ Z
d, F (x+ k, ω) = F (x, τkω) almost everywhere in x, almost surely. (2.4)

In this setting, the ergodic theorem can be stated as follows (see [46, 70]). Let F ∈
L∞

(
R
d, L1(Ω)

)
be a stationary function in the sense of (2.4). For k = (k1, k2, · · · kd) ∈ R

d,
we set |k|∞ = sup

1≤i≤d
|ki|. Then

1

(2N + 1)d

∑

|k|∞≤N

F (x, τkω) −→
N→∞

E (F (x, ·)) in L∞(Rd), almost surely.

This implies that (denoting by Q the unit cube in R
d)

F
(x
ε
, ω
)

∗−⇀
ε→0

E

(∫

Q

F (x, ·)dx
)

in L∞(Rd), almost surely.
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It is useful to intuitively define stationarity and ergodicity in terms of material mod-
eling. Pick two points x and y 6= x that differ from an integer shift at the microscale in
the material. The particular local environment seen from x (that is, the microstructure
present at x) is generically different from what is seen from y (that is, the microstruc-
ture present at y). However, the average local environment in x is identical to that in y
(considering the various realizations of the random material). In mathematical terms, the
law of microstructures is the same at all points. This is stationarity. On the other hand,
ergodicity means that considering all the points in the material amounts to fixing a point
x in this material and considering all the possible microstructures present within x+Q.

We now fix D an open, smooth and bounded subset of R
d, and A a square matrix of

size d, which is assumed stationary in the sense defined above, and which is assumed to
enjoy the classical assumptions of uniform ellipticity and boundedness. Then we consider
the boundary value problem





−div
(
A
(
x
ε
, ω
)
∇uε

)
= f in D,

uε = 0 on ∂D.
(2.5)

Standard results of stochastic homogenization [9, 43] apply and allow to find the homog-
enized problem for problem (2.5). These results generalize the periodic results recalled
in Section 2.1. The solution uε to (2.5) converges to the solution to (2.3) where the
homogenized matrix is now defined as:

[A∗]ij = E

(∫

Q

eTi A (y, ·)
(
ej + ∇wej

(y, ·)
)
dy

)
,

where for any p ∈ R
d, wp is the solution (unique up to the addition of a random constant)

in
{
w ∈ L2

loc(R
d, L2(Ω)) | ∇w ∈ L2

unif(R
d, L2(Ω))

}
to





−div [A (y, ω) (p+ ∇wp(y, ω))] = 0, a.s. on R
d

∇wp is stationary in the sense of (2.4),

E

(∫

Q

∇wp(y, ·) dy
)

= 0.

(2.6)

We have used above the notation L2
unif for the uniform L2 space, that is the space of

functions for which, say, the L2 norm on a ball of unit size is bounded above independently
from the center of the ball.

A striking difference between the stochastic setting and the periodic setting can be
observed comparing (2.2) and (2.6). In the periodic case, the corrector problem is posed
on a bounded domain (namely, the periodic cell Q), since the corrector wp is periodic. In
sharp contrast, the corrector problem (2.6) of the random case is posed on the whole space
R
d, and cannot be reduced to a problem posed on a bounded domain. The fact that the

random corrector problem is posed on the entire space has far reaching consequences for
numerical practice. Truncations of problem (2.6) have to be considered, and the actual
homogenized coefficients are only correctly captured in the asymptotic regime.
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3 Different tracks for modeling imperfections using

randomness

As announced above, we now use the random setting as a general context, that is a
tool, to generate perturbations of the periodic setting. To each type of perturbation we
consider corresponds a specific type of defects. These defects all have in common some
repetitive character. Localized defects will be addressed later on in this article.

3.1 Random deformations of the periodic setting

A specific stochastic setting has been introduced and studied in [12]. It is motivated by
the consideration of random geometries (we mean, materials) that have some relation to
the periodic setting. Here, and not unexpectedly given what we mentioned so far in this
article, the periodic setting is taken as a reference configuration. The actual configuration
is seen via a mapping from the reference configuration to the actual configuration.

We fix some Z
d-periodic, square matrix Aper of size d, assumed to satisfy

∃γ > 0 | ∀ξ ∈ R
d, ξTAper(y)ξ ≥ γ|ξ|2, almost everywhere in y ∈ R

d, (3.1)

∀i, j ∈ {1, 2, · · · , d}, [Aper]ij ∈ L∞
(
R
d
)
. (3.2)

We consider the following problem:





−div
(
Aper

(
Φ−1

(
x
ε
, ω
))

∇uε
)

= f in D,

uε = 0 on ∂D,
(3.3)

where the function Φ(·, ω) is assumed to be a diffeomorphism from R
d to R

d for P-almost
every ω. The diffeomorphism is assumed to additionally satisfy

EssInf
ω∈Ω, x∈Rd

[det(∇Φ(x, ω))] = ν > 0, (3.4)

EssSup
ω∈Ω, x∈Rd

(|∇Φ(x, ω)|) = M <∞, (3.5)

∇Φ(x, ω) is stationary in the sense of (2.4). (3.6)

Such a Φ is called a random stationary diffeomorphism.

The following result is proved in [12]:

Theorem 1 Let D be a bounded smooth open subset of R
d, and let f ∈ H−1(D). Let Aper

be a square matrix which is Z
d-periodic and satisfies (3.1)-(3.2). Let Φ be a random sta-

tionary diffeomorphism satisfying hypotheses (3.4)-(3.5)-(3.6). Then the solution uε(x, ω)
to (3.3) satisfies the following properties:

(i) uε(x, ω) converges to some u∗(x) strongly in L2(D) and weakly in H1(D), almost
surely;
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Figure 1: We show a particular realization of Aper ◦Φ−1(x, ω) for η = 0.05. Reprinted from [28]

(ii) the function u∗ is the solution to the homogenized problem:




−div (A∗∇u∗) = f in D,

u∗ = 0 on ∂D.
(3.7)

In (3.7), the homogenized matrix A∗ is defined by:

[A∗]ij = det

(
E

(∫

Q

∇Φ(z, ·)dz
))−1

E

(∫

Φ(Q,·)

(ei + ∇wei
(y, ·))T Aper

(
Φ−1(y, ·)

)
ej dy

)
,

(3.8)
where for any p ∈ R

d, wp is the solution (unique up to the addition of a random
constant) in

{
w ∈ L2

loc(R
d, L2(Ω)) | ∇w ∈ L2

unif(R
d, L2(Ω))

}
to





−div [Aper (Φ−1(y, ω)) (p+ ∇wp)] = 0,

wp(y, ω) = w̃p (Φ−1(y, ω), ω) , ∇w̃p is stationary in the sense of (2.4),

E

(∫

Φ(Q,·)

∇wp(y, ·)dy
)

= 0.

(3.9)

3.2 Small random perturbations of the periodic setting

The next step is to superimpose to the setting defined in the previous section an actual
assumption that encodes that the material considered is a perturbation of a periodic
material. This is achieved by writing (see Figure 1)

Φ(x, ω) = x+ ηΨ(x, ω) +O(η2). (3.10)

It has been shown in [12] that, when Φ in (3.3) is such a perturbation of the identity
map, the solution to the corrector problem (3.9) may be developed in powers of the small
parameter η. It reads w̃p(x, ω) = w0

p(x) + ηw1
p(x, ω) +O(η2), where w0

p solves

−div
[
Aper (p+ ∇w0

p)
]

= 0, w0
p is Q-periodic, (3.11)
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and where w1
p solves





−div
[
Aper∇w1

p

]
= div

[
−Aper∇Ψ∇w0

p − (∇ΨT − (div Ψ)Id)Aper (p+ ∇w0
p)
]
,

∇w1
p is stationary and E

(∫

Q

∇w1
p

)
= 0.

(3.12)
The problem (3.12) in w1

p is random in nature, but it is in fact easy to see, taking the
expectation, that w1

p = E(w1
p) is Q-periodic and solves the deterministic problem

−div
[
Aper∇w1

p

]
= div

[
−Aper E(∇Ψ)∇w0

p − (E(∇ΨT ) − E(div Ψ)Id)Aper (p+ ∇w0
p)
]
.

This is useful because, on the other hand, the knowledge of w0
p and w1

p suffices to obtain a

first order expansion (in η) of the homogenized matrix. DefineA0
ij =

∫

Q

(
ei + ∇w0

ei

)T
Aper ej

and

A1
ij = −

∫

Q

E(div Ψ)A0
ij+

∫

Q

(ei+∇w0
ei
)TAper ej E(div Ψ)+

∫

Q

(
∇w1

ei
− E(∇Ψ)∇w0

ei

)T
Aper ej,

we then have
A∗ = A0 + ηA1 +O(η2). (3.13)

As subsequently shown in [28], a similar approach can be applied to the problem once
discretized by a finite element approach. More details on this approach can be found
in [28].

3.3 Rare but possibly large random perturbations

We now consider a slightly different perturbative approach, described in full details in [3, 4,
5]. It could equally well be presented in the setting of random diffeormophisms introduced
in Section 3.1 above, but for simplicity we present it in the more classical setting of
Section 2.2.

As above, we consider our random material as a small perturbation of a periodic
material. The matrix that models its response is thus written as

Aη(x, ω) = Aper(x) + bη(x, ω)Cper(x), (3.14)

where, with evident notation, Aper is a periodic matrix modeling the unperturbed material,
and where Cper is a periodic matrix modeling the perturbation. The amplitude of the
perturbation, which used to be modeled by a deterministic coefficient η in the previous
section, is now a scalar stationary random field bη(x, ω). We assume that this field satisfies

‖bη‖L∞(Q;Lp(Ω)) → 0
η→0

, (3.15)

for some 1 ≤ p < ∞. For well-posedness of the problem, we also assume there exists
0 < α ≤ β such that for almost all x ∈ R

d and for almost all ω ∈ Ω,

∀ξ ∈ R
d, ∀η > 0, α|ξ|2 ≤ Aη(x, ω)ξ · ξ and |Aη(x, ω)ξ| ≤ β|ξ|.
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Figure 2: A typical random realization of the Bernoulli law for the perturbed periodic
material.

Condition (3.15) states that the perturbation in (3.14) is small on average. However,
it does not prevent the perturbation to be large, once in a while, because we only have
p < ∞ (note that the setting of the previous section corresponds to a situation where
p = ∞). Whereas the idea underlying the setting of the previous section was “perturb the
periodic material possibly often but only slightly”, the intuitive image behind the present
setting is “perturb the periodic material only rarely, but then possibly largely”.

When the exponent p in (3.15) is strictly larger than one, a theory similar to that of
the previous section can be developed. Assuming that mη = ‖bη‖L∞(Q;Lp(Ω)) −→ 0 as η
vanishes, it may be proved, up to the extraction of a subsequence, that the homogenized
tensor Aη,∗ admits a first order expansion in terms of the small “coefficient” mη. The
coefficients are easily expressed using periodic corrector problems built from the matrices
Aper and Cper. The remainder in the expansion can indeed be shown to be o(mη) in a
certain sense and under appropriate assumptions.

We now address a case that is very different in nature (see Figure 2). Consider the
prototypical case

bη(x, ω) =
∑

k∈Zd

1{Q+k}(x)B
k
η (ω), (3.16)

where the Bk
η are independent identically distributed random variables. Their common

law is assumed to be a Bernoulli law of parameter η. This setting satisfies condition
(3.15) for all 1 ≤ p < +∞. The difficulty with a possible expansion in “powers” of bη
is intuitively that, a Bernoulli variable B, being valued in {0, 1}, is such that Bp = B
for all p. So all terms in the expansion are potentially of the same order. A different
strategy is needed. We now explain an alternative, formal approach, for which we do not
know any rigorous foundation to date. The recent work [60] is a first step towards the
mathematical foundation of our ideas. Although definite conclusions on the validity of the
approach have yet to be obtained, the numerical tests we have performed (and reported
upon in [4]) show its practical rectitude and efficiency.
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The starting point of the formal argument consists in noticing that in the corrector
problem

−div [A (y, ω) (p+ ∇wp(y, ω))] = 0, (3.17)

the only source of randomness comes from the coefficient A (y, ω). Therefore, in theory, if
one knows the law of this coefficient, one knows the law of the corrector function wp(y, ω)
and therefore may compute the homogenized coefficient A∗, the latter being a function
of this law. When the law of A is an expansion in terms of a small coefficient, so is the
law of wp. Consequently A∗ can be obtained as an expansion. The difficulty to make this
argument rigorous is that the laws we are talking about are laws of infinite dimensional
processes, since A and wp are random fields. We are therefore only able to give a formal
presentation. Heuristically, on the cube QN = [0, N ]d and at order 1 in η, the probability
to get the perfect periodic material (entirely modeled by the matrix Aper) is (1 − η)N

d ≈
1 − Ndη + O(η2), while the probability to obtain the unperturbed material on all cells
except one (where the material has matrix Aper+Cper) is Nd (1−η)Nd−1η ≈ Ndη+O(η2).
All other configurations, with more than two cells perturbed, yield contributions of orders
higher than or equal to η2. This gives the intuition (and this intuition can be turned into
a mathematical proof when one restricts the problem to considering truncations of the
corrector problem on large domains, see [4]) that the first order correction indeed comes
from the difference between the material perfectly periodic except on one cell and the
perfect material itself. At least formally, Aη,∗ = Aper,∗ + ηA1,∗ + o(η) where Aper,∗ is the
homogenized matrix for the unperturbed periodic material and

A1,∗ ei = lim
N→+∞

∫

QN

[
(Aper + 1QCper)(∇wNei

+ ei) − Aper(∇w0
ei

+ ei)
]
, (3.18)

where w0
ei

is the corrector for Aper, and wNei
solves

− div
(
(Aper(x) + 1QCper(x))(∇wNei

(x) + ei)
)

= 0 in QN , wNei
QN − periodic. (3.19)

Note that the integral appearing in the right-hand side of (3.18) is not normalized: it a
priori scales as the volume Nd of QN and has finite limit only because of cancellation
effects between the two terms in the integrand. This is very similar in nature to the
modeling strategy taken in Section 6.1: a flawless (periodic) environment is subtracted
to the actual environment and serves as a normalization. This is also reminiscent of our
simple example (1.3).

There actually exists (see the references mentioned above) a formal generalization of
(3.18) that allows for recovering the setting of the previous cases. The approach of the
present section therefore appears to be the most general approach to the modeling of
“small” random perturbations.

The approach has been extensively tested. It is observed that, using the perturbative
approach, the large N limit for cubes of size N is already very well approached for small
values of N . As in the previous section, the computational efficiency of the approach is
clear: solving the two periodic problems with coefficients Aper and Aper + 1QCper for a
limited size N is much less expensive than solving the original, random corrector problem
for a much larger size N .
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Figure 3: From left to right: zero defect, one defect and two defects.

An interesting follow-up is examined in [49]: when the second order term is needed,
configurations with two defects have to be computed (see Figure 3). They all can be seen
as a family of PDEs, parameterized by the geometrical location of the defects. Reduced
basis techniques have been shown to be useful and allow for a definite speed-up in the
computation.

4 Modeling imperfections deterministically

In sharp contrast to the previous sections, we will now follow a different route to model
defects in a perfect structure. We will not resort to any random modeling and will
proceed entirely deterministically. The theories we will construct are no stranger to
random theories (some relation is thoroughly examined in [12], and we will not proceed
in this direction here) but they remain very different in nature and allow for different
developments.

Our starting point is a theory developed in [10], and summarized in Section 4.1, that
allows for defining the energy per particle of infinite systems of interacting particles,
provided the locations of these particles satisfy rather general geometric assumptions. To
some extent, these assumptions are generalizations of more classical assumptions such as
the prototypical periodicity assumption. To already get an idea of the type of generality
these assumptions carry, the reader can for instance consider the simple case of a periodic
lattice where a finite number of sites have been displaced. This is exactly the case we
introduced in (1.2). It is clear that the local failure of periodicity is no obstacle to the
definition of an energy per particle. We will show that much more general perturbations
can be considered. Actually the set of particles may even globally depart from a periodic
lattice and still be admissible for defining an energy per particle. We have again seen an
example in the introduction. Whether or not some difference with the periodic case shows
up in the energy per particle is another issue. We will survey the question of energy per
particle of these “general” structures in Section 4.2.

We will next move on to the application of the above ideas to the context of homoge-
nization. Our construction of general sets of points can be adapted to this context and be
useful there, on a very abstract level. Schematically, to the notion of energy per particle in
an infinite system corresponds the notion of homogenized limit for an oscillatory system.
Both are averaged (renormalized, homogenized, ...) quantities. The assumptions set on
the location of points for the definition of the energy per particle can be adapted and
give appropriate assumptions on the obstacles, perforations, microscopic structure for the
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homogenization problem to admit a homogenized limit. In contrast to the mathematical
endeavours that also aim at addressing homogenization for very general structures, our
own line of thought is to reach generality but not at the price of giving up explicitness.
We want computable expressions for all the objects we manipulate: averages, homoge-
nized coefficients, corrector functions. This will be exposed in Section 4.3. We however
only have preliminary results in this direction. So our Section 4.4 will be devoted to a
specific, concrete case where the situation is completely clear. The type of construction
and the tools we have introduced allow us to consider the question of localized defects
in periodic structures and how they affect the macroscopic, homogenized limit. Like in
the case of a localized defect for a set of particles (bear in mind our elementary exam-
ple (1.2)), no specific interesting phenomenon (that is, difference in energy, or, in the
language of homogenization, difference in the homogenized limit) shows up if we consider
averaged quantities. The idea, in homogenization, is to zoom in at the vicinity of the
defect and compare with the periodic situation (exactly like we considered differences in
energy in (1.3)).

4.1 Deterministic nonperiodic structures

In [10], we have considered an infinite set of points in R
d, denoted by {Xi}i∈N, and have

established some geometric properties that allow us to define its average energy. More
precisely, we have proved that the following properties allowed us to define the average
energy of the infinite set of particles {Xi}i∈N for a large class of models:

Definition 1 We shall say that a set of points {Xi}i∈N is admissible if it satisfies the
following:

(H1) sup
x∈Rd

#
{
i ∈ N / |x−Xi| < 1

}
< +∞;

(H2) ∃R > 0 such that inf
x∈Rd

#
{
i ∈ N / |x−Xi| < R

}
> 0;

(H3) for any n ∈ N, the following limit exists

lim
R→∞

1

|BR|
∑

Xi0
∈BR

· · ·
∑

Xin∈BR

δ(Xi0
−Xi1

,···Xi0
−Xin) = ln, (4.1)

and is a non-negative uniformly locally bounded measure.

We use here the convention that if n = 0, l0 is the constant function equal to

l0 = lim
R→∞

1

|BR|
#
{
i ∈ N / Xi ∈ BR

}
.

Here and below, BR denotes the open ball of R
d with center 0 and radius R, and δY ,

with Y ∈ R
d, denotes the Dirac mass at the point Y .
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Remark 4.1 It is also possible to give a fully geometric characterization by replacing

(H3) with the following property: ∀n ∈ N, ∀(η0, η1, · · · ηn) ∈
(
R

∗
+

)n+1
, ∀(h1 · · · , hn) ∈

(Rd)n, the following limit exists:

fn(η0, h1, η1, h2, η2, · · · , hn, ηn) = lim
R→∞

1

|BR|
#

{
(i0, i1, · · · , in) ∈ N

n+1,

|Xi0 | ≤ η0R, |Xi0 −Xi1 − h1| ≤ η1, · · · , |Xi0 −Xin − hn| ≤ ηn

}
, (4.2)

with convergence in L∞.

Intuitively, (H1) means there is no arbitrarily large cluster of particles, whereas (H2)
means there is no arbitrarily large ball in R

d containing none of the Xi.
Assumption (H3) may be seen as a condition on correlations. It is therefore rather

natural in a context where we aim to define averages. However, the set of assumptions
(H1)-(H2)-(H3) is for genericity. In some particular cases of simple models of energy, such
as a two-body potential, there is no need for a condition on correlations of order higher
than 2. In such a case, only (H1)-(H2) and (H3) for n = 0, 1 are needed for the definition
of the energy per particle. For the energy per unit volume, it is even sufficient to have
(H1)-(H2) and (H3) for n = 1. On the other hand, in the case of quantum models (such
as Thomas-Fermi type theories), nonlinearities imply the need of (H3) for all n ∈ N. None
of the properties (H1), (H2) and (H3) implies another one, as is proved in [10].

Given Definition 1, we introduce the corresponding functional spaces:

Definition 2 Let {Xi}i∈N be an admissible set, and denote by A({Xi}) the vector space
generated by the functions of the form

f(x) =
∑

i1∈N

∑

i2∈N

· · ·
∑

in∈N

ϕ(x−Xi1 , x−Xi2 , · · · , x−Xin), (4.3)

with ϕ ∈ D(R3n). Then, for any k ∈ N and any p ∈ [1,+∞), we denote by Ak,p({Xi}),
or simply Ak,p when there is no ambiguity, the closure of A({Xi}) for the norm ‖ · ‖Wk,p

unif
.

When k = 0, we use the notation Ap for A0,p. The closure of A for the norm ‖·‖L∞(Rd)

being a set of continuous functions, we will denote it by Ac. We will call A∞ the closure
for the L∞(Rd) norm of the space of functions of the form (4.3), with ϕ ∈ L∞(Rd) having
compact support.

Remark 4.2 In the above definition, hypothesis (H2) is actually not needed. It was only
needed in [10] to deal with a definition of nonlocal N -body energies. This is not the case
here.

Note that Ak,p is the closure for the W k,p
unif norm of the algebra generated by functions

of the form
f(x) =

∑

i∈N

ϕ(x−Xi), ϕ ∈ D(Rd).

We also point out that in the particular case of a periodic lattice {Xi}i∈N, Ak,p({Xi}i∈N)
is the algebra of periodic functions with the appropriate period and regularity.

The point is, any function in the spaces Ak,p has an average (see the proof in [10]):
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Lemma 1 Let {Xi}i∈N be an admissible set of points. Then, for any f ∈ Ak,p, the
following limit exists:

〈f〉 = lim
R→∞

1

|BR|

∫

BR

f.

In addition, in the special case of an f of the form (4.3), we have

〈f〉 =

∫

Rd

∫

Rd(n−1)

ϕ(x, x− h1, · · · , x− hn−1)dl
n−1(h1, · · · , hn−1)dx.

Examples of {Xi} satisfying (H1)-(H2)-(H3) In dimension 3, besides the evident
periodic case, when the set {Xi}i∈N is a periodic lattice, for instance Z

3, and the almost
periodic case, when the set {Xi}i∈N is almost periodic (see [69]), we wish to cite two
prototypical examples:

• the case of a compactly perturbed periodic system: {Xi}i∈N is a periodic set, except
for a finite number of points. For instance, Z

3 \ {0}, or Z
3 ∪ {(0, 0, 1

2
)} satisfy this

condition. Then it is possible to show that we have: Ap({Xi}) = Lpper(Z
3)+Lp0(R

3),

where Lp0(R
3) = {f ∈ Lploc(R

3), lim
|x|→∞

‖f‖Lp(B+x) = 0} (with B the unit ball). In

other words, in this case, the algebra consists of periodic functions up to local
perturbations, clearly reflecting the geometry of the set of points {Xi}.

• the case of two semi-crystals glued together : the set {Xi}i∈N is equal to some lattice
ℓ1 on a half space, and to some (other) lattice ℓ2 on the other half space: {Xi}i∈N =
(ℓ1∩H+)∪(ℓ2∩H−), where H+ = {x ∈ R

3, x ·a ≥ 0} and H− = {x ∈ R
3, x ·a < 0},

for some vector a 6= 0.

4.2 Energy of nonperiodic structures

We now consider a set of points {Xi}i∈N satisfying our assumptions (H1)-(H2)-(H3) of
the previous section, and place a nucleus, say of unit charge, at each Xi. We then equip
this nuclear system with an equal (infinite) number of electrons. Our purpose is to define
a quantum energy for this system. In doing so, we will assume that the reader is familiar
with quantum models, and in particular with the Thomas-Fermi-von Weizsäcker (TFW)
model we will manipulate. If that is not the case, the reader might consider skipping this
section altogether and return to its reading after that of Section 5.

For simplicity, we will only consider the case of smeared out nuclei, that is, the measure
defining the set of nuclei is

m =
∑

i∈N

m0(· −Xi)

for some smooth, nonnegative, normalized functionm0. In view of the classical expressions
of the periodic setting for the TFW model (that is, expressions (5.29), (5.30), (5.31) of
Section 5), the model expected to be found (and indeed obtained) for a general geometry
of nuclei as defined in the previous section formally reads:

ITFW∞ = inf

{
〈|∇√

ρ|2〉 + 〈ρ5/3〉 +
1

2
〈|∇Φ|2〉, ρ ≥ 0, 〈ρ〉 = 1, −∆Φ = 4π(m− ρ)

}
.

(4.4)
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The symbol 〈·〉 of course denotes the average in the sense given by Lemma 1, and we
need to check that the functional setting we have developed in the previous section allows
us to correctly pose the variational problem, in such a way that a minimizer can be
appropriately defined and determined.

The first observation is that we cannot hope to define a unique minimizer if all what
we ask to a minimizing function is to minimize (4.4). Indeed modifying ρ by adding a
compactly supported function does not change the averages present in (4.4). In any event,
we therefore need a more stringent definition of a minimizer. We do so using the notion
of local ground state.

Definition 3 Let {Xi}i∈N be an admissible set of points. We will say that ρ is a local
ground state of (4.4) if

∀ϕ ∈ D(R3) s.t. ρ+ ϕ ≥ 0 and

∫

R3

ϕ = 0,

∫

R3

(
|∇√

ρ+ ϕ|2−|∇√
ρ|2
)
+

∫

R3

(
(ρ+ϕ)5/3−ρ5/3

)
+

∫

R3

Φϕ+
1

2

∫

R3

∫

R3

ϕ(x)ϕ(y)

|x− y| dx dy ≥ 0,

(4.5)

where Φ is the effective potential, namely a solution to

−∆Φ = 4π(m− ρ).

The key step is next to prove, in line with Lemma 4:

Theorem 2 Let {Xi}i∈N be an admissible set, and let (u,Φ) be the unique solution in
L∞(R3) × L1

unif(R
3) to the system





−∆u+ u7/3 − Φu = 0,
−∆Φ = 4π(m− u2),
u ≥ 0.

(4.6)

Then, u ∈ A2,2({Xi}i∈N), and Φ ∈ Ap({Xi}i∈N) for any p < 3.

This theorem, proved in [10] for point nuclei, also applies to the case of smeared out
nuclei we consider here. It can then be shown that ρ = u2 is a local ground state of the
problem in the sense of Definition 3 if and only if u solves the above system of equations.
Consequently, it is a minimizer to (4.4). The key ingredient for both facts to hold is of
course the strict convexity of the TFW problem.

4.3 Application to homogenization theory

The question now under consideration is to know whether any infinite set of points sat-
isfying properties (H1)-(H2)-(H3) gives rise to algebras Ak,p that allow to carry out the
homogenization procedure. Actually, the answer is yes, at least if (H3) is modified in
order to include a form of translation invariance. For instance, one may replace (H3) by
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(H3’) for any n ∈ N, the following limit exists

lim
ε→0

µn
(x
ε
, h1, · · · , hn

)
= νn(h1, · · · , hn),

(and is independent of x), where

µn(y, h1, · · · , hn) =
∑

i0∈Zd

∑

i1∈Zd

· · ·
∑

in∈Zd

δ(Xi0
,Xi0

−Xi1
,··· ,Xi0

−Xin)(y, h1, h2, · · · , hn).

Under assumption (H3’), it is possible to prove that the corresponding algebras are par-
ticular cases of those considered by Nguetseng in [61, 62], for which a homogenization
procedure may be carried out. The relation between all these assumptions, and their
relation with other conditions such as those of the random stationary ergodic context,
or variants of the latter context such as that seen earlier in this article, is examined in
details in [12].

We wish to emphasize two differences between the endeavour we outline here and other
existing works in the literature. The theory of H-convergence allows to homogenize very
general problems and completely settle the issues. However, it does not always provide
explicit expressions for the objects manipulated: “the” corrector function may be only a
sequence of functions, not necessarily accessible to computations, and the homogenized
coefficients may be obtained only as weak limits. Designing a numerical strategy to
approximate these coefficients is unclear. Likewise, the theory developed by G. Nguetseng
(summarized in [12]) also allows, in a different direction, to obtain homogenized limits
for very general settings. As the theory summarized in the present review, it considers
algebras A of functions that have averages (averages are quantities more amenable to
computations in principle). However the generality of the setting comes at a price. The
corrector problem is only set at a very abstract level, in a sense that is equivalent to an
equation true on average:

∀v ∈ A, 〈∇vTA(∇wp + p)〉 = 0, (4.7)

with the condition 〈∇wp〉 = 0. The homogenized coefficients then read

A∗
ij = 〈Aij + Aik∂kwej

〉,

with summation over repeated indices. The difficulty is that, although the setting is
very well adapted for the theory, the numerical approximation of the problem is again
unclear: equations “on average” such as (4.7) are not equations in the sense of distributions
(solutions are stable under the addition of a compactly supported function. This is a
difficulty similar to that mentioned for the minimization problem (4.4)). Hence, the
question remains of finding a homogenization procedure making use of the ”explicit”
feature of the algebras Ak,p (in terms of {Xi}i∈Zd). The corrector equation would then
be obtained as a “classical” equation (as opposed to “equation on the average”) in the
original ambient space R

d, that is,




−div [A(y)(∇wp(y) + p)] = 0,

∇wp ∈ A, 〈∇wp〉 = 0.
(4.8)
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This is exactly the purpose of our mathematical endeavour. Several issues in this direction
are currently under investigation [14]. Many actual situations considered are related to
the modeling of defects, but our work is still in too preliminary a stage to be considered
in the present review. So we prefer to consider a concrete case where the types of ideas
developed above already bring an added value. The study considers a local defect in
a periodic structure and shows how the paradigm of classical homogenization can be
slightly twisted to develop interesting theoretical remarks and a corresponding numerical
approach.

4.4 Defects and periodic homogenization

We now consider (equipped with the appropriate assumptions so that the problem is
well-posed) the equation

−div (a(x/ε)∇uε) = f (4.9)

with

a = aper + b (4.10)

where aper is a periodic function and b ∈ L2(Rd) models a localized perturbation b. We
assume throughout this section that aper, b and a are such that all the equations we
will write enjoy all the appropriate, usual properties of unique solvability. In particular,
a is bounded and bounded away from zero so that (4.9) is well posed. We see this
mathematical example as an attempt to model a material with a periodic microstructure
in the presence of a localized defect. The specific case considered here makes essential
use of the Hilbert structure of L2(Rd). More general cases of perturbations (such as b in
functional spaces other than L2(Rd), and for instance in L2

0(R
d), the space mentioned in

Section 4.1 when modeling a compactly supported defect in a periodic lattice) give rise
to much more substantial mathematical difficulties and are discussed in [14].

Our purpose is then to theoretically derive an approximation of the solution uε to (4.9),
which is less expensive to compute than uε itself but everywhere accurate at the small
scale ε. It is indeed easy to realize that periodic homogenization can be readily applied
to (4.9)-(4.10). Considering the homogenized equation

−div (A∗ ∇u∗) = f (4.11)

provides an approximation for uε and, using the periodic corrector, its gradient ∇uε.
All this will be briefly recalled below. The point is however that this approximation
fails to accurately approximate the solution at the scale ε x close to the “defect”, that is
where the perturbation b is large. This is of course not an unexpected shortcoming of
homogenization theory, since such an approximation property at the small scale is not
the purpose of homogenization theory, the aim of which is to approximate the solution
at scale one. We however believe that the need may arise, in practice, to obtain effective
inexpensive approximations of uε and its derivatives, at the small scale and in the vicinity
of the defect. To this end, our approach consists, at practically no substantial additional
computational cost, in computing a corrector w better adapted to the problem than the
periodic corrector wper. Even though both give the same homogenized matrix A∗ and
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allow for the same quality of approximation of uε at scale one, only the former performs
uniformly well at scale ε.

On a more abstract level, the questions we investigate here are connected to the issues
examined above: constructions of some general algebras and functional spaces that can
be useful for homogenization theory. The specific functional space considered here is the
space L2

per + L2(Rd) of sums of L2 periodic functions and L2 functions.
To start with (and this is actually sufficient to understand the bottom line of our

argument) we consider the one-dimensional version of (4.9).

One-dimensional setting Consider D = [−1/2, 1/2], f ∈ L2(D), aper a real-valued
periodic function of period 1, b ∈ L2(R), ε > 0 presumably small and consider uε solution
to

− d

dx

(
(aper(x/ε) + b(x/ε))

d

dx
uε
)

= f (4.12)

with homogeneous boundary conditions uε(−1/2) = uε(1/2) = 0. It is straightforward to
see that the homogenized limit of (4.12) is the equation

−a∗(u∗)′′ = f, (4.13)

where the homogenized coefficient a∗ is actually equal to a∗per =
(
〈a−1
per〉
)−1

, the coefficient
obtained in the absence of the perturbation b, since the function b ∈ L2(R) does not
contribute to the large volume limit. We know that uε converges to u∗ weakly in H1(D)
and strongly in L2(D). The question then arises to approximate uε in H1 norm.

In the absence of the perturbation b, homogenization theory provides such an approx-
imation using the periodic corrector function wper solution to

− d

dx

(
aper(y)

(
1 +

d

dy
wper(y)

))
= 0. (4.14)

Considering
uε,1per(x) = u∗(x) + ε (u∗(x))′ (1 + wper(x/ε)), (4.15)

it is then classical to observe that uε − uε,1per converges strongly to zero in H1. Actually,
one may even observe that the convergence still holds true at the small scale ε x. This
will be recalled below.

Accounting for the perturbation, we now compute
[
(uε)′ − (1 + w′

per(./ε)) (u∗)′
]
(x) = (aper + b)−1 (x/ε) (F (x) + cε)

−(aper)
−1(x/ε) (F (x) + c∗)

=
[
(aper + b)−1 − (aper)

−1
]
(x/ε)

× (F (x) + cε)

+(aper)
−1(x/ε) (cε − c∗) , (4.16)

where F (x) =

∫ x

0

f , cε = −
(∫ 1/2

−1/2

(aper + b)
( ·
ε

)−1
)−1 ∫ 1/2

−1/2

(aper + b)
( ·
ε

)−1

F , c∗ =

−
∫ 1/2

−1/2

F . Not unexpectedly, both terms in the right-hand side of (4.16) vanish in L2
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norm as ε goes to zero. Consider now the same difference at the small scale:

[
(uε)′ − (1 + w′

per(./ε)) (u∗)′
]
(ε x) =

[
(aper + b)−1 − (aper)

−1
]
(x)

× (F (ε x) + cε)

+(aper)
−1(x) (cε − c∗) .

We observe that, in sharp contrast to the situation at scale one, the first term of the
right-hand side does not in general vanish as ε goes to zero. In the absence of the defect,
that is when b ≡ 0, it does vanish (following our earlier claim that, at least in dimension
one, but this is a general fact, periodic homogenization also allows for an accurate H1

approximation at the small scale).
In order to recover this quality of approximation in the presence of b, we consider,

instead of the periodic corrector equation (4.14), the equation

− d

dy

(
(aper + b)(y)

(
1 +

d

dy
w(y)

))
= 0, (4.17)

the solution of which is

w′(y) = −1 + a∗per (aper + b)−1(y), (4.18)

defined up to an irrelevant additive constant. Note that the integration constant has
been chosen so that w defined from (4.18) is sublinear at infinity. Using this particular
function w, we observe that

[(uε)′ − (1 + w′(./ε)) (u∗)′] (x) = (aper + b)−1(x/ε) (cε − c∗) , (4.19)

which is to be compared with (4.16). Both at the scale x and at the scale ε x, we now have
strong convergence. We have therefore reinstated the quality of approximation obtained
in the purely periodic setting.

Nonperiodic approximation We now work in dimensions higher than or equal to 2.
We return to (4.9), that is

−div (a(x/ε)∇uε) = f,

and first make its mathematical setting precise. We take D a bounded domain in R
d,

f ∈ L2(D), a = aper + b where aper is this time a real-valued Z
d-periodic function, and

where b ∈ L2(Rd) is such that both aper and aper + b are bounded away from zero and
infinity. We supply (4.9) with homogeneous Dirichlet boundary conditions on ∂D.

In the periodic case, the first order approximation for the solution uε to (4.9) is defined
as

uε,1per(x) = u∗(x) + ε
d∑

i=1

∂xi
u∗(x)wei,per(x/ε), (4.20)

where wei,per solves

− div (aper(y) (ei + ∇wei,per(y))) = 0 (4.21)
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and where u∗ is the solution to (4.11) with homogeneous Dirichlet boundary conditions
on ∂D and where the entries of the matrix of homogenized coefficients read, for all 1 ≤
i, j ≤ d,

[A∗]ij =

∫

Q

aper(y) (δij + ∂jwei,per(y)) dy,

where Q is the unit cube. The fact that uε,1per is an approximation in H1 of uε (away from
the boundary ∂D, since specific, but well documented effects occur at the vicinity of ∂D)
is a standard fact.

We now consider the perturbed case (4.9). In the vein of our one-dimensional obser-
vations, and more precisely our corrector equation (4.17), we introduce, for p ∈ R

d fixed,
the equation

− div ((aper + b)(y) (p+ ∇wp(y))) = 0. (4.22)

Equation (4.22) is the natural corrector equation suggested by homogenization theory
(with here a constant homogenized coefficient). In a fully general setting, the left-hand
side of (4.22) is employed to define a sequence of correctors wp,ε. We use here that, in our
particular framework, wp,ε can be chosen to be wp(·/ε), with wp a function solution to
(4.22), independent of the scale ε, and of course, as usual in homogenization theory, also
independent of the right-hand side f . Showing well-posedness of (4.22) in the appropriate
functional space is the purpose of our next Lemma, the proof of which is an essential
element of the theory and is provided in [13].

Lemma 2 For all p ∈ R
d, equation (4.22) admits a solution wp such that ∇wp ∈ L2

per +

L2(Rd) and lim
R→+∞

1

|BR|

∫

BR

∇wp = 0 (where BR evidently denotes the ball of radius R

centered at the origin). Such a solution is unique up to an additive constant.

Using the corrector the existence of which is claimed in Lemma 2, we then have

Lemma 3 The solution uε to (4.9) is well approximated in H1 norm, both at scale one
and at scale ε, by the first order expansion uε,1(x) = u∗(x) + ε

∑d
i=1 ∂xi

u∗(x)wei
(x/ε)

constructed using the solution wp provided by Lemma 2, in the following sense:

{ ‖∇ (uε − uε,1)‖L2(D) −→ 0,

‖∇ (uε − uε,1) (ε .)‖L2(BR) −→ 0,

where BR of course denotes any arbitrary fixed ball of radius R such that εBR ⊂ D.
The latter approximation property does not in general hold for the periodic first-order
approximation uε,1per(x) = u∗(x)+ε

∑d
i=1 ∂xi

u∗(x)wei,per(x/ε) constructed using the periodic
corrector wp,per solution to (4.21).
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A numerical illustration For our numerical tests, extracted from [13], we consider
problem (4.9) in dimension 2 with a defined by (4.10), that is, with

aper(x1, x2) = 3 + cos(2πx1) + cos(2πx2),

and

b(x1, x2) = exp
(
−(x2

1 + x2
2)
)
.

The computational domain is the square D = (−1, 1)2, and we use periodic boundary
conditions, in order to avoid boundary layer effects in the homogenization process (we
also take ε = 1/N for some integer N). The right-hand side f of (4.9) is chosen as

f(x1, x2) = sin(πx1) cos(πx2).

On this case, we compare the quality of approximation at the vicinity of the “defect”,
that is, at the vicinity of the origin, obtained at scale εx using the first order expansion
and, on the one hand the periodic corrector or, on the other hand, the actual corrector
constructed above. More precisely, we look at

δεper =

∥∥∇uε (ε ·) −∇uε,1per (ε ·)
∥∥
L2(D)

‖∇uε (ε ·)‖L2(D)

, δε =
‖∇uε (ε ·) −∇uε,1 (ε ·)‖L2(D)

‖∇uε (ε ·)‖L2(D)

. (4.23)

Figure 4 and Table 1 present our results (all computations have been performed using a P1

finite element approximation on triangular meshes – the meshsize h is chosen sufficiently
fine so that it does not perturb the results at the scale ε–, and implemented using the
software FreeFem++ [33]). They unambiguously show the quality of the approximation
provided by the non-periodic corrector, as opposed to the periodic one.

Figure 4: For ε = 1/10, we display the norm
∣∣∇uε (ε ·) −∇uε,1per (ε ·)

∣∣ (left) and
|∇uε (ε ·) −∇uε,1 (ε ·)| (right). Recall that the defect is located at the origin, and has
essentially size ε. The quality of approximation at the vicinity of the defect is significantly
improved. Reproduced from [13].
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1/ε δεper δε

3 0.198112 0.0850091
5 0.191952 0.0425306
10 0.183784 0.0266084
20 0.175248 0.0139564

Table 1: Numerical results: Relative errors (defined by (4.23)) using the periodic cor-
rector (left column) and the corrector adapted to the case with defect (right column).
Reproduced from [13].

5 Electronic structure of perfect crystals

We present in this section models for the electronic structure of perfect crystals, with
infinite periodic arrangements of nuclei. The models are mathematically, or at least for-
mally, derived from analogous models for finite size molecular systems. Schematically, the
derivation is a more sophisticated version of taking the limit of (1.1) asN grows to infinity.
Atomistic models such as those we considered in our simplified example in the introduc-
tion are easy to deal with for periodic systems. We will therefore skip them and directly
proceed to the consideration of systems of particles modeled quantum mechanically.

Consider a finite system, and a given energy model for this system. An infinite,
periodic arrangement of nuclei is formally the limit of finite arrangements. It is thus
desirable to establish that the electronic ground state of the finite system also becomes
periodic in the limit. The basic question of interest is to define the energy of such an
infinite system, as well as to check whether there exists a periodic ground-state. Both
objects, the energy and the minimizer, should be consistent with those for the molecular
system of finite size one has started from. Doing so, one aims at a threefold goal: first,
rigorously define the energy per unit volume of the crystal; second, show the robustness
of the molecular model as the size increases; third, assess the validity of the models for
the crystalline phase that are used for numerical simulation.

We now make somewhat more precise the above discussion. For simplicity, we assume
in the sequel that the crystalline lattice is Z

3, but all our arguments hold for a generic
lattice. We consider a finite subset ΛN (this is a historical notation) of N points of the
lattice Z

3, obtained by intersection of the lattice with a large cube. This is again for
simplicity, as any sequence of domains, for which the number of sites on the boundary
is asymptotically negligible with respect to the number of sites in the interior, would be
convenient; such domains are called Van Hove sequences in statistical mechanics. We
then assign a nucleus of unit charge (still for simplicity) to each of the points of ΛN .
We finally consider a well-posed model for the neutral molecular system of finite size
composed of the N nuclei plus N electrons, and denote by IΛN

the ground state energy
of this configuration.

The so-called thermodynamic limit problem (a more appropriate name for our dis-
cussion would be the bulk limit problem, since no finite temperature effect is considered
here) consists in the following two questions on limits as N grows to infinity: (i) Does the
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energy per unit volume
IΛN

N
converge to a limit ? Which limit ? (ii) Does the electronic

ground state density ρN (or respectively the ground state density matrix γN) converge to
a limit ? Which limit ?

To some extent, the question under consideration is both related to fundamental ques-
tions of Thermodynamics and to the question of defining effective properties of composite
materials on the basis of the knowledge of the properties of their constitutive materials.

It is expected that there is some consistency between the limit of the energy and the
limit of the density in the following sense: in good cases, the energy will converge to
a scalar that can be recast as the infimum value of a minimization problem set on the
unit cell of the lattice (here the unit cube), the minimizer of which is the limit of the
sequences of densities ρN . We recover here a result in the spirit of standard results of the
Γ-convergence theory.

The thermodynamic limit in the terms stated above has been the subject of many
outstanding contributions in the context of various energy models and various physical
systems [68, 56]. The monograph [24] gives a rather extensive account of the major con-
tributions (by L. Van Hove, D. Ruelle, C. Fefferman, E. Lieb, B. Simon, and many other
authors). It also presents the thermodynamic limit problem for a famous model in mathe-
matical physics, namely the Thomas-Fermi-von Weizsäcker model, henceforth abbreviated
as TFW model. For the Hartree-Fock and Kohn-Sham type models (abbreviated as HF
and KS models, respectively), the fundamental issues (i)-(ii) remain open. All that is
known (see [39]) is for HF that a limit exists, but that limit is not identified. The two key
difficulties are first that the latter models are not convex (convexity plays a crucial role
in the analysis of the TFW model) and second that the number of one-body molecular
orbitals to be dealt with, or equivalently the rank of the one-body density matrix, are
also growing to infinity (in the TFW model, only the density ρ is relevant). For the HF
model, partial results have been established in [26] (see also [26] for results on another
model called the Hartree model). The results are partial in the sense that it is needed to
postulate, in addition to the periodicity of the set of nuclei, the periodicity of the ground
state density matrix in the limit. A simplified version of the HF model, namely the re-
duced Hartree-Fock (rHF) model however allows for a complete proof. We will return to
this specific model below.

5.1 Models for finite size systems

We now describe some models for finite size systems composed of K classical nuclei and
N quantum electrons within the Born-Oppenheimer approximation. For more details on
the physical background and on the mathematical properties of these models, we refer
to [40, 31, 17] and [58, 52, 59, 73].

5.1.1 The N-body Schrödinger model

In the vast majority of problems of interest, nuclei can be considered as point-like classical
particles, and electrons as quantum particles lying in their ground state. Denoting by Xk

the positions in the space R
3 of the K nuclei, the electronic Hamiltonian of the system
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reads

H{Xk} = −
N∑

i=1

1

2
∆xi

+
N∑

i=1

V{Xk}(xi) +
∑

1≤i<j≤N

1

|xi − xj|
. (5.1)

We omit here the spin degrees of freedom for simplicity. The function V{Xk} models the
potential created by the nuclei and experienced by the electrons in the system:

V{Xk}(x) = −
K∑

k=1

zk
|x−Xk|

,

where zk ∈ N
∗ is the charge of the nucleus number k (zk = 1 for Hydrogen, 2 for Helium, 3

for Lithium ...). Here and below, we use atomic units, obtained by setting to one the values
of the reduced Planck constant ~, the elementary charge e, the electron mass me and the
constant 4πǫ0, where ǫ0 is the dielectric permittivity of the vacuum. The Hamiltonian
H{Xk} is a self-adjoint operator on the fermionic space ∧NL2(R3) of the square integrable
antisymmetric functions ψ(x1, · · · , xN):

∧NL2(R3) =

{
ψ ∈ L2(R3N)

∣∣∣∣
∫

R3N

|ψ(x1, · · · , xN)|2 dx1 · · · dxN <∞,

ψ(xσ(1), · · · , xσ(N)) = ǫ(σ)ψ(x1, · · · , xN), for all permutation σ

}
,

where ǫ(σ) is the parity of σ. It is bounded from below and the ground state energy is
defined as

I{Xk} = inf
{
〈ψ,H{Xk}ψ〉, ψ ∈ ∧NH1(R3), ‖ψ‖L2 = 1

}
. (5.2)

Here and in the sequel, 〈ψ,Aψ〉 denotes the quadratic form associated with the self-adjoint
operator A. Note that ∧NH1(R3) is the form domain ofH{Xk}. The ground state potential
energy surface defined as

W (X1, · · · , XN) = I{Xk} +
∑

1≤k<l≤K

zkzl
|Xk −Xl|

can then be used to carry out geometry optimization or molecular dynamics simulations.
In particular, the global and local minima of W respectively correspond to the stable and
metastable states of the molecular system.

The number I{Xk} is always the bottom of the spectrum of the self-adjoint operator
H{Xk}. If the molecular system is neutral or positively charged, it is an eigenvalue of
finite multiplicity [77, 78, 42], and the corresponding eigenfunctions are called electronic
ground states.

The physical interpretation of an N -electron wavefunction ψ ∈ ∧NH1(R3) satisfying
‖ψ‖L2 = 1 is that the non-negative function |ψ(x1, · · · , xN)|2 is the probability density of
observing the electron 1 in x1, the electron 2 in x2, ... In particular, the electronic density
is the marginal

ρψ(x) = N

∫

R3(N−1)

|ψ(x, x2, · · · , xN)|2 dx2 · · · dxN , (5.3)



28 Eric Cancès and Claude Le Bris

and it holds

〈ψ,
N∑

i=1

V{Xk}(xi)ψ〉 =

∫

R3

ρψV{Xk}.

An important remark due to Levy [50], and then mathematically formalized by Lieb [54],
is that I{Xk} can be rewritten as

I{Xk} = inf

{
F (ρ) +

∫

R3

ρV{Xk}, ρ ∈ RN

}
,

where RN is the set of the N -representable densities, that is the set of electronic densities
ρ for which there exists some N -body wavefunction ψ such that ρψ = ρ. It turns out that
this set is easily characterized:

RN =

{
ρ ≥ 0 | √ρ ∈ H1(R3),

∫

R3

ρ = N

}
.

The functional F (ρ) is a universal functional of the density defined by

F (ρ) = inf

{
〈ψ,
(
−

N∑

i=1

1

2
∆xi

+
∑

1≤i<j≤N

1

|xi − xj|

)
ψ〉, ψ ∈ ∧NH1(R3), ρψ = ρ

}
,

the existence of which was first proved by Hohenberg and Kohn in their celebrated pa-
per [41] founding Density Functional Theory (DFT). No explicit expression of F as a
function of ρ is known. A major challenge in DFT is therefore to construct approxima-
tions of F (ρ) amenable to numerical simulations for large molecular systems.

5.1.2 Thomas-Fermi type models

Although introduced decades before the works by Hohenberg and Kohn, Thomas-Fermi
type models fall in the framework of DFT. They consist in approximating the functional
F (ρ) by explicit functionals of the density ρ. Examples of such models include:

• the original Thomas-Fermi model

FTF(ρ) = CTF

∫

R3

ρ5/3 +
1

2

∫∫

R3×R3

ρ(x)ρ(y)

|x− y| dx dy

where CTF = 10
3
(3π2)2/3 is the Thomas-Fermi constant;

• the Thomas-Fermi-von Weizsäcker (TFW) model

FTFW(ρ) = CW

∫

R3

|∇√
ρ|2 + CTF

∫

R3

ρ5/3 +
1

2

∫∫

R3×R3

ρ(x)ρ(y)

|x− y| dx dy,

where the constant CW takes different values depending on how the TFW model is
derived [31];
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• the Thomas-Fermi-Dirac von Weizsäcker (TFDW) model

FTFDW(ρ) = CW

∫

R3

|∇√
ρ|2 +CTF

∫

R3

ρ5/3 +
1

2

∫∫

R3×R3

ρ(x)ρ(y)

|x− y| dx dy−CD

∫

R3

ρ4/3,

where CD = 3
4

(
3
π

)1/3
is the Dirac constant.

The first term in FTF(ρ) models the kinetic energy of the electrons (note that CTFρ
5/3
0 is

the kinetic energy density of a homogeneous gas of non-interacting electrons of uniform
density ρ0). We recognize in the second component of FTF(ρ) the electrostatic energy
of a classical charge distribution of density ρ. The first term in FTFW(ρ) is a correction
to the Thomas-Fermi approximation of the kinetic energy of the electrons taking into
account the fact that, in molecular systems, the electronic density is not uniform. The
last term in FTFDW(ρ) is called the Dirac exchange term. It is a quantum correction to
the electrostatic energy. Its interpretation will be given in Section 5.1.3.

The above Thomas-Fermi type models provide crude approximations of F (ρ), and
are no longer used in quantum chemistry and materials science. On the other hand,
some improvements of the TFW model, the so-called orbital-free models [76], are used
for the simulation of specific materials (aluminum crystals with defects for example [66]).
The reason why we focus on Thomas-Fermi like models, and in particular on the TFW
model, is that these models are extremely useful in the mathematical analysis. They
are indeed toy models upon which new mathematical techniques can be developed before
being applied to the more sophisticated models actually used in quantum chemistry and
materials science.

In order to simplify the notation, we take CW = 1, CTF = 1 and CD = 1 since these
constants do not play any role in the mathematical analysis. Setting ρ = v2, the TFW
ground state energy is obtained by solving

ITFW
{Xk}

= inf

{
ETFW
{Xk}

(v), v ∈ H1(R3),

∫

R3

v2 = N

}
, (5.4)

where

ETFW
{Xk}

(v) =

∫

R3

|∇v|2 +

∫

R3

|v|10/3 +

∫

R3

V{Xk}v
2 +

1

2

∫∫

R3×R3

v(x)2v(y)2

|x− y| dx dy. (5.5)

Under appropriate assumptions, and in particular when the system is globally neutral,
that is when N =

∑K
k=1 zk, problem (5.4)-(5.5) admits a minimizer u > 0, unique up to a

global change of sign (−u is the only other minimizer), which solves the Euler-Lagrange
equation

−∆u+
5

3
u7/3 + V{Xk}u+ (u2 ⋆ | · |−1)u+ θu = 0 (5.6)

(where ⋆ denotes the convolution product), at least in the distributional sense on R
3, for

some scalar θ, the Lagrange multiplier of the equality constraint
∫

R3 v
2 = N . It can be

shown that θ is in fact positive. An excellent reference summarizing the mathematical
knowledge on the TFW model at the time of its publication is [52].
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5.1.3 The Hartree-Fock model

The HF model is somewhat mathematically close to the TFW model (5.4). The main
difference is that we have to deal with an N -tuple of functions, the so-called molecular
orbitals φi, where we used to consider only one function (the density ρ or its square
root v) in the TFW model. An additional difficulty, which has far reaching consequences,
is that the HF model is not convex. In particular, although existence may be proved by
now relatively standard techniques, uniqueness seems out of reach in the general case (see
however the interesting result in [35] for the particular case of a very positive atomic ion).
The main two references addressing the HF problem in mathematical details are [58],
and [59].

Recall for consistency the basic derivation of the HF model. Since problem (5.2)
is computationally too complex to be treated directly, a possible approximation is to
keep the same Hamiltonian (5.1), but minimize the energy 〈ψ,H{Xk}ψ〉 upon less general
functions ψ. This leads to the variational problem

IX{Xk}
= inf

{
〈ψ,H{Xk}ψ〉, ψ ∈ X , ‖ψ‖L2 = 1

}
, (5.7)

where X is a subset of ∧NH1(R3). Obviously, IX{Xk}
is an upper bound of the target

value I{Xk}. The Hartree-Fock approximation consists in considering the set X of the L2-
normalized N -electron wavefunctions that can be written as an antisymetrized product
of single electron molecular orbitals φi:

ψ(x1, · · · , xN) =
1√
N !

det(φi(xj)). (5.8)

Such functions are called Slater determinants. Since the determinant is an alternate
multilinear map, it is possible to impose that the functions φi satisfy the orthonormality
constraints ∫

R3

φiφj = δij. (5.9)

This implies, in particular, that ‖ψ‖L2 = 1. Problem (5.7) for the functions (5.8) can
then be rewritten, once the computation of 〈ψ,H{Xk}ψ〉 is explicitly performed, as

IHF
{Xk}

= inf

{
EHF
{Xk}

(Φ), Φ = (φ1, · · · , φN) ∈ (H1(R3))N ,

∫

R3

φiφj = δij

}
, (5.10)

EHF
{Xk}

(Φ) =
1

2

N∑

i=1

∫

R3

|∇φi|2 +

∫

R3

ρΦV{Xk} +
1

2

∫

R3

∫

R3

ρΦ(x)ρΦ(y)

|x− y| dx dy

−1

2

∫

R3

∫

R3

|γΦ(x, y)|2
|x− y| dx dy, (5.11)

where the density matrix γΦ and the density ρΦ associated with theN -tuple Φ = (φ1, · · · , φN)
are defined as

γΦ(x, y) =
N∑

i=1

φi(x)φi(y), ρΦ(x) = γΦ(x, x) =
N∑

i=1

|φi(x)|2. (5.12)
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Note that the density ρΦ is in fact the density ρψ defined by (5.3) of the N -body wave-
function ψ defined by (5.8).

The last term in the HF energy functional (5.11) is called the exchange term. It has a
purely quantum nature (it arises from the antisymmetry of the electronic wavefunction)
and has no classical counterpart. The exchange energy density of a homogeneous electron
gas of uniform density ρ0 can be computed analytically. It is equal to −CDρ

4/3
0 ; this

expression is used in the construction of the Dirac local exchange term in the TFDW
energy functional.

It is important to emphasize that, for simplicity, we consider here a spinless HF
model. Like the TFW problem, the HF problem admits a minimizer in the neutral case.
Uniqueness is however an open issue. Any minimizer of the HF problem satisfies the
associated Euler-Lagrange equations

−1

2
∆φi + V{Xk}φi +

(
ρΦ ⋆ | · |−1

)
φi −

(∫

R3

γΦ(·, y)
| · −y| φi(y) dy

)
=

N∑

j=1

λijφj, (5.13)

for a symmetric matrix of Lagrange multipliers [λij], the multiplier λij = λji being associ-

ated to the constraint

∫

R3

φiφj = δij. Up to a change of (φ1, · · · , φN) using an orthogonal

transformation, which does not change the energy, one can diagonalize this symmetric
matrix of Lagrange multipliers and obtain





−1

2
∆φi + V{Xk}φi +

(
ρΦ ⋆ | · |−1

)
φi +KγΦφi = εiφi∫

R3

φiφj = δij,
(5.14)

where KγΦ is the nonlocal exchange operator defined for all φ ∈ L2(R3) by

(KγΦφ)(x) = −
∫

R3

γΦ(x, y)

|x− y| φ(y) dy.

System (5.14) forms the Hartree-Fock equations. An important property is that if Φ =
(φ1, · · · , φN) is a minimizer of the HF problem satisfying (5.14), then the eigenvalues
ε1, · · · , εN are the lowest N eigenvalues (counting multiplicities) of the HF operator [58,
59]

HHF
Φ = −1

2
∆ + V{Xk} + ρΦ ⋆ | · |−1 +KγΦ

and that there is a positive gap between the N -th and (N + 1)-st eigenvalues of HHF
Φ [6].

5.1.4 Kohn-Sham models

Kohn-Sham models are by far the most widely used electronic structure models in mate-
rials science. They all are of the form

IKS
{Xk}

= inf

{
EKS{Xk}

(Φ), Φ = (φ1, · · · , φN) ∈ (H1(R3))N ,

∫

R3

φiφj = δij

}
, (5.15)
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EKS
{Xk}

(Φ) =
1

2

N∑

i=1

∫

R3

|∇φi|2 +

∫

R3

ρΦV{Xk} +
1

2

∫

R3

∫

R3

ρΦ(x)ρΦ(y)

|x− y| dx dy+Exc(ρΦ) (5.16)

where the density ρΦ is defined by (5.12). The functional Exc(ρ), called the exchange-
correlation term, is a correction term, accounting for the non-independence of the elec-
trons. KS models originate from Density Functional Theory, and are in principle “exact”:
there exists a functional of the density Exc for which IKS{Xk}

= I{Xk} for all finite molecular
systems. On the other hand, they are approximate models in practice since the exact
exchange-correlation functional is not known and must be approximated to perform nu-
merical calculations. The simplest KS model actually used in practice is obtained using
the Local Density Approximation (LDA) introduced by Kohn and Sham [45] (see also [65]).
The resulting model is mathematically very similar to the so-called Xα model [72] where
the exchange-correlation functional is approximated by the Dirac local exchange term:

EXα
xc (ρ) = −CD

∫

R3

ρ4/3.

Other more refined exchange-correlation functionals have been developed in the past 30
years, leading to the Generalized Gradient Approximation (GGA) [64, 7, 63], hybrid func-
tionals [8], ...

The Euler-Lagrange equations of problem (5.15) obtained after rotating the Kohn-
Sham orbitals φi to diagonalize the matrix of the Lagrange multipliers (as for the HF
model) are the Kohn-Sham equations





−1

2
∆φi + V{Xk}φi + (ρΦ ⋆ | · |−1)φi + vxc(ρΦ)φi = ǫiφi,∫

R3

φiφj = δij,
(5.17)

where vxc(ρ) =
∂Exc

∂ρ
(ρ) is the functional derivative of Exc. For the Xα model, we simply

have vXα
xc (ρ) = −4

3
CDρ

1/3.

The comparison of the energy functionals in the HF case and in the KS case (or that
of their respective Euler-Lagrange equations) reveals at first sight the global similarity
between the two approaches from a formal viewpoint. The HF problem (5.10)-(5.11) and
the KS problems (5.15) obviously share some similarities. However, when it comes to
mathematical details, the KS problem turns out to be more difficult than the HF problem
to analyze [48, 1]. The difficulty owes to the presence of the concave exchange-correlation
term. For N = 1 (that is for 2 electrons if spin is taken into account), the Xα KS model
is close to the TFDW model introduced in Section 5.1.2. The only difference between
the Xα KS model (5.15) for N = 1, and the TFDW model is the addition of the kinetic

energy term

∫

R3

|u|10/3. In fact, this term does not affect the mathematical analysis. So

the TFDW model is an adequate prototypical model for understanding mathematically
the KS model. More details can be found in [48].
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5.1.5 One-electron density matrices

The one-electron density matrix, henceforth simply named the density matrix, associ-
ated with a normalized N -body wavefunction ψ ∈ ∧NL2(R3) is the bounded self-adjoint
operator γψ on L2(R3) defined by its kernel (also called density matrix and denoted by
γψ)

γψ(x, x′) = N

∫

R3(N−1)

ψ(x, x2, · · · , xN)ψ(x′, x2, · · · , xN) dx2 · · · dxN . (5.18)

If the N -body wavefunction is the Slater determinant (5.8), the two functions γψ and γΦ

respectively defined by (5.18) and (5.12) coincide.
The set of density matrices originating from a Slater determinant of finite kinetic

energy is easily characterized. It is the set

PN =
{
γ ∈ S(L2(R3)) | γ2 = γ, Tr(γ) = N, Tr(−∆γ) <∞

}
,

where S(L2(R3)) is the space of the bounded self-adjoint operators on L2(R3), and where
Tr(−∆γ) = Tr(|∇|γ|∇|). The condition γ2 = γ means that the self-adjoint operator γ is
an orthogonal projector, and the condition Tr(γ) = N that the range of γ is of dimension
N . Denoting by (φ1, · · · , φN) an L2-orthonormal basis of Ran(γ), we can see that

Tr(−∆γ) =
N∑

i=1

∫

R3

|∇φi|2.

As a consequence, the HF energy functional is in fact a functional of the density matrix:

EHF
{Xk}

(γ) = Tr

(
−1

2
∆γ

)
+

∫

R3

ργV{Xk}+
1

2

∫

R3

∫

R3

ργ(x)ργ(y)

|x− y| dx dy−1

2

∫

R3

∫

R3

|γ(x, y)|2
|x− y| dx dy,

where
ργ(x) = γ(x, x),

and the HF problem can be reformulated as

IHF
{Xk}

= inf
{
EHF

{Xk}
(γ), γ ∈ PN

}
. (5.19)

Likewise, the KS model can be reformulated in terms of density matrices:

IKS
{Xk}

= inf
{
EKS

{Xk}
(γ), γ ∈ PN

}
, (5.20)

where

EHF
{Xk}

(γ) = Tr

(
−1

2
∆γ

)
+

∫

R3

ργV{Xk} +
1

2

∫

R3

∫

R3

ργ(x)ργ(y)

|x− y| dx dy + Exc(ργ).

There is however a difference between the HF and KS cases: a minimizer to (5.19) is,
by construction of the KS model [45], an approximation of the ground state density
matrix of the physical system of interacting electrons, while a minimizer to (5.20) is an
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approximation of the ground state density matrix of an idealized system of non-interacting
electrons with same ground state density as the actual physical system. This means that,
in principle, it is not possible to use the ground state density matrices obtained with the
KS model to compute properties depending on the density matrix, not only on the density
ργ(x) = γ(x, x), but on the full density matrix γ(x, y).

There is no simple characterization of the set of density matrices originating from an
L2-normalized N -body wavefunction of finite kinetic energy. On the other hand, the set
ΓN of the (one-body) density matrices originating from N -body density matrices with
finite kinetic energy has a simple structure [29]:

ΓN =
{
γ ∈ S(L2(R3)) | 0 ≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ) <∞

}
.

Recall that in quantum mechanics, the states that can be defined by a single N -body
wavefunction are called pure states, while those that need to be defined by N -body density
matrices are called mixed states, or ensemble states [29]. Any operator γ ∈ ΓN is a
bounded self-adjoint operator on L2(R3) satisfying the constraint 0 ≤ γ ≤ 1 in the sense
of operators. This condition, which is a mathematical translation of the Pauli principle,
means that 0 ≤ 〈φ, γφ〉 ≤ ‖φ‖2

L2 for all φ ∈ L2(R3), or equivalently, that the spectrum of
γ lies in the interval [0, 1]. The trace of γ (which is always defined since γ is a positive
operator) is equal to the number of electrons. Any γ ∈ ΓN being trace-class, hence
compact, it can be diagonalized in an orthonormal basis set of L2(R3):

γ =
+∞∑

i=1

ni(φi, ·)L2φi where

∫

R3

φiφj = δij.

The constraints 0 ≤ γ ≤ 1, Tr(γ) = N and Tr(−∆γ) < ∞ are respectively equivalent
to the constraints 0 ≤ ni ≤ 1 for all i,

∑+∞
i=1 ni = N , and

∑+∞
i=1 ni‖∇φi‖2

L2 < ∞. The
density ργ associated with γ is defined as

ργ(x) =
+∞∑

i=1

ni|φi(x)|2,

and is independent on the choice of the diagonalization basis φi. The function ργ is of
course in L1(R3) and ∫

R3

ργ = Tr(γ). (5.21)

Its square root is in fact in H1(R3), and satisfies the Hoffmann-Ostenhof inequality

∫

R3

|∇√
ργ|2 ≤ Tr(−∆γ).

Note that ΓN is the convex hull of PN ; in particular ΓN is a convex set.

Lastly, the minimization problem

IEKS
{Xk}

= inf
{
EKS

{Xk}
(γ), γ ∈ ΓN

}
, (5.22)
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consisting in minimizing the KS energy functional on the set ΓN has a physical inter-
pretation in terms of Density Functional Theory for mixed states. It is known in the
physical literature under the name of extended Kohn-Sham model [31]. With the exact
exchange-correlation energy functional (which, we recall, has no known explicit expres-
sion), it holds IEKS

{Xk}
= IKS

{Xk}
= I{Xk}. In practice, with approximate exchange-correlation

functionals, these three numbers differ in general, but the first two are equal for many
molecular systems. The extended Kohn-Sham model is also the zero-temperature limit of
the finite temperature Kohn-Sham model [31] commonly used in materials science.

5.1.6 The reduced Hartree-Fock (rHF) model

An important result due to Lieb is that the minimizers of the HF energy functional EHF
{Xk}

on the set ΓN coincides with the minimizers of EHF
{Xk}

on the set PN . In particular,

IHF
{Xk}

= inf
{
EHF

{Xk}
(γ), γ ∈ ΓN

}
. (5.23)

A simplified version of the HF model (5.23), called the reduced Hartree-Fock (rHF)
model, consists in eliminating the exchange term of the energy functional (5.11). The
so-obtained model reads

IrHF
{Xk}

= inf
{
ErHF

{Xk}
(γ), γ ∈ ΓN

}
, (5.24)

where

ErHF
{Xk}

(γ) = Tr

(
−1

2
∆γ

)
+

∫

R3

ργV{Xk} +
1

2

∫

R3

∫

R3

ργ(x)ργ(y)

|x− y| dx dy. (5.25)

In contrast with the HF model, the rHF model is convex in the density matrix, and
strictly convex in the density. It has been proved [73] that for neutral (or positively
charged) molecular systems, (5.24) has at least one minimizer γ0, that all the minimizers
share the same density ρ0, and that γ0 satisfies the self-consistent equation

γ0 = 1(−∞,ǫ0F)(Hρ0) + δ, (5.26)

where

Hρ0 = −1

2
∆ + V{Xk} + ρ0 ⋆ | · |−1 (5.27)

is the mean-field Hamiltonian for the rHF model, ǫ0F the Fermi level (the Lagrange mul-
tiplier of the constraint Tr(γ) = N), 1(−∞,ǫF)(Hρ0) the spectral projector of Hρ0 on the
range (−∞, ǫ0F), and 0 ≤ δ ≤ 1 a finite rank operator such that Ran(δ) ⊂ Ker(Hρ0 − ǫ0F).
Equation (5.26) is an adequate formulation of the Euler equation associated with the
convex optimization problem (5.24), in the sense that it is concise and can be generalized
to the periodic and stationary ergodic settings, in which there is an infinite number of
electrons in the system (see Sections 5.3 and 6.2). For finite systems, Hρ0 has at least
N non-positive eigenvalues (counting multiplicities). Denoting by ǫ1 ≤ ǫ2 ≤ ǫ3 ≤ ... the
non-negative eigenvalues of Hρ0 , two cases can be distinguished:
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1. if Hρ0 has exactly N negative eigenvalues, or if ǫN < ǫN+1, then δ = 0, γ0 is the
orthogonal projector on the space spanned by the eigenvectors of Hρ0 associated
with the lowest N eigenvalues, and ǫ0F can be any number in the range (ǫN , ǫN+1)
(with the convention that ǫN+1 = 0 if Hρ0 has exactly N negative eigenvalues);

2. if ǫN = ǫN+1, then ǫ0F = ǫN and δ can be non-zero.

5.2 Thomas-Fermi type models for perfect crystals

In order to illustrate the difficulty of rigorously deriving a model for a crystal, we consider
the TFW energy functional with {Xk} = ΛN ⊂ Z

3 and nuclei of unit charges. Without
changing the notation, we consider the total energy functional of the system obtained by
adding to the electronic energy functional an interaction term accounting for the repulsion
between the nuclei:

ETFW
ΛN

(ρ) =

∫

R3

|∇√
ρ|2 +

∫

R3

ρ5/3

−
∑

Xk∈ΛN

∫

R3

ρ(x)

|x−Xk|
+

1

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x− y| dx dy +
1

2

∑

Xj 6=Xk∈ΛN

1

|Xj −Xk|
,

and recall that we expect the energy ETFW
ΛN

(ρ) at the minimizer ρN to be asymptotically
linear with respect to N . Now it is easy to see that each of the last three terms of the
electrostatic energy

Eelec
ΛN

(ρ) = −
∑

Xk∈ΛN

∫

R3

ρ(x)

|x−Xk|
dx+

1

2

∫

R3

∫

R3

ρ(x) ρ(y)

|x− y| dx dy

+
1

2

∑

Xj 6=Xk∈ΛN

1

|Xj −Xk|
. (5.28)

scales as N5/3. For instance, a rough evaluation as follows

∑

Xj 6=Xk∈ΛN

1

|Xj −Xk|
≈

∫∫

(Cube of volumeN)2

dx dy

|x− y|

= N5/3

∫∫

(Unit cube)2

dx dy

|x− y|

using a change of variables in the integral, suffices to conclude for the last term.
Therefore, cancellation effects are needed to obtain a linear behaviour of the electro-

static energy Eelec
ΛN

(ρ). A key point in the strategy of proof is therefore to prove that the
electronic density spreads in such a homogeneous way all over the cube of size N so that
the effect of the electronic cloud is to screen the electrostatic interaction, thereby making
possible the proper linear scaling law for the energy Eelec

ΛN
(ρ).

We now introduce the periodic minimization problems obtained in the thermodynamic
limit. Define the following periodic minimization problem set on the unit cell Q of the
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lattice (take Q = [−1/2, 1/2]3 for simplicity):

ITFW
per = inf{ETFW

per (ρ), ρ ≥ 0,
√
ρ ∈ H1

per(Q),

∫

Q

ρ = 1}, (5.29)

with

ETFW
per (ρ) =

∫

Q

|∇√
ρ|2 +

∫

Q

ρ5/3 −
∫

Q

ρ(x)G(x)dx

+
1

2

∫∫

Q×Q

ρ(x)ρ(y)G(x− y)dxdy, (5.30)

where H1
per(Q) is the subset of H1

loc(R
3) consisting of functions which satisfy the peri-

odic boundary conditions on the boundary of Q. The potential G which appears in the
definition (5.30) of the TFW functional is defined, in a unique way, by





−∆G = 4π


−1 +

∑

y∈Z3

δ(· − y)


 ,

∫

Q

G = 0.

(5.31)

From a physical viewpoint, G is the Coulomb potential generated by a periodic distribu-
tions of unit point charges located on the lattice Z

3 and by a uniform negative charge
distribution of density −1 (a jellium) so that the total charge per unit cell is neutral. The
above PDE uniquely defines G up to an additive constant, and the constant is fixed by
the condition

∫
Q
G = 0.

It is easily seen that problem (5.29) has a unique minimizer ρper. The main results
known to date are collected in the following theorem.

Theorem 3 [24] Thermodynamic limit for the TFW model
In the thermodynamic limit N → +∞, we have

• (i) convergence of the energy per unit volume:

lim
N→+∞

1

N
ITFW
ΛN

= ITFW
per +

M

2
,

where
M

2
=

1

2
lim
x→0

(
G(x) − 1

|x|

)
is just a normalization;

• (ii) convergence of the electronic density ρN to the minimizer ρper of ITFW
per in the

following senses: uN =
√
ρ
N

converges to uper =
√
ρ

per
strongly in H1

loc(R
3) ∩

Lploc(R
3) for all 1 ≤ p < +∞, uniformly on the compact sets of R

3, and

‖ρN − ρper‖L∞(ΩN ) −→ 0,

for any sequence of domains ΩN included in the large cube of volume N , growing
as this cube, and asymptotically far from its boundary (a sequence called an interior
domain in statistical mechanics).
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We now outline the proof of this Theorem. It is actually doable to write down a
mathematical proof that follows the formal argument given above in terms of cancellations
of the different terms in the energy (see [24, Chapters 2 & 3]), but a more elegant and
powerful approach of the problem consists in treating the Euler-Lagrange equation, rather
than the energy functional. In other words, proving (ii) of the Theorem before proving (i).
In particular, this proof enables one to address more general geometries for the infinite
set of nuclei, which is precisely the focus of this article. The set of nuclei need not be

the periodic measure
∑

Xk∈Z3

δ(· −Xk) but only need to enjoy appropriate properties (see

Section 4.1).
We recall that the TFW equation reads

−∆uN +
5

3
u

7/3
N −

(
∑

Xk∈ΛN

1

| · −Xk|

)
uN +

(
ρN ⋆ | · |−1

)
uN = −θNuN ,

where uN =
√
ρN . Introducing again the effective potential

ΦN(x) =
∑

Xk∈ΛN

1

|x−Xk|
−
(
ρN ⋆ | · |−1

)
(x) − θN (5.32)

it can be written in the form of the system




−∆uN +
5

3
u

7/3
N − ΦN uN = 0,

uN ≥ 0,

−∆ΦN = 4π

(
∑

Xk∈ΛN

δ(· −Xk) − u2
N

)
.

(5.33)

The strategy is as follows. First, we establish some a priori bounds on ρN and ΦN ,
which allow us to pass to the limit in the Euler-Lagrange system (5.33) and obtain the
system (5.35) below for the limits (u,Φ). The main result that will allow for the proof
of Theorem 3 is the uniqueness result stated in Lemma 4 below. The proof of this latter
lemma is the second step. Once this uniqueness is established, it suffices to suppose some
additional structure hypothesis on the measure m, such as periodicity, to recover (by a
straightforward argument) the same structure on the solution (u,Φ). Finally, the average
energy (here the periodic energy) is then found by simply inserting the convergence of uN
and ΦN in all terms of the energy functional (this will not be detailed here). The proof
of Theorem 3 is then complete.

Lemma 4 Let m be a locally bounded positive measure that satisfies




sup
x∈R3

m(x+B1) <∞,

∃R <∞ s.t. inf
x∈R3

m(x+BR) > 0.
(5.34)

Then there is one and only one solution (u,Φ) to the system




−∆u+
5

3
u7/3 − Φu = 0,

u ≥ 0,
−∆Φ = 4π(m− u2),

(5.35)
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such that u ∈ L∞(R3) and Φ ∈ L1
unif(R

3). In addition,

inf
R3
u > 0,

and Φ belongs to the uniform Marcinkiewitz space L3,∞
unif(R

3).

We recall that L1
unif(R

3) =

{
Φ ∈ L1

loc(R
3)
∣∣ sup
x∈R3

‖Φ‖L1(x+B1) < +∞
}

and that

L3,∞
unif(R

3) =

{
Φ ∈ L1

loc(R
3)
∣∣ sup
y∈R3

sup
t>0

t3 |{x ∈ y +B1; |Φ(x)| ≥ t}| < +∞
}
,

where |B| is the Lebesgue measure of the Borel set B ⊂ R
3

Some remarks are needed on assumptions (5.34). Of course the case of the periodic

lattice corresponds to m =
∑

Xk∈Z3

δ(· −Xk), which fulfills the above conditions. These

conditions are known as those defining a Delaunay lattice in crystallography. Heuristically,
Assumptions (5.34) exclude situations where the set of nuclei includes infinitely charged
clusters of nuclei somewhere or infinitely large empty zones. These assumptions are
equivalent to the assumptions (H1)-(H2) we have presented in Section 4.1.

It is worth emphasizing the fundamental reason why uniqueness holds for a system of
type (5.35). Basically, the reason is the strict convexity of the TFW energy functional.
As indicated by the condition u ≥ 0, we deal here with the ground state, and this ground
state is unique. However, the argument is not straightforward as the natural framework
would be to work in the energy space, say H1, or any space of functions that vanish at
infinity, at least in some weak sense: now the solution we manipulate is definitely not
in such a space, as we expect it to be periodic. The point is therefore to understand to
which extent there is still sufficient convexity in the equations to enforce uniqueness even
without “boundary condition”at infinity. In this respect, the argument is reminiscent of
arguments by H. Brézis and collaborators in the 1980s on the equation

−∆Φ + |Φ|p−1Φ = m

with m a locally bounded measure. For p = 3/2, the latter equation can in fact be
recovered as a degenerate case of our system (5.35) by forcefully eliminating the term
−∆u in the first equation and formally factoring out by u (which actually amounts to
considering the Thomas-Fermi model itself).

5.3 Hartree-Fock and Kohn-Sham models for perfect crystals

No result to date gives the thermodynamic limit of the HF problem (5.19), the KS prob-
lem (5.20), or the extended KS problem (5.22) (for the standard exchange-correlation
functionals). Nevertheless, there is such a result for the rHF model (5.24). The analysis
is then far simpler because convexity is restored.
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As in the previous section, we take {Xk} = ΛN , and, without changing the notation,
we consider the total rHF energy functional including the nuclear repulsion energy:

ErHF
ΛN

(γ) = Tr

(
1

2
∆γ

)
−
∑

Xk∈ΛN

∫

R3

ργ(x)

|x−Xk|
+

1

2

∫

R3

∫

R3

ργ(x)ργ(y)

|x− y| dx dy

+
1

2

∑

Xj 6=Xk∈ΛN

1

|Xj −Xk|
.

The model

IrHF
ΛN

= inf
{
ErHF

ΛN
(γ), γ ∈ ΓN

}

can be shown to converge [26], in the thermodynamic limit, to the rHF periodic model

IrHF
per = inf{ErHF

per (γper), γper ∈ Γper}. (5.36)

The set Γper is the set of Z
3-periodic density matrices with one electron per unit cell and

finite kinetic energy, defined as

Γper =

{
γper ∈ S(L2(R3)) | 0 ≤ γper ≤ 1, τzγper = γperτz, ∀z ∈ Z

3,

Trper(γper) = 1, Trper(−∆γper) <∞
}
,

where τz denotes the translation operator of vector z ∈ Z
3: (τzφ)(x) = φ(x − z) for

all φ ∈ L2(R3), and where the notation Trper is defined in (5.37). A positive self-adjoint
operatorA ∈ S(L2(R3)) is called locally trace class if 1BA1B is trace-class for any bounded
Borel set B. The density ρA associated with a locally trace-class operator A is a locally
integrable function and for all bounded Borel sets B ⊂ R

3,

Tr(1BA1B) =

∫

B

ρA.

It is easily seen that a Z
3-periodic positive operator Aper ∈ S(L2(R3)) (commuting with

all the translations τz, z ∈ Z
3) is locally trace-class if and only if Trper(Aper) <∞, where

Trper(Aper) = Tr(1QAper1Q). (5.37)

If γper is a locally trace-class periodic density matrix, its density ργper is a Z
3-periodic

function of L1
loc(R

3) and

Trper(γper) =

∫

Q

ργper = number of electrons per unit cell.

Likewise,

Trper(−∆γper) =
3∑

j=1

Trper(PjγperPj),
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where Pj = −i∂xj
is the jth component of the momentum operator (note that −∆ =∑3

j=1 P
2
j ), is in fact the kinetic energy per unit cell of the periodic density matrix γper.

The periodic rHF energy functional is defined as

ErHF
per (γper) = Trper

(
−1

2
∆γper

)
−
∫

Q

Gρper +
1

2

∫∫

Q×Q

ρper(x)G(x− y) ρper(y) dxdy.

It is possible to provide more explicit expressions for Trper(γper) and Trper(−∆γper) by
means of Bloch theory, but we will not elaborate further on this point here and refer the
reader to [26, 18] for more details. We however mention that numerical methods to solve
(5.36) heavily rely on the Bloch decomposition of the trial density matrices γper.

The convex minimization problem (5.36) has a unique minimizer γ0
per [18] with density

ρ0
per(x) = γ0

per(x, x), which is the orthogonal projector

γ0
per = 1(−∞,ǫ0F)(H

0
per),

with

H0
per = −1

2
∆ + V 0

per,

where the Z
3-periodic potential V 0

per ∈ L2
per(Q) is the unique Z

3-periodic solution to the
Poisson problem 




−∆V 0
per = 4π

(
ρ0

per −
∑

k∈Z3

δk

)
,

∫

Q

V 0
per = 0,

and where ǫ0F is the Fermi level, that is the Lagrange multiplier of the constraint Trper(γ0
per) =

1. The spectral properties of periodic Schrödinger operators are well-known. Using again
Bloch theory, it can be proved that the spectrum σ(H0

per) of H0
per is purely absolutely

continuous, and consists of possibly overlapping bands:

σ(H0
per) =

+∞⋃

n=1

[Σ−
n ,Σ

+
n ],

where (Σ−
n )n≥1 is a non-decreasing sequence of real numbers converging to infinity, and

Σ+
n > Σ−

n . If there is a gap between the jth and (j + 1)st bands (i.e. if Σ−
j+1 > Σ+

j ), then
for any a ∈ [Σ+

j ,Σ
−
j+1], the orthogonal projector 1(−∞,a](H

0
per) is independent of a and its

trace per unit volume is exactly equal to j. In the simple case we are considering here
(one electron per unit cell), two cases are a priori possible (see Figure 5):

1. either Σ−
2 > Σ+

1 (existence of a gap between the first and second bands), in which
case we can choose for instance ǫ0F = 1

2
(Σ+

1 + Σ−
2 ), though any value in the band

gap is suitable. From a physical viewpoint, this corresponds to an insulating or
semiconducting crystal, depending on the magnitude of the gap g = Σ−

2 − Σ+
1 > 0;

2. or Σ−
2 ≤ Σ+

1 (overlap between the first and second bands), in which case the Fermi
level has a well-defined fixed value. From a physical viewpoint, this models a con-
ducting crystal.
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This could be decided by means of numerical simulations, but this is not our point here.
The two situations are encountered in practice for more general lattices and motifs.

ε F
0

ε F
0

Figure 5: Electronic structure of an insulating or semiconducting crystal (top), and of a
conducting crystal (bottom) with one electron per unit cell.

On the basis of the results obtained for the thermodynamic limit of the rHF model,
it is natural to postulate that the HF and extended KS Xα ground state energies per
unit volume and densities of the perfect crystal will be obtained by solving the following
periodic models:

IHF
per = inf{EHF

per(γper), γper ∈ Γper}, (5.38)

IKS
per = inf{EKS

per(γper), γper ∈ Γper}, (5.39)

where

EHF
per(γper) = Trper

(
−1

2
∆γper

)
−
∫

Q

Gργper +
1

2

∫∫

Q×Q

ρper(x)G(x− y) ρper(y) dxdy

−1

2

∫∫

Q×R3

|γper(x, y)|2
|x− y| dxdy,

EKS
per(γper) = Trper

(
−1

2
∆γper

)
−
∫

Q

Gργper +
1

2

∫∫

Q×Q

ρper(x)G(x− y) ρper(y) dxdy

−CD

∫

Q

ρ4/3
γper

.

The periodic HF model (5.38) can be shown to have a minimizer [26]. A recent contribu-
tion [34] provides a better mathematical knowledge on the above periodic HF problem. It
establishes in particular that a minimizer is necessarily an orthogonal projector, a ques-
tion left unsolved in [26]. It is easily seen that (5.39) has a minimizer, but its uniqueness
is an open question.

6 Electronic structure of materials with defects

We now describe the results of [11, 18, 19, 20, 21] on the modeling of local defects in
crystals in the framework of the TFW and rHF models. We first consider the case of a
single local defect (or of a finite number of such defects) in Section 6.1. Then, we focus
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on the case of a disordered crystal with an infinite number of randomly distributed local
defects (possibly with very low concentration) in Section 6.2. Note that the electronic
structure of crystals with local defects was first investigated in [57] in the framework of
the Thomas-Fermi approximation for the particular case of a homogeneous host crystal
with uniform nuclear and electronic densities.

6.1 The case of a local defect

Consider an insulating or semiconducting perfect crystal with a Z
3-periodic nuclear charge

density ρnuc
per . Our aim in this section is to investigate the case of a crystal with a local

defect characterized by the nuclear charge distribution

ρnuc = ρnuc
per + ν, (6.1)

where ν is localized (typically a compactly supported, or fast decaying perturbation of
the periodic distribution ρnuc

per , see Figure 6.

Figure 6: An example of a local defect: an impurity with relaxation of the neighboring
atoms.

For both the TFW and rHF models, the electronic ground state of the perfect crystal
is unique. It is indeed completely characterized

• in the TFW case, by the periodic ground state density ρper, or equivalently by its
square root uper =

√
ρper (see Section 5.2);

• in the rHF case, by the periodic ground state density matrix γ0
per (see Section 5.3).

It is therefore natural to seek the ground state of the crystal with local defect of nuclear
charge distribution ρnuc = ρnuc

per + ν, under the form

uν,q = uper + vν,q (TFW), (6.2)

γν,ǫ0F = γ0
per +Qν,ǫ0F

(rHF). (6.3)

In (6.2), q denotes the charge of the defect. In (6.3), the charge of the defect is controlled
by the Fermi level ǫ0F, which is, from the physical viewpoint, the chemical potential of the
electrons in the crystal. The dual approach, in which the charge of the defect is imposed,
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is also dealt with in [18]. A physical interpretation of these decompositions of uν,q (the
square root of the ground state density) and γν,ǫ0F (the ground state density matrix) is
that the defect can be seen as a quasi-molecule with nuclear charge distribution ν and

• electronic ground state density

u2
ν,q − u2

per = 2upervν,q + v2
ν,q (TFW);

• electronic density matrix

γν,ǫ0F − γ0
per = Qν,ǫ0F

(rHF).

It should be noticed that the charge densities ν, 2upervν,q+v
2
ν,q and ρQ

ν,ǫ0
F

are not necessarily

non-negative, since they are differences of two non-negative densities (note that we employ
the physics terminology, where the term density does not assume non-negativity). For
instance, if the host crystal has a nucleus of charge z at point X, the nuclear charge
distribution of a vacancy at X is ν = −zδX .

Our goal is to exhibit variational problems allowing us to compute vν,q and Qν,ǫ0F
from

ν, q, ǫ0F and the ground state of the perfect crystal. We proceed in four steps:

Step 1: guess a tentative variational problem by a formal calculation consisting in sub-
tracting two infinite energies: the energy of the crystal with the defect, and the
energy of the perfect crystal;

Step 2: find a functional setting to give a meaning to each term of the tentative problem;

Step 3: study the mathematical properties of the minimizers of the tentative problem;

Step 4: check that the tentative problem has a physical meaning by a thermodynamic
limit argument.

This procedure falls into the scope of renormalization methods since we aim at giving a
meaning to the difference of two infinite energies. Note that the renormalized model for
defects in crystals we will obtain in the rHF case is formally very similar to the model
introduced in [36, 37, 38] in the context of the no-photon approximation of quantum
electrodynamics (QED) to describe atoms embedded in the QED vacuum.

Although the outline is identical for the TFW and rHF models, the technical details
are quite different. The only common feature is that we will need in both cases to extend
the definition of the Coulomb interaction energy to the Coulomb space C defined as

C =

{
f ∈ S ′(R3) | f̂ ∈ L1

loc(R
3), D(f, f) = 4π

∫

R3

|f̂(k)|2
|k|2 dk <∞

}
,

where S ′(R3) is the space of tempered distributions on R
3, and f̂ the Fourier transform

of f (we use the normalization convention for which ‖f̂‖L2 = ‖f‖L2 for all f ∈ L2(R3)).
Endowed with its natural inner product

D(f, g) = 4π

∫

R3

f̂(k) ĝ(k)

|k|2 dk, (6.4)
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C is a Hilbert space. It can be proved that L6/5(R3) →֒ C and that for any (f, g) ∈
L6/5(R3) × L6/5(R3), it holds

4π

∫

R3

f̂(k) ĝ(k)

|k|2 dk =

∫

R3

∫

R3

f(x) g(y)

|x− y| dx dy.

Hence, the definition (6.4) of D(·, ·) on C is consistent with the usual definition of the
Coulomb interaction when the latter makes sense. The Coulomb space C therefore is the
set of charge distributions of finite Coulomb energies. We denote by

C′ =
{
V ∈ L6(R3) |∇V ∈ (L2(R3))3

}
.

the set of potentials generated by charge distributions of finite Coulomb energies, which
can be identified with the dual of C.

6.1.1 Crystals with local defects in the TFW setting

In the TFW setting, the methodology introduced in Section 6.1 can be put into practice
as follows.

Step 1: formal derivation of a tentative variational problem.

We have previously seen that the periodic TFW problem (5.29) has a unique minimizer
ρper. The same holds if we replace the nuclear charge distribution

∑
Xk∈Z3 δXk

with a more

general Z
3-periodic charge distribution ρper

nuc, and the constraint
∫
Q
u2 = 1 with

∫
Q
u2 = N ,

where N is the number of electrons per unit cell necessary to balance the nuclear charge
distribution ρper

nuc. Reasoning as in Section 5.1.2, we obtain that the function uper =
√
ρper

is solution in H1
per(Q) to the Euler-Lagrange equation

HTFW
per uper = µuper, (6.5)

where µ is the Lagrange multiplier of the constraint
∫
Q
u2

per = N and where HTFW
per =

−∆ + Vper with

Vper =
5

3
ρ2/3

per + (ρper − ρnuc
per ) ⋆ G,

where G is the periodic Coulomb kernel defined by (5.31).
We now compute the difference between the TFW energy of a trial electronic density

ρ interacting with the nuclear charge density ρnuc
per +ν, and the TFW energy of the perfect

crystal, without caring about mathematical rigor. Introducing the function v defined by√
ρ = uper + v, and using the fact that the function uper is solution to (6.5), we obtain

ETFW
ρnuc
per+ν

(uper + v) − ETFW
ρnuc
per

(uper)

formal
= 〈(HTFW

per − µ)v, v〉 +

∫

R3

(
|uper + v|10/3 − |uper|10/3 −

5

3
|uper|4/3(2uperv + v2)

)

+
1

2
D
(
2uperv + v2 − ν, 2uperv + v2 − ν

)
−
∫

R3

νV 0
per + µq, (6.6)
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where

q =

∫

R3

(
|uper + v|2 − |uper|2

)
=

∫

R3

(2uperv + v2) (6.7)

can be interpreted as the electronic charge of the defect. Of course, the left-hand side of
(6.6) has a priori no mathematical sense since it is the difference of two infinite energies.
On the other hand, the right-hand side is a well-defined mathematical expression.

Step 2: construction of a suitable functional setting.

The TFW Hamiltonian HTFW
per is a periodic Schrödinger operator. Using the fact that

uper =
√
ρper ≥ 0, it can be shown that µ is in fact the bottom of the spectrum of HTFW

per .
It follows that the first term in the right-hand side of (6.6) is non-negative. So is the
second one by convexity of the function t 7→ |t|10/3, as well as the third one by definition
of the Coulomb energy. It is easy to see that the sum of these three terms is finite if and
only if v ∈ H1(R3) and uperv ∈ C. Besides, as v is defined by

√
ρ = uper + v, it obviously

satisfies the constraint v ≥ −uper. This leads us to introduce the set

Q+ =
{
v ∈ H1(R3) | v ≥ −uper, uperv ∈ C

}
,

and the minimization problem

Iν = inf {Eν(v), v ∈ Q+} (6.8)

with

Eν(v) = 〈(HTFW
per − µ)v, v〉 +

∫

R3

(
|uper + v|10/3 − |uper|10/3 −

5

3
|uper|4/3(2uperv + v2)

)

+
1

2
D
(
2uperv + v2 − ν, 2uperv + v2 − ν

)
. (6.9)

The term
∫

R3 νV
0
per in the right-hand side of (6.6) is independent of v and can therefore

be discarded. On purpose, we also ignore the term µq in (6.6), which yet depends on v
through (6.7). The will be justified below.

Step 3: mathematical analysis of the minimization problem (6.8).

The following result is proved in [20].

Theorem 4 [20] Let ν ∈ C. Then,

1. Existence and uniqueness of the ground state density. The minimization problem
(6.8) has a unique minimizer vν. The function vν is such that uper + vν > 0 in R

3

and satisfies the Euler-Lagrange equation

(HTFW
per − ǫ0F)vν +

5

3
CTF

(
|uper + vν |7/3 − |uper|7/3 − |uper|4/3vν

)

+
(
(2upervν + v2

ν − ν) ⋆ | · |−1
)
(uper + vν) = 0. (6.10)
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2. Neutrality of local defects. We denote by ρ0
ν = ν − (2upervν + v2

ν) the total charge
density of the defect. It holds

lim
r→0

1

|Br|

∫

Br

|ρ̂0
ν(k)| dk = 0. (6.11)

In addition, the Coulomb potential Φ0
ν = ρ0

ν ⋆ | · |−1 generated by ρ0
ν is in L2(R3)∩C′.

3. Compactness of the minimizing sequences. Any minimizing sequence (vn)n∈N of
(6.8) converges to vν weakly in H1(R3) and strongly in Lploc(R

3) for 1 ≤ p < 6.
Besides, (upervn)n∈N converges to upervν weakly in C.

For any q ∈ R, there exists a minimizing sequence (vn)n∈N of (6.8) consisting of
functions of Q+ ∩ L1(R3) such that

∀n ∈ N,

∫

R3

(
|uper + vn|2 − |uper|2

)
= q. (6.12)

Remark 6.1 Let ν ∈ L1(R3)∩L2(R3). Assuming that vν ∈ L1(R3)∩L2(R3) (a property
satisfied at least in the special case of homogeneous host crystals [20]), we obtain that

ρ̂0
ν ∈ C0(R3) and (6.11) simply means that the continuous function ρ̂0

ν vanishes at k = 0,
or equivalently that ∫

R3

ρ0
ν = 0. (6.13)

The second part of the third statement of Theorem 4 means that there is no way to
charge a defect within the TFW theory: loosely speaking, if we try to put too many (or
not enough) electrons in the system, the electronic density will relax to (uper + vν)

2 and
the remaining (or missing) q −

∫
R3 ν electrons will escape to (or come from) infinity with

an energy µ (the last term in (6.6)). At convergence of the minimizing sequence, the
system will end up neutral. This justifies our choice to ignore the term µq in (6.6) in our
definition of the defect problem (6.8).

Step 4: justification of the model by thermodynamic limit arguments.

There are several technical ways of performing thermodynamic limits. The method
described in Sections 5.2-5.3 considers the set of nuclei ΛN and the TFW, rHF or HF
models for N electrons living in the whole space.

Another way for performing thermodynamic limits is to confine the nuclei and the
electrons in a domain ΩL with |ΩL| → ∞, by means of Dirichlet boundary conditions for
the electrons. The latter approach was chosen for the Schrödinger model with quantum
nuclei in the canonical and grand canonical ensembles [68] in the seminal paper [55] (see
also [51]), where the existence of a limit for the energy per unit volume is proved. The
crystal case in the Schrödinger model was addressed in [32] (see also [39]).

Another possibility, perhaps less satisfactory from a physical viewpoint but more di-
rectly related to practical calculations (see e.g. [30]), is to consider the domain ΩL =
[−L/2, L/2]3 and to impose periodic boundary conditions on the box ΩL. Usually the
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Coulomb interaction is also replaced by a (LZ
3)-periodic Coulomb potential, leading to

the so-called supercell model. This approach has the advantage of respecting the symme-
try of the system in the crystal case. For brevity, we do not detail the supercell model
here and refer the reader to [20]. We just mention the fact that there are two ways to
perform a supercell calculation for a crystal with a local defect in the TFW framework:

• either we fix the electronic charge q of the defect, by imposing a constraint of the
form ∫

ΩL

ρL = L3N + q

to the LZ
3-periodic trial density ρL;

• or we do not fix q, and minimize over all LZ
3-periodic trial densities.

In both cases, the ground state density obtained in the thermodynamic limit is given by
ρ = (uper + vν)

2, where vν is the unique solution of (6.8).

6.1.2 Crystals with local defects in the rHF setting

We now focus on the rHF case, and seek a ground state density matrix of the form (6.3)
for the crystal with nuclear charge distribution given by (6.1). The constraints on the full
density matrix (self-adjointness (γν,ǫ0F)∗ = γν,ǫ0F and Pauli principle 0 ≤ γν,ǫ0F ≤ 1) imply
the following constraints on Qν,ǫ0F

:

(Qν,ǫ0F
)∗ = Qν,ǫ0F

, −γ0
per ≤ Qν,ǫ0F

≤ 1 − γ0
per.

We also have ρQ
ν,ǫ0

F

≥ −ρ0
per.

Step 1: formal derivation of a tentative variational problem.

Formally, the difference between the rHF free energy of some trial density matrix
γ = γ0

per + Q subjected to the nuclear potential generated by ρnuc
per + ν, and the rHF free

energy of the perfect crystal, is given by:

(
ErHF
ρnuc
per+ν

(γ0
per +Q) − ǫ0FTr(γ0

per +Q)
)
−
(
ErHF
ρnuc
per

(γ0
per) − ǫ0FTr(γ0

per)
)

formal
= Tr

(
−1

2
∆Q

)
+

∫

R3

ρQV
0
per −D(ν, ρQ) +

1

2
D(ρQ, ρQ)

−ǫ0FTr(Q) −
∫

R3

νV 0
per +

1

2
D(ν, ν). (6.14)

The term “free energy” refers to the fact that we work here in the grand canonical ensemble
in which the chemical potential of the electrons, that is the Fermi level ǫ0F, is fixed. The
latter can be chosen equal to any number in the gap between the occupied and unoccupied
energy bands of the spectrum of the perfect crystal. While the chosen value of ǫ0F has no
influence on the electronic state of the perfect crystal, it does impact on the electronic
state of the crystal with defect since only the energy levels below ǫ0F will be occupied (see
Figure 7 below).
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As for (6.6), the left-hand side of (6.14) has a priori no mathematical meaning (it is
the difference of two infinite energies). On the other hand, we will see that it is possible to
give a mathematical meaning to the right-hand side when Q belongs to some functional
space Q defined below, and to characterize the ground state density operator Qν,ǫ0F

of the
defect (considered as a quasi-molecule embedded in the perfect crystal), by minimizing
the so-defined energy functional on some convex set K.

Step 2: construction of a suitable functional setting.

The terms
∫

R3 νV
0
per and 1

2
D(ν, ν) are independent of Q and can therefore be ignored.

It now turns out that the sum

Tr

(
−1

2
∆Q

)
+

∫

R3

ρQV
0
per − ǫ0FTr(Q)

can (still formally) be written as a non-negative quantity for any Q satisfying Q = Q∗

and 0 ≤ γ0
per +Q ≤ 1. In order to establish this result, we introduce, for any operator A

on L2(R3), the notation

A−− = γ0
perAγ

0
per, A−+ = γ0

perA(1 − γ0
per),

A+− = (1 − γ0
per)Aγ

0
per, A++ = (1 − γ0

per)A(1 − γ0
per),

and note that the constraints Q = Q∗ and 0 ≤ γ0
per +Q ≤ 1 are equivalent to

Q∗ = Q, Q−− ≤ 0, Q++ ≥ 0, Q2 ≤ Q++ −Q−−. (6.15)

The introduction of the operators A±± corresponds to a decomposition of the space L2(R3)
into the direct sum of the two orthogonal spaces H− = Ran(γ0

per) (occupied states of the
perfect crystals) and H+ = Ker(γ0

per) = Ran(1 − γ0
per) (unoccupied states of the perfect

crystal). Using this decomposition, the operators γ0
per, H

0
per and Q have the following

structures:

γ0
per =

(
1H− 0
0 0

)
, H0

per =

(
(H0

per)
−− 0

0 (H0
per)

++

)
, Q =

(
Q−− Q−+

Q+− Q++

)
.

As Tr(V 0
perQ) =

∫
R3 ρQV

0
per, we formally obtain

Tr

(
−1

2
∆Q

)
+

∫

R3

ρQV
0
per − ǫ0FTr(Q) = Tr((H0

per − ǫ0F)Q)

= Tr((H0
per − ǫ0F)++Q++) + Tr((H0

per − ǫ0F)−−Q−−).

We now remark that, by definition of γ0
per, (H0

per − ǫ0F)++ ≥ 0 and (H0
per − ǫ0F)−− ≤ 0, so

that the right-hand side of the above expression is the sum of two non-negative terms,
and can be rewritten as

Tr(|H0
per − ǫ0F|1/2(Q++ −Q−−)|H0

per − ǫ0F|1/2). (6.16)

The above expression is well defined in R+ ∪ {+∞} for all Q satisfying the constraints
(6.15). It takes a finite value if Q is chosen in the vector space

Q =
{
Q ∈ S2 | Q∗ = Q, Q−− ∈ S1, Q

++ ∈ S1, (6.17)

|∇|Q ∈ S2, |∇|Q−−|∇| ∈ S1, |∇|Q++|∇| ∈ S1

}
,
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where S1 and S2 respectively denote the spaces of trace-class and Hilbert-Schmidt op-
erators [71] on L2(R3), and where |∇| =

√
−∆. Endowed with its natural norm, or with

any equivalent norm such as

‖Q‖Q = ‖(1 + |∇|)Q‖S2 + ‖(1 + |∇|)Q++(1 + |∇|)‖S1 + ‖(1 + |∇|)Q−−(1 + |∇|)‖S1 ,

Q is a Banach space.

Before proceeding further, we comment on the definition of Q. As the trial density
operators Q must satisfy the constraints (6.15), it is natural to impose Q∗ = Q. Since
|H0

per − ǫ0F|1/2(1 + |∇|)−1 is a bounded operator with bounded inverse (see [18]), the four
conditions Q−− ∈ S1, Q

++ ∈ S1, |∇|Q−−|∇| ∈ S1 and |∇|Q++|∇| ∈ S1 are necessary
and sufficient conditions for the expression (6.16) with Q satisfying (6.15) being finite.
The other constraints imposed to the elements of Q (Q ∈ S2 and |∇|Q ∈ S2) follow from
the fact that for any Q satisfying (6.15)

(
Q−− ∈ S1, Q

++ ∈ S1

)
⇒

(
Q2 ∈ S1

)
(
|∇|Q−−|∇| ∈ S1, |∇|Q++|∇| ∈ S1

)
⇒

(
|∇|Q2|∇| ∈ S1

)
.

In order to simplify the notation, we set for Q ∈ Q,

Tr0(Q) = Tr(Q++ +Q−−),

Tr0((H
0
per − ǫ0F)Q) = Tr(|H0

per − ǫ0F|1/2(Q++ −Q−−)|H0
per − ǫ0F|1/2).

We finally need to check that the remaining two terms
∫

R3 ρQVν and 1
2
D(ρQ, ρQ) can

be given a sense for Q ∈ Q. This follows from the following important result: the linear
mapping Q 7→ ρQ originally defined on the dense subset Q∩ S1 of Q can be extended in
a unique way to a continuous linear mapping

Q → L2(R3) ∩ C (6.18)

Q 7→ ρQ.

Note that the density associated with a generic element of Q is not necessarily an inte-
grable function. On the other hand, its Coulomb energy is always finite.

In particular, if the nuclear charge distribution ν of the defect is such that Vν =
(ν ⋆ | · |−1) ∈ L2(R3) + C′, the quantities

∫
R3 ρQVν , or more precisely the duality bracket

〈Vν , ρQ〉L2+C′,L2∩C and D(ρQ, ρQ) can be given a mathematical sense.
It follows from the above arguments that the energy functional

Eν,ǫ0F(Q) = Tr0((H
0
per − ǫ0F)Q) − 〈Vν , ρQ〉L2+C′,L2∩C +

1

2
D(ρQ, ρQ)

is well defined on Q and that a good candidate for a variational model allowing us to
compute the ground state density matrix Qν,ǫ0F

of the defect is

inf
{
Eν,ǫ0F(Q), Q ∈ K

}
, (6.19)
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where
K =

{
Q ∈ Q | − γ0

per ≤ Q ≤ 1 − γ0
per

}
. (6.20)

Note that K is a closed convex subset of Q.

Step 3: mathematical analysis of the minimization problem (6.19).

The following existence theorem holds.

Theorem 5 [18, 22] Let ν such that (ν ⋆ | · |−1) ∈ L2(R3) + C′. Then,

1. (6.19) has at least one minimizer Qν,ǫ0F
, and all the minimizers of (6.19) share the

same density ρν,ǫ0F;

2. Qν,ǫ0F
is solution to the self-consistent equation

Qν,ǫ0F
= 1(−∞,ǫ0F)

(
H0

per + (ρν,ǫ0F − ν) ⋆ | · |−1
)
− 1(−∞,ǫ0F]

(
H0

per

)
+ δ, (6.21)

where δ is a finite-rank self-adjoint operator on L2(R3) such that 0 ≤ δ ≤ 1 and

Ran(δ) ⊂ Ker
(
H0

per + (ρν,ǫ0F − ν) ⋆ | · |−1 − ǫ0F

)
.

The interpretation of the Euler equation (6.21), which also reads

γ0
per +Qν,ǫ0F

= 1(−∞,ǫ0F](H
0
ν,ǫ0F

) + δ

with

H0
ν,ǫ0F

= H0
per + (ρν,ǫ0F − ν) ⋆ | · |−1, 0 ≤ δ ≤ 1, Ran(δ) ⊂ Ker(H0

ν,ǫ0F
− ǫ0F),

is the following. The mean-field Hamiltonian H0
ν,ǫ0F

is uniquely defined, since all the

minimizers of (6.19) share the same density ρν,ǫ0F . Besides, the operator (ρν,ǫ0F − ν) ⋆ | · |−1

being a relatively compact perturbation of H0
per, it results from the Weyl theorem (see [67,

Section XIII.4]) that the Hamiltonians H0
per and H0

ν,ǫ0F
have the same essential spectra.

On the other hand, while H0
per has no eigenvalues, H0

ν,ǫ0F
may have a countable number

of isolated eigenvalues of finite multiplicities in the gaps as well as below the bottom of
the essential spectrum (see Figure 7). The only possible accumulation points of these
eigenvalues are the edges of the bands.

ε F
0

Figure 7: Typical spectra of H0
per (up) and H0

ν,ǫ0F
(down).
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If ǫ0F /∈ σ(H0
ν,ǫ0F

), then δ = 0 and the ground state density operator of the crystal in

the presence of the defect is the orthogonal projector γ0
per + Qν,ǫ0F

: all the energy levels
lower than the Fermi level are fully occupied while the other ones are empty. In this case,
Qν,ǫ0F

is both a Hilbert-Schmidt operator and the difference of two projectors. It therefore
follows from [36, Lemma 2] that

Tr0(Qν,ǫ0F
) ∈ N. (6.22)

Assuming that ν ∈ L1(R3) and
∫

R3 ν ∈ N, the integer

q =

∫

R3

ν − Tr0(Qν,ǫ0F
)

can be interpreted as the bare charge of the defect. We already know from (6.18) that the
density ρν,ǫ0F is in L2(R3) ∩ C. Under some additional assumptions [22], it can be proved

that its Fourier transform has a limit at k = 0, which we denote by
∫

R3 ρν,ǫ0F by a slight
abuse of notation. An interesting phenomenon is that, in general,

Tr0(Qν,ǫ0F
) 6=

∫

R3

ρν,ǫ0F .

The fact that the equality (5.21) is no longer true for the renormalized model is due to the
polarization of the Fermi sea responsible for the dielectric permittivity of insulating and
semiconducting crystals. More precisely, we obtain that (under the same assumptions)

qr =

∫

R3

ν −
∫

R3

ρQ
ν,ǫ0

F

=
q

ǫµ
,

where ǫµ > 1 is the microscopic dielectric permittivity of the crystal. We refer to [22] for
details.

Step 4: justification of the model by thermodynamic limit arguments.

It is proved in [18] that the tentative variational problem (6.19) is indeed the thermo-
dynamic limit of the supercell model when L goes to infinity.

All this allows us to conclude that the rHF ground state density operator of the crystal
with nuclear charge density ρnuc

per +ν (the charge of the defect being controlled by the Fermi
level ǫ0F) is therefore given by

γν,ǫ0F = γ0
per +Qν,ǫ0F

where Qν,ǫ0F
is obtained by solving (6.19).

6.2 Disordered crystals

A huge amount of literature has been devoted to modeling electrons in random materials.
In most cases, electrons are considered as non-interacting particles subjected to a station-
ary empirical potential V (ω, x), in the sense defined in Section 2.2 (see in particular the
definition (2.4)). The analysis of the electronic properties of the material then reduces
to the analysis of the spectral properties of the associated random Schrödinger operator
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H(ω) = −1
2
∆ + V (ω, ·) acting on L2(R3). A remarkable property of random Schrödinger

operators is that, under some integrability assumptions on V , the spectrum of H(ω) is
deterministic: there exists a closed set Σ ∈ R such that σ(H(ω)) = Σ almost surely. Sim-
ilar results hold for the density of states (that is, losely speaking, the number of quantum
states per unit volume) of the Hamiltonian H(ω). Interesting questions are concerned
with the nature of the spectrum (point spectrum, absolutely continuous spectrum, ...),
which is related to the electronic transport properties of the material. We refer to [23, 74]
and references therein for more details on the linear case.

In this article, we focus on models accounting for electron interactions. Consider for
instance a disordered crystal whose nuclear charge distribution is modeled, for simplicity,
by a non-negative stationary function ρnuc

sta ∈ L∞(Ω × R
3) satisfying

∀k ∈ Z
3, ρnuc

sta (ω, x+ k) = ρnuc
sta (τk(ω), x) almost everywhere in x, almost surely,

for some ergodic group action (τk)k∈Z3 on the underlying probability space (Ω,F ,P). A
particular instance of such a stationary nuclear charge distribution is

ρnuc
sta (ω, x) =

∑

k∈Z3

qk(ω)χ(x− k),

∫

R3

χ = 1, qk : Ω → {1, · · · ,M} i.i.d.,

for which the positions of the nuclei are deterministic, while their charges are random
(see Figure 8). The arguments below can be extended to treat point nuclei represented
by Dirac masses, see [11].

Figure 8: A realization of a random crystal with deterministic nuclear positions and
random nuclear charges.

In this random setting (a disordered crystal with nuclear charge distribution ρnuc
sta ), the

expected thermodynamic limit of the rHF model reads, in view of equations (5.26)-(5.27),




γ0
sta(ω) = 1(−∞,ǫ0F)(H(ω)) + δ(ω),

H(ω) = −1

2
∆x + V (ω, x),

−∆xV (ω, x) = 4π
(
ργ0

sta
(ω, x) − ρnuc

sta (ω, x)
)
,

(6.23)

with Ran(δ(ω)) ⊂ Ker(H(ω)− ǫ0F). Here, the Fermi level ǫ0F is the Lagrange multiplier of
the constraint

E

(∫

Q

ργ0
sta

)
= E

(∫

Q

ρnuc
sta

)
,



54 Eric Cancès and Claude Le Bris

ensuring the average neutrality per unit volume of the disordered crystal. The real number
ǫ0F is therefore a deterministic quantity.

The existence of solutions to the mean-field equation (6.23) still is an open question.
The main difficulty is that the Poisson equation −∆xV (ω, x) = 4πf(ω, x) with a sta-
tionary charge distribution f does not have, in general, a stationary solution, even if the

charge distribution is globally neutral, that is, E

(∫
Q
f
)

= 0. The problem is that we do

need a stationary potential to properly define the mean-field Hamiltonian as a random
Schrödinger operator. The situation is therefore much more complex than in the case of a
periodic function f , for which the Poisson equation has always a periodic solution, unique
up to an additive constant, provided f is neutral on each unit cell.

We will see in Section 6.2.3 that it is however possible to define the rHF electronic
ground states of a disordered crystal as the minimizers of some variational problem.
Unfortunately, we do not have enough information on these minimizers to derive explicit
optimality conditions of the form (6.23). The situation is more favorable for the TFW
model (see Section 6.2.3), for which the electronic ground state of a disordered crystal can
be defined both as the minimizer of some energy functional, and, using Lemma 4, as the
unique solution of the self-consistent equations. Before presenting these results in more
detail, we first have to define the Coulomb energy per unit volume of a stationary charge
distribution. To prepare the ground for the last section of this article, we also consider
the case of short-range Yukawa interactions.

6.2.1 Yukawa and Coulomb energies of stationary charge distributions

For convenience, we introduce the spaces Lps(L
q) and Lps of stationary functions defined

as follows:

Lps (Lq) =
{
f ∈ Lp

(
Ω, Lqloc

(
R

3
))

| f is stationary
}
, Lps = Lps(L

p).

The Coulomb energy per unit volume of a stationary charge distribution f can be
defined, for instance, by means of a Yukawa regularization of the Coulomb potential.
Recall that the Yukawa energy of a charge distribution f ∈ L2(R3) can be written in
several equivalent ways:

Dm(f, f) =

∫

R3

∫

R3

Ym(x− y)f(x) f(y) dx dy

=
∥∥∥(4π)1/2

(
−∆ +m2

)− 1
2 f
∥∥∥

2

L2(R3)
= ‖Wm ⋆ f‖2

L2(R3).

In the above expressions, Ym(x) = e−m|x|

|x|
is the Yukawa kernel, and Wm the kernel of the

integral operator (4π)1/2(−∆ +m2)−1/2. It can be shown that Wm is in L1(R3), behaves
as |x|−2 at zero, and decays exponentially at infinity.

Similar expressions can be obtained for the Yukawa energy per unit volume of a sta-
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tionary charge distribution f ∈ L2
s:

Dsta
m (f, f) = E

(∫

Q

∫

R3

Ym(x− y)f(·, x) f(·, y) dx dy
)

=
∥∥∥(4π)1/2

(
−∆s +m2

)− 1
2 f
∥∥∥

2

L2
s

= ‖Wm ⋆ f‖2
L2

s
.

In the second formulation, the usual Laplacian is replaced with the self-adjoint operator
∆s on L2

s, called the stationary Laplacian [21], which formally acts as the Laplace operator
on the space variable.

The fact that Wm ⋆ f ∈ L2
s for all f ∈ L2

s, follows from the Young inequality for
stationary functions: for 1 ≤ p, q, r, t ≤ ∞ such that 1 + r−1 = p−1 + q−1, there exists
C <∞ such that for all f ∈ Lts(L

q) and all deterministic kernels W (x),

‖W ⋆ f‖Lt
s(L

r) ≤ C

(
∑

k∈Z3

‖W‖Lp(Q+k)

)
‖f‖Lt

s(L
q). (6.24)

In particular, W ⋆ f ∈ Lps if W ∈ L1(R3) and f ∈ Lps.
As Wm ∈ L1(R3), we can define the Yukawa energy per unit volume Dsta

m (f, f) =
‖Wm ⋆ f‖2

L2
s

for any f ∈ L1
s such that Wm ⋆ f ∈ L2

s. It is easily seen that the space

DY =
{
f ∈ L1

s | Wm ⋆ f ∈ L2
s

}

does not depend on the value of the positive parameter m. Endowed with the norm
‖f‖L1

s
+Dsta

1 (f, f)1/2, DY is a Banach space and L2
s(L

6/5) ⊂ DY ⊂ L1
s.

We now turn to the Coulomb case. First, we remark that, for any fixed f ∈ DY , the
function m 7→ Dsta

m (f, f) is non-increasing. It is therefore natural to define the Coulomb
energy per unit volume of f as

Dsta
0 (f, f) = lim

m↓0
Dsta
m (f, f) ∈ R+ ∪ {+∞} .

Note that Dsta
0 (f, f) = +∞ whenever E

(∫
Q
f
)
6= 0 (i.e. whenever the charge distribution

is not globally neutral). We finally introduce the space DC = {f ∈ DY | Dsta
0 (f, f) <∞}

of the locally integrable stationary charge distributions with finite Coulomb energy per
unit volume.

It is also possible (see [11]) to define the Coulomb energy of a stationary charge
distribution f such that E

(∫
Q
f
)

= 0 as

D0(f, f) =
1

4π
E

(∫

Q

|∇Φf |2
)
,

where Φf is the unique solution (up to an additive constant) to the Poisson problem




−∆xΦf (ω, x) = 4πf(ω, x),

∇xΦf stationary, E
(∫

Q

∇xΦf

)
= 0.

Note that the Coulomb potential Φf generated by a stationary charge distribution is
not stationary in general. Only the electric field EΦf

= −∇xΦf enjoys the stationarity
property.
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6.2.2 Disordered crystals in the TFW setting

A natural definition of the TFW energy per unit volume of a stationary electronic charge
distribution ρsta interacting with the stationary nuclear charge distribution ρnuc

sta ∈ L∞
s is

ETFW
sta (ρsta) = E

(∫

Q

|∇√
ρsta|2

)
+ E

(∫

Q

ρ
5/3
sta

)
+

1

2
Dsta

0 (ρsta − ρnuc
sta , ρsta − ρnuc

sta ).

The TFW problem for disordered crystals

ITFW
sta = inf

{
ETFW

sta (ρsta), ρsta ≥ 0,
√
ρsta ∈ L2

s(H
1), E

(∫

Q

ρsta

)
= E

(∫

Q

ρnuc
sta

)}
,

(6.25)
where

L2
s(H

1) =
{
f ∈ L2

(
Ω, H1

loc

(
R

3
))

| f is stationary
}
,

has a unique minimizer ρ0
sta. The physical relevance of problem (6.25) comes from the

fact that it is the thermodynamic limit of the problem

ITFW
R (ω) =

{
ETFW
R (ω, ρ), ρ ≥ 0,

√
ρ ∈ H1(R3),

∫

R3

ρ = |BR|E
(∫

Q

ρnuc
sta

)}
, (6.26)

where

ETFW
R (ω, ρ) =

∫

R3

|∇x

√
ρ(ω, ·)|2 +

∫

R3

ρ5/3(ω, ·)+
1

2
D(ρ−ρnuc

sta (ω, ·)1BR
, ρ−ρnuc

sta (ω, ·)1BR
).

Indeed, proceeding as in [11], we obtain that

lim
R→∞

ITFW
R (ω)

|BR|
= ITFW

sta almost surely and in L1(Ω),

and that, under the assumption

∃A > 0 such that inf
x∈R3

ρnuc
sta (x+BA, ω) > 0 almost surely, (6.27)

the unique minimizer ρ0
R(ω, ·) of (6.26) converges to ρ0

sta(ω, ·) in the following sense: for
all sequences SR < R such that lim

R→∞
(R− SR) = +∞,

lim
R→∞

‖ρ0
R(ω, ·) − ρ0

sta(ω, ·)‖L∞(BSR
) = 0 almost surely.

In addition, still under assumption (6.27), the unique solution (u0,Φ0) ∈ L∞(Ω × R
3) ×

L∞(Ω, L1
unif(R

3)) to the TFW equations





−∆xu+
5

3
u7/3 − Φu = 0,

u ≥ 0,
−∆xΦ = 4π(ρnuc

sta − u2),
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is in L2
s(H

1) × L∞
s , where L2

s(H
1) = {u ∈ L2(Ω, H1

loc(R
3)) | u stationary}, and it holds

ρ0
sta = (u0)2. This means in particular that the solution Φ0(ω, x) to the Poisson equation

−∆xΦ
0(ω, x) = 4π(ρnuc

sta (ω, x) − ρ0
sta(ω, x)) is stationary. The TFW self-consistent Hamil-

tonian −∆x +
5

3
(ρ0

sta)
4/3 − Φ0 therefore is a well-defined random Schrödinger operator.

All this is a consequence of the uniqueness result provided by Lemma 4. No analogue of
Lemma 4 for the rHF model, which would state that, under the same assumptions on the
nuclear charge density m as in Lemma 4, the rHF equations





γ = 1(−∞,0)(H) + δ, with Ran(δ) ⊂ Ker(H),

H = −1

2
∆ + V,

−∆V = 4π(m− ργ),

have a solution such that ργ ∈ L∞(R3) and V ∈ L3,∞
unif(R

3), and that all solutions share
the same density, is available to date. This is the reason why we are not able to give a
mathematical meaning to the stationary rHF equations (6.23).

6.2.3 Disordered crystals in the rHF setting

A variational formulation of the rHF model for disordered crystals has been proposed
in [21]:

IrHF
sta =

{
ErHF

sta (γsta), γsta ∈ Γsta

}
, (6.28)

where

ErHF
sta (γsta) = Trsta

(
−1

2
∆γsta

)
+

1

2
Dsta

0 (ρnuc
sta − ργsta , ρ

nuc
sta − ργsta), (6.29)

Γsta =
{
γsta ∈ Ssta | 0 ≤ γsta(ω) ≤ 1 a.s., Trsta (γsta) <∞, Trsta (−∆γsta) <∞

}
. (6.30)

The rHF energy per unit volume ErHF
sta (γsta) of an ergodic density matrix γsta is the sum

of the kinetic energy per unit volume of γsta, and of the Coulomb energy per unit volume
of the total charge density ρnuc

sta − ργsta , both terms being non-negative. We now precisely
define all the mathematical objects in (6.29)-(6.30).

The notation Ssta in (6.30) stands for the space of ergodic bounded self-adjoint op-
erators. Recall that a bounded random operator A on L2(R3) is a family (A(ω))ω∈Ω of
bounded linear operators on L2(R3) such that the function ω 7→ 〈A(ω)x, y〉 is measurable
for all x, y ∈ L2(R3). The bounded random operator A is called ergodic if

A(τk(ω)) = UkA(ω)U∗
k ,

where Uk is the space translation of vector −k, that is, (Ukg)(ω, x) = g(ω, x+ k). If A is
an integral operator (which is the case for density matrices), this amount to saying that
the kernel of A is a stationary function in the sense that A(τk(ω), x, y) = A(ω, x+k, y+k).
Lastly, A is called self-adjoint if A(ω) is a.s. self-adjoint.

The constraint 0 ≤ γsta ≤ 1 corresponds to the Pauli principle. We now make precise
the meaning of the notation Trsta. A random operator A is called locally trace-class if
χAχ ∈ L1(Ω,S1), for all χ ∈ L∞

c (R3), where L∞
c (R3) denotes the space of (deterministic)
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compactly supported real-valued bounded functions on R
3, and S1 the space the trace-

class operators on L2(R3). The density ρA associated with a locally trace-class ergodic
operator A is the function of L1

s characterized by

∀χ ∈ L∞
c (R3), Tr(χA(ω)χ) =

∫

R3

χ2(x) ρA(ω, x) dx a.s.

The trace per unit volume of a locally trace-class ergodic operator is defined as

Trsta(A) = E
(
Tr(1QA(·)1Q)

)
= E

(∫

Q

ρA

)
.

The trace per unit volume of an ergodic density matrix therefore corresponds to the
average number of particles per unit volume. Likewise, the kinetic energy per unit volume
of an ergodic density matrix γsta can be defined as

Trsta

(
−1

2
∆γsta

)
=

1

2

3∑

j=1

Trsta (PjγstaPj) ,

where, again, Pj = −i∂xj
is the momentum operator in the jth direction.

It is proved in [21] that (6.28) has a ground state. On the other hand, for the reasons
mentioned at the end of the previous section, it is not known whether the ground states
of (6.28) satisfy the self-consistent equation (6.23).

More comprehensive results can be established for the Yukawa rHF model

IrHF,m
sta =

{
ErHF,m

sta (γsta), γsta ∈ Γsta, Trsta(γsta) = E (ρnuc
sta )
}
, (6.31)

where

ErHF,m
sta = Trsta

(
−1

2
∆γsta

)
+

1

2
Dsta
m (ρnuc

sta − ργsta , ρ
nuc
sta − ργsta), (6.32)

and where the neutrality constraint is explicitly enforced (this was not necessary for the
Coulomb model since Dsta

0 (f, f) = +∞ if f is not globally neutral).
For each m > 0, (6.31) has a minimizer, all the minimizers share the same density, and

the minimizers are solutions to a self-consistent equation similar to (6.23), in which the
Poisson equation −∆xV (ω, x) = 4π

(
ρnuc

sta (ω, x) − ργ0
sta

(ω, x)
)

is replaced by the Yukawa
equation

−∆xV (ω, x) +m2V (ω, x) = 4π
(
ρnuc

sta (ω, x) − ργ0
sta

(ω, x)
)
.

Let us emphasize that, in contrast to the Poisson equation, the Yukawa equation has a
stationary solution for any stationary charge distribution in L2

s. Under the assumption
that we make here that ρnuc

sta ∈ L∞
s , it can be infered from the self-consistent equation,

using results from [16], that the ground state density matrix is in fact unique. Lastly, it
can be checked that, in the Yukawa setting, the ergodic rHF model introduced above is
relevant from a physical viewpoint, by proving that it is the thermodynamic limit of the
supercell model (we refer to [11, 12, 15, 75] for other recent works on the thermodynamic
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limit of disordered quantum systems composed of interacting particles). Note that the
Yukawa ground state converges, in some sense and up to extraction, to a Coulomb ground
state when m goes to zero, but that this convergence seems not strong enough to pass to
the limit in the self-consistent equation.

An interesting open problem consists in studying the case of rare but possibly large
random perturbations, considered in Section 3.3 in the framework of homogenization
theory, which corresponds here to the physical situation of doped semiconductors with
low concentration of impurities. This question has been successfully addressed in [44] in
the case of a linear model of non-interacting electrons. The case of interacting electrons
with short-range interactions is dealt with in [47]. The problem is still open for electrons
in Coulomb interactions.
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von Weiszäcker theory of crystals, Arch. Ration. Mech. Anal. 202 (2011) 933-973.

[21] E. Cancès, S. Lahbabi and M. Lewin, Mean-field models for disordered crystals, J.
Math. Pures Appl., in press.

[22] E. Cancès and M. Lewin, The dielectric permittivity of crystals in the reduced
Hartree-Fock approximation, Arch. Ration. Mech. Anal. 197 (2010) 139-177.



Mathematical modeling of defects 61

[23] R. Carmona and J. Lacroix, Spectral theory of random Schrödinger operators
(Birkhäuser, 1990).

[24] I. Catto, C. Le Bris, and P.-L. Lions, Mathematical theory of thermodynamic limits:
Thomas-Fermi type models (Oxford University Press, 1998).

[25] I. Catto, C. Le Bris and P.-L. Lions, On some periodic Hartree-type models for
crystals, Ann. I. H. Poincaré, An. 19 (2002) 143-190.
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