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This article is the first of a series of papers dealing with domain decomposition algo-

rithms for implicit solvent models. We show that, in the framework of the COSMO

model, with van der Waals molecular cavities and classical charge distributions, the

electrostatic energy contribution to the solvation energy, usually computed by solving

an integral equation on the whole surface of the molecular cavity, can be computed

more efficiently by using an integral equation formulation of Schwarz’s domain decom-

position method for boundary value problems. In addition, the so-obtained potential

energy surface is smooth, which is a critical property to perform geometry optimiza-

tion and molecular dynamics simulations. The purpose of this first article is to detail

the methodology, set up the theoretical foundations of the approach, and study the

accuracies and convergence rates of the resulting algorithms. The full efficiency of

the method and its applicability to large molecular systems of biological interest is

demonstrated elsewhere.
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I. INTRODUCTION

Most of the physical and chemical phenomena of interest in chemistry and biology take

place in the liquid phase, and it is well known that solvent effects play a crucial role in these

processes. There are basically two different approaches to account for solvent effects in the

computation of the properties of a solvated molecule or ion. The first approach is to use an

explicit solvation model, in which the simulated chemical system is composed of the solute

molecule and of a large number of solvent molecules. The second approach is to use an

implicit solvation model, in which the solute molecule under study, sometimes together with

a small number of solvent molecules weakly bonded to the solute, is embedded in a cavity

Ω surrounded by a continuous medium modelling the solvent (Fig. 1).

O C
H

Hε = 1 

ε = ε s

Figure 1: A formaldehyde molecule embedded in a polarizable continuum medium

Implicit solvent models are widely used in practice. For brevity, we will not elaborate here

on their capabilities and limitations, nor on their applications in chemistry and biochemistry,

and refer the reader to the monograph and the review articles1–3, and references therein.

In the original implicit solvent model that goes back to Born, Kirkwood and Onsager,

the continuous medium is a homogeneous isotropic dielectric medium of relative permittivity

ϵs > 1. The electrostatic energy of the charge distribution ρ (classical point charges, electric

dipoles and multipoles in force-field models, classical nuclear charges and quantum electronic

charge density in first-principle or semi-empirical models) carried by the solute is modified

by the presence of the solvent, and an extra term, called the electrostatic contribution to

the solvation energy, and denoted here by Es, must be added to the electrostatic energy

computed in vacuo (note that other terms accounting for short-range interaction must also
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be taken into account4). The contribution Es can be written as

Es =
1

2

∫

R3

ρ(r)V r(r) dr,

where V r is the reaction-field potential generated by the charge distribution ρ in presence

of the dielectric continuum. If the charge distribution ρ is entirely (resp. almost entirely)

supported in the cavity Ω, the reaction-field potential V r can be represented (resp. approx-

imated) by a single layer potential generated by a surface charge distribution σ supported

by the boundary Γ := ∂Ω of Ω:

∀r ∈ R
3, V r(r) =

∫

Γ

σ(s)

|r− s| ds.

We thus obtain

Es =
1

2

∫

R3

ρ(r)

(∫

Γ

σ(s)

|r− s| ds
)

dr =
1

2

∫

Γ

σ(s)Φ(s) ds,

where

Φ(r) =

∫

R3

ρ(r′)

|r− r′| dr
′

is the potential generated by ρ in vacuo (defined in the whole space R
3). In practice, Φ

is given by an explicit formula and the problem of computing Es boils down to finding

the surface charge density σ. This can be done by solving an integral equation set on the

boundary Γ (see e.g. Ref.1 (Section 1.2)). Introducing the integral operators SΓ, DΓ and D∗
Γ

defined by

∀s ∈ Γ, (SΓσ)(s) =

∫

Γ

σ(s′)

|s− s′| ds
′,

(DΓσ)(s) =

∫

Γ

(s− s′) · nΓ(s
′)

|s− s′|3 σ(s′) ds′,

(D∗
Γσ)(s) = −

∫

Γ

(s− s′) · nΓ(s)

|s− s′|3 σ(s′) ds′,

where nΓ(s) is the outward pointing normal vector at s ∈ Γ, the surface charge density σ

can be obtained by solving the integral equation

∀s ∈ Γ,

[(
2π

ϵs + 1

ϵs − 1
−D∗

Γ

)
σ

]
(s) =

∂Φ

∂n
(s), (1)

where ∂Φ
∂n
(s) := ∇Φ(s) · nΓ(s) is the normal derivative of Φ at s ∈ Γ. In the case when ρ is

entirely supported in Ω, the above equation is equivalent to the integral equation

∀s ∈ Γ, (Aσ) (s) = − ((2π −DΓ)Φ) (s) where A =

(
2π

ϵs + 1

ϵs − 1
−DΓ

)
SΓ. (2)
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Although (2) is formally more complicated than (1), it is in some respects better suited to

numerical calculation: the integral operator A is self-adjoint and positive definite on L2(Γ)

(so that Eq. (2) has a simple variational formulation5, whose discretization can be solved

by the preconditioned conjugated gradient method), and the error made in first principle

calculations by assuming that the charge distribution ρ is entirely supported in Ω (which is

not the case for the electronic charge density) is smaller6.

Another popular implicit solvation model is the COnductor-like Screening MOdel (COSMO)7,8.

In this model, the electrostatic contribution to the solvation energy is given by

Es
C =

1

2
f(ϵs)

∫

Ω

ρ(r)W (r) dr,

where f(ϵs) = ϵs−1
ϵs+k

is an empirical function of ϵs (k is a parameter taken equal to 0.5 in

COSMO), and where W is the solution to the boundary value problem




−∆W= 0 in Ω,

W= −Φ on Γ.
(3)

The usual method to compute Es
C is to represent W by a single layer potential:

∀r ∈ Ω := Ω ∪ Γ, W (r) =

∫

Γ

σC(s)

|r− s| ds,

where the surface charge density σ is obtained by solving

∀s ∈ Γ, (SΓσC) (s) = −Φ(s). (4)

COSMO can be seen as an approximation of the original implicit solvent model, valid in the

case when ϵs ≫ 1 (recall that ϵs ≃ 78 for water). The two models indeed coincide in the

limit ϵs = ∞ of a conducting continuum medium. This point is discussed in detail in Ref.6.

In early calculations, the cavity was spherical and ρ a classical charge distribution com-

posed of point charges and dipoles. In this simple case, σ and σC can be computed explicitly

by expansion on spherical harmonics. In order to better represent the solvent excluded

volume, successive refinements of the cavity definition have been introduced: ellipsoidal

cavities, for which σ and σC can still be computed by expansion on a basis of special func-

tions, then molecular-shaped cavities9,10, for which the integral equations (1), (2) and (4)

must be solved by numerical methods. The notion of molecular-shaped cavity is not univer-

sal. Several construction methods are actually in use. In this contribution, we focus on van
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der Waals cavities. For a solute composed of M atoms, the van der Waals cavity is made

of a union of M balls, each of them centered on a nucleus and of radius βRVdW, RVdW de-

noting the UFF van der Waals radius of the corresponding atom and β being a fixed scaling

parameter (taken equal to β = 1.1 in this article). Several numerical methods have been

proposed to solve the integral equations (1), (2) and (4). These equations can be discretized

by means of P0 boundary element methods and the resulting linear systems can be solved by

direct or iterative algorithms11–16, using fast multipole methods to achieve linear scaling17.

Other discretizations of Eq. (4) based on approximations of the surface charge density by

a collection of Gaussian functions whose centers are carried by the boundary Γ, have been

recently proposed18–21.

Our purpose is to introduce a new numerical approach, relying on an integral equa-

tion formulation of Schwarz’s domain decomposition method, to compute the electrostatic

contribution to the solvation energy in implicit solvent models. In the present article, we

explain how to implement this approach in practice in the framework of COSMO, for van der

Waals molecular cavities and classical charge distributions. For simplicity, we assume that

ρ consists of point charges only (as in the fluctuating charge model22,23 for instance), but

the extension to other polarizable or non-polarizable force fields involving electric dipoles

and multipoles is straightforward. Schwarz’s domain decomposition method for solving the

Laplace equation (3) is described in Section II, and its formulation in terms of integral

equations is given in Section III. Discretization and implementation issues are addressed in

Section IV. It is shown in particular that it is possible to regularize the problem in such

a way that the resulting potential energy surface is smooth. This is essential to carry out

geometry optimization and molecular dynamics. The accuracy of the method and the con-

vergence rates of the different algorithms are then studied numerically on a set of simple

benchmark molecules in Section V. In a companion article24 in collaboration with F. Lip-

parini and B. Mennucci, we demonstrate that the proposed domain decomposition method

is very efficient in practice: the electrostatic contribution to the solvation energy and the

corresponding terms in the atomic forces (computed by means of analytical derivatives) of

a large molecule can be obtained much faster than with the usual methods based on the

discretization of Eq. (4). Extensions of our method to other kinds of molecular cavities

(solvent accessible surfaces and solvent excluded surfaces), to quantum charge distributions,

and to the original implicit solvent model, are works in progress.
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II. SCHWARZ’S DOMAIN DECOMPOSITION METHOD FOR COSMO

As already mentioned in the introduction, we consider for simplicity a neutral solute

molecule composed of M atoms and carrying a classical charge distribution

ρ(r) =
M∑

j=1

qjδRj
(r),

where qj ∈ R is the charge of the jth atom, Rj ∈ R
3 its position, and δRj

the Dirac function

at point Rj. The case when the point charges are not located at the centers of the spheres

is addressed in Remark 1.The van der Waals molecular cavity is

Ω =
M∪

j=1

Ωj,

where Ωj ⊂ R
3 is the ball with center Rj and radius rj := 1.1 × Rj

vdW, Rj
vdW denoting the

UFF van der Waals radius25 of the jth atom. The electrostatic contribution to the COSMO

solvation energy of the system is then given by

Es
C =

1

2
f(ϵs)

M∑

j=1

qjW (Rj), (5)

where W is the unique solution to the Laplace boundary value problem (3), with

Φ(r) =
M∑

j=1

qj
|r−Rj|

. (6)

For j = 1, . . . ,M , we denote by Γj := ∂Ωj the boundary of Ωj (that is the sphere with center

Rj and radius rj), by Γj,e the external part of the sphere Γj in contact with the solvent, and

by Γj,i the part of the sphere Γj interior to the cavity (Fig. 2). For s ∈ Γj, we also define the

set N(j, s) = {1 ≤ k ≤ M | k ̸= j and s ∈ Ωk} of the balls Ωk intersecting Ωj and containing

the point s, and denote by |N(j, s)| the cardinality of the set N(j, s).

In the spirit of Schwarz’s domain decomposition method26, we introduce the restriction

W j := W |Ωj of W to the ball Ωj. Then W is a solution to (3) if and only if the functions

W j’s are solutions to

∀1 ≤ j ≤ M,





−∆W j= 0 in Ωj,

W j= −Φ on Γj,e,

W j= W j
N

on Γj,i,

(7)
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Figure 2: Domain decomposition with overlapping subdomains

where W j
N

is defined on Γj,i by

∀s ∈ Γj,i, W j
N
(s) =

1

|N(j, s)|
∑

k∈N(j,s)

W k(s). (8)

This definition may seem akward, since all the terms in the above sum are equal: for all

s ∈ Γj,i and all k ∈ N(j, s), W k(s) = W (s). Actually, any partition of unity can be used

to express (8); in particular, more regular partitions of unity than the piecewise constant

functions proposed here, can be considered. The reason why we have rewritten the original

Laplace problem (3) as the system of coupled Laplace problems (7) is that the latter can be

solved efficiently by an iterative procedure, such as Jacobi or Gauss-Seidel algorithms:

∀1 ≤ j ≤ M,





−∆W j
n= 0 in Ωj,

W j
n= −Φ on Γj,e,

W j
n= W j

⋆,n−1 on Γj,i,

(9)

where n ≥ 1 is the iteration number, where W j
0 is the initial guess (the simplest choice is

W j
0 = 0), and where ⋆ stands for either J (Jacobi) or GS (Gauss-Seidel) with

W j
J,n−1(s) =

1

|N(j, s)|
∑

k∈N(j,s)

W k
n−1(s) ∀s ∈ Γj,i,

W j
GS,n−1(s) =

1

|N(j, s)|




∑

k∈N(j,s)
k<j

W k
n (s) +

∑

k∈N(j,s)
k>j

W k
n−1(s)


 ∀s ∈ Γj,i.
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Usually, the Gauss-Seidel approach yields faster convergence with respect to the number of

iterations. The Jacobi approach is advantageous if a parallel implementation is pursued since

communication is only necessary after each iteration, yielding M independent problems at

each step.

The domain decomposition method described above is known in the mathematics litera-

ture as the Schwarz alternating method26,27. It is based on a decomposition of the domain

Ω as a union of overlapping subdomains. Other popular domain decomposition methods27,

such as the Neumann-Dirichlet method, use non-overlapping subdomains, the information

being exchanged between subdomains by means of boundary conditions. Note that domain

decomposition algorithms are iterative methods: it is obviously impossible to obtain the

exact solution to a boundary value problem set on a large domain, by solving only once the

problems set on each subdomain. The convergence of the Schwarz method has been studied

from a mathematical viewpoint by Mikhlin28 and Lions29.

III. REFORMULATION IN TERMS OF INTEGRAL EQUATIONS

The coupled Laplace problems (7) can be transformed into a set of coupled integral

equations by representing each function W j by a single layer potential. For this purpose, we

introduce the integral operators Sj : H−1/2(Γj) → H1/2(Γj) and S̃j : H−1/2(Γj) → H1(Ωj)

respectively defined for all σ ∈ H−1/2(Γj) by

∀s ∈ Γj, (Sjσ)(s) :=

∫

Γj

σ(s′)

|s− s′| ds
′,

and

∀r ∈ Ωj, (S̃jσ)(r) :=

∫

Γj

σ(s′)

|r− s′| ds
′.

Recall that the notation Hs(Ωj) (resp. Hs(Γj)) stands for the Sobolev space30 of order s on

Ωj (resp. Γj). We refer to Ref.1 (Section 1.2) for a pedagogical introduction to the Sobolev

spaces used in the mathematical formulation of implicit solvation models. We will see in

Section IV that the Sobolev spaces H1/2(Γj) are well-suited to define relevant stopping

criteria for the iterative algorithms we are going to introduce. The function W j, being

harmonic in Ωj and belonging to the Sobolev space H1(Ωj), can be represented by a single

layer potential: there exists a unique function σj ∈ H−1/2(Γj) such that W j = S̃jσ
j. Note
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that the function

W̃ j(r) =

∫

Γj

σj(s)

|r− s| ds

is well-defined in the whole space R
3, but coincides with W j, hence with W , only in

Ωj := Ωj ∪ Γj, the closure of Ωj. In particular, we therefore have W̃ j(Rj) = W (Rj)

but W̃ j(Rk) ̸= W (Rk) (in general) for k ̸= j. This is nevertheless sufficient to obtain a new,

useful expression of the electrostatic contribution to the COSMO solvation energy:

Es
C =

1

2
f(ϵs)

M∑

j=1

qjW (Rj) =
1

2
f(ϵs)

M∑

j=1

qj(S̃jσ
j)(Rj)

=
1

2
f(ϵs)

M∑

j=1

qj

∫

Γj

σj(s)

|Rj − s| ds =
1

2
f(ϵs)

M∑

j=1

qj
rj

∫

Γj

σj(s) ds, (10)

where we have used the fact that Γj is the sphere with center Rj and radius rj.

The functions σ1, · · · , σM can then be obtained by solving the set of coupled integral

equations

∀1 ≤ j ≤ M, (Sjσ
j)(s) =

∣∣∣∣∣∣∣

−Φ(s) if s ∈ Γj,e,
1

|N(j, s)|
∑

k∈N(j,s)

(S̃kσ
k)(s) if s ∈ Γj,i,

which also reads

∀1 ≤ j ≤ M, ∀s ∈ Γj, (Sjσ
j)(s)− 1

|N(j, s)|
∑

k∈N(j,s)

(S̃kσ
k)(s) = −1Γj,e(s)Φ(s), (11)

where 1Γj,e is the characteristic function of the set Γj,e (1Γj,e(s) = 1 if s ∈ Γj,e, and 0

otherwise), and with the convention that 1
0

∑
∅ = 0.

Let us emphasize that the surface charge densities σj computed by the domain decompo-

sition algorithm are not straightforwardly related to the surface charge density σC defined

by Eq. (4). In particular, σj and σC are not equal on Γj,e, and σj is not equal to zero on Γj,i.

It is useful (mainly to facilitate the calculation of analytical derivatives24) to set the

M coupled integral equations in (11) on the unit sphere S
2 := {r ∈ R

3 | |r| = 1}. For this

purpose, we introduce the functions σj ∈ H−1/2(S2) defined on S
2 by

∀s ∈ S
2, σj(s) = rj σ

j(Rj + rjs).

We thus obtain

Es
C =

1

2
f(ϵs)

M∑

j=1

qj

∫

S2

σj(s) ds,
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where (σ1, · · · , σM) ∈ (H−1/2(S2))M is the unique solution to Eq. (11) transported on the

reference sphere S
2, that is:

∀1 ≤ j ≤ M, ∀s ∈ S
2, (Sσj) (s)−

1

|N j(s)|
∑

k∈N j(s)

(
S̃jkσk

)
(s) = −χE

j (s)Φ̃j(s), (12)

where

∀s ∈ S
2, N j(s) :=

{
k ̸= j

∣∣ tjk(s) := |Rj + rjs−Rk|
rk

< 1

}
,

and where the linear integral operators S, S̃jk : H−1/2(S2) → H1/2(S2) and the functions

χE
j , Φ̃j : S

2 → R are defined as follows:

o the operator S is the usual single layer operator

∀s ∈ S
2, (Sσ)(s) =

∫

S2

σ(s′)

|s− s′| ds
′;

o the operator S̃jk is defined by

∀s ∈ S
2, (S̃jkσ)(s) =

∫

S2

σ(s′)

|tjk(s) sjk(s)− s′| ds
′,

where

tjk(s) =
|Rj + rjs−Rk|

rk
∈ R+ and sjk(s) :=

Rj + rjs−Rk

|Rj + rjs−Rk|
∈ S

2;

o the function χE
j is such that

∀s ∈ S
2, χE

j (s) =

∣∣∣∣∣∣
1 if for all k ̸= j, tjk(s) ≥ 1, that is if N j(s) = ∅,
0 otherwise;

o lastly, Φ̃j(s) =
M∑

k=1

qk
|Rj + rjs−Rk|

.

Introducing the functions χI
jk(s) defined by

χI
jk(s) = χ(tjk(s)) where χ(t) =

∣∣∣∣∣∣
1 if t < 1,

0 otherwise,
(13)

(so that that χI
jk(s) = χ(tjk(s)) if k ∈ N j(s) and 0 otherwise), Eq. (12) also reads

∀1 ≤ j ≤ M, ∀s ∈ S
2, (Sσj) (s)−

∑

k∈N j(s)

ωjk(s)
(
S̃jkσk

)
(s) = −


1−

∑

k∈N j(s)

ωjk(s)


 Φ̃j(s),

(14)
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where

ωjk(s) =
χI
jk(s)∑

k′∈N j(s) χ
I
jk′(s)

,

with the convention that ωjk(s) = 0 if all the χI
jk′(s) are equal to zero. Indeed, if k /∈ N j(s),

then ωjk(s) = 0, while if k ∈ N j(s), then ωjk(s) = 1
|N j(s)|

.

The final equation (14) is an integral equation formulation, set on N copies of the unit

sphere S
2, of the boundary value problems (7)-(8). In the same line, the integral equation

formulation of (9) for ⋆ = J (Jacobi method) reads

∀1 ≤ j ≤ M, ∀s ∈ S
2,

(
SσJ,n

j

)
(s) =

∑

k∈N j(s)

ωjk(s)
(
S̃jkσ

J,n−1
k

)
(s)−


1−

∑

k∈N j(s)

ωjk(s)


 Φ̃j(s).

(15)

As the formulations (9), with ⋆ = J, and (15) are rigorously equivalent, the convergence of

the iterative scheme (15) follows from the convergence results on the Schwarz alternating

method for Laplace problems29. The same is true for the Gauss-Seidel method.

In the next section, we explain how to discretize Eq. (14) and solve the so-obtained

discretized problem by Jacobi and Gauss-Seidel iterative methods.

Remark 1. For a more general classical charge distribution of the form

ρ(r) =
M∑

j=1

nj∑

i=1

qj,iδRj,i
(r)

with Rj,i ∈ Ωj, the electrostatic contribution to the COSMO solvation energy is given by

Es
C =

1

2
f(ϵs)

M∑

j=1

nj∑

i=1

qj,i

∫

S2

σj(s)

|yj,i − s| ds, (16)

where yj,i = r−1
j (Rj,i−Rj), and where the surface charge densities σj are obtained by solving

Eq. (14) with

Φ̃j(s) =
M∑

k=1

nk∑

i=1

qk,i
|Rj + rjs−Rk,i|

.

The integrals in Eq. (16) can be computed explicitly if the expansion of σj in the real spherical

harmonics basis is known, which is the case in the numerical method we propose.
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IV. DISCRETIZATION AND IMPLEMENTATION

It is natural to discretize the operators S and S̃jk in a truncated basis (Y m
l )0≤l≤N,−l≤m≤l

of real spherical harmonics31. We use here the normalization convention:
∫

S2

Y m
l (s)Y m′

l′ (s) ds =

∫ π

0

∫ π

−π

Y m
l (θ, ϕ)Y m′

l′ (θ, ϕ) sin θ dθ dϕ = δll′δmm′ ,

where δmm′ denotes the Kronecker symbol (δmm′ = 1 if m = m′, and 0 otherwise).

The functions χI
jk introduced in Eq. (13) are discontinuous. We therefore need to smooth

them out in order to avoid discontinuities of the numerically computed energy Es
C with

respect to nuclear coordinates, and obtain well-defined atomic forces for the discretized

model. This can be done by introducing a smoothing χη of the function χ defined in

Eq. (13):

χη(t) =

∣∣∣∣∣∣∣∣∣

1 if t ≤ 1− η,

pη(t) if 1− η < t < 1,

0 if t ≥ 1,

with pη(t) = η−4(t− 1)2(t− 1 + 2η)2,

with 0 < η ≪ 1 a numerical parameter. The chosen regularization is asymmetric with

respect to t = 1 in order to avoid technical issues when several balls are intersecting. The

regularity of the function χη is sufficient to ensure that the second derivatives of the resulting

potential energy surface are bounded. More regularity can be obtained by replacing pη with

a higher degree polynomial whose derivatives up to a given order vanish at t = 0 and t = 1.

We are now in position to detail the numerical procedure to compute numerically Es
C.

Each function σj is approximated by

σ
η,N,Ng

j (s) =
N∑

l=0

l∑

m=−l

[Xj]
m
l Y m

l (s), (17)

where σ
η,N,Ng

j is the solution to the approximation of the regularized version of Eq. (14)

(obtained by replacing χ with χη), in the space spanned by the discretization basis

(Y m
l )0≤l≤N,−l≤m≤l, and using the quadrature points (sn)1≤n≤Ng to perform numerical quadra-

tures on the sphere S
2. Note that the approximation given in (17) is systematically improv-

able: it can be shown that σ
η,N,Ng

j converges to the exact solution σj to Eq. (14), in the

Sobolev norm H−1/2(Γj), when N and Ng go to infinity while η goes to zero. The reason

12



Lg 15 17 19 21 23 25 27 29 31 35 41 47 53

Ng 86 110 146 170 194 230 266 302 350 434 590 770 974

Lg 59 65 71 77 83 89 95 101 107 113 119 125 131

Ng 1202 1454 1730 2030 2354 2702 3074 3470 3890 4334 4802 5294 5810

Table I: Order Lg and number of points Ng of Lebedev quadrature rules.

why we choose the H−1/2(S2) norm to measure the errors is that ∥σ∥H−1/2(S2) is in fact the

Coulomb energy of the surface charge distribution σ.

For simplicity, we only consider here Lebedev quadrature (see Ref.32 and references

therein). Each Lebedev quadrature rule is completely characterized by enforcing the ex-

act integration of spherical harmonics up to a given order named Lg (hence of all functions

in the vector space Span {Y m
l | 0 ≤ l ≤ Lg, −l ≤ m ≤ l}). This leads to a sequence of Ng as-

sociated quadrature points. Note that there does not exist a Lebedev formula for any value

of Lg. The correspondence between the order Lg of the quadrature rule, and the number of

integration points Ng, is given in Table I for the values of Lg used in our simulations.

Denoting by Xj ∈ R
(N+1)2 the vector with entries ([Xj]

m
l )0≤l≤N,−l≤m≤l, the calculation of

the electrostatic contribution to the solvation energy can be done as follows.

Step 1: computation of the geometrical data.

For each 1 ≤ j ≤ M , set Cj = 1/rj. For each 1 ≤ j ≤ M , 1 ≤ n ≤ Ng, and k ̸= j,

compute

vjk
n = Rj + rjsn −Rk, vjkn = |vjk

n |, tjkn = Ckv
jk
n , zjkn = 1/vjkn , sjkn = zjkn vjk

n ,

where the points (sn)1≤n≤Ng denote the quadrature points with associated weights (wn)1≤n≤Ng .

Use these computations to identify the sets

N j
n =

{
k ̸= j | tjkn < 1

}
and N j =

{
k ̸= j | ∃1 ≤ n ≤ Ng s.t. k ∈ N j

n

}
.

For each k ∈ N j
n , set

χjk
n = χη(t

jk
n ), f j

n =
∑

k∈N j
n

χjk
n , djn =

min(f j
n, 1)

f j
n

, W jk
n = djn χ

jk
n , U j

n = 1−
∑

k∈N j
n

W jk
n .

13



Step 2: calculation of the right-hand side by numerical quadratures.

For all 1 ≤ j ≤ M and 1 ≤ n ≤ Ng, set Φj
n = qjCj +

∑

k ̸=j

qkz
jk
n . Then, for each

j = 1, · · · ,M , and each l,m, set

[gj]
m
l = −

Ng∑

n=1

wn Y
m
l (sn)U

j
n Φ

j
n.

Step 3: computation of the vector (X1, · · · ,XM) by an iterative method.

The vector (X1, · · · ,XM) is solution to the linear system




L11 · · · L1M

· · ·
· · ·
· · ·

LM1 · · · LMM




︸ ︷︷ ︸
=L




X1

·
·
·

XM




=




g1

·
·
·

gM




(18)

where

[LjjXj]
m
l =

4π

(2l + 1)
[Xj]

m
l ,

[LjkXk]
m
l = −

N∑

l′=0

4π

(2l′ + 1)

l′∑

m′=−l′

[cjk]
mm′

ll′ [Xk]
m′

l′ , ∀k ∈ N j,

[LjkXk]
m
l = 0, ∀k /∈ N j ∪ {j} ,

where the coefficients [cjk]
mm′

ll′ are given by

[cjk]
mm′

ll′ =

Ng∑

n=1

wn Y
m
l (yn)W

jk
n (tjkn )l

′

Y m′

l′ (sjkn ) =
∑

n | tjkn <1

wn Y
m
l (sn)W

jk
n (tjkn )l

′

Y m′

l′ (sjkn ).

Note that, for a large molecule, the matrix L is block-sparse, since Ljk = 0 if Ωj ∩ Ωk = ∅.
In practice, the linear system (18) is solved by an iterative procedure, such as block Jacobi’s

or block Gauss-Seidel’s algorithms (more efficient algorithms can also be considered24). Let

us emphasize that using the block Jacobi algorithm to solve (18) amounts to solving a

discretized version of (15).

Of course, the entries of the 6-order tensor [cjk]
mm′

ll′ are not stored in memory, nor even

computed. The terms [LjkX
n
k ]

m
l , where Xn

k is the approximation of Xk obtained at the nth

14



iteration, are computed on the fly using an optimal rearrangement of the various summations.

This point is detailed in Ref.24.

Step 4: computation of the solvation energy. Set

Es
C(η,N,Ng;Nit) =

√
πf(ϵs)

M∑

j=1

qj[X
Nit

j ]00,

where X
Nit

j is the approximation of Xj obtained at the Nit-th iteration of the Jacobi or

Gauss-Seidel algorithm.

The notation Es
C(η,N,Ng;Nit) stresses the fact that the so-obtained numerical approx-

imation of the solvation energy Es
C depends on four numerical parameters: the smoothing

parameter η, the cut-off parameter N , the number Ng of quadrature points, and the number

Nit of iterations of the Jacobi (or Gauss-Seidel) algorithm. These four numerical parameters

do not have the same status. The first three of them are fixed in advance by the user. In

practice, the maximum number of iterations is fixed by the user, but the algorithm usually

(and hopefully) stops before this maximum number is reached, when a stopping criterion is

satisfied. A possible stopping criterion is stop when incn ≤ Tol, where 0 < Tol ≪ 1 is a

fixed tolerance, and where the increment incn between the iterations n− 1 and n is defined

as

incn =



∑M

j=1 ∥σ
η,N,Ng ;n
j − σ

η,N,Ng ;n−1
j ∥2

H−1/2(S2)∑M
j=1 ∥σ

η,N,Ng ;n−1
j ∥2

H−1/2(S2)




1/2

=



∑M

j=1

∑N
l=0

∑l
m=−l

|[Xn
j ]

m
l −[Xn−1

j ]ml |2

l+1

∑M
j=1

∑N
l=0

∑l
m=−l

|[Xn−1

j ]ml |2

l+1




1/2

, (19)

where

σ
η,N,Ng ;n
j (s) =

N∑

l=0

l∑

m=−l

[Xn
j ]

m
l Y m

l (s)

is the approximation of σj obtained at the nth iteration.

V. NUMERICAL RESULTS

We present computations performed with the domain decomposition method introduced

in this paper for simple molecular cavities in order to study the convergence properties and

the stability of the proposed method.

15



We emphasize that the present numerical tests aim at studying the influence on the com-

puted solvation energy of the regularization (η), discretization (N) and numerical integration

(Ng) parameters, as well as of the stopping criterion (incn ≤ Tol), which controls the num-

ber of iterations Nit of the algorithm. Additional tests of the performance and scalability of

our algorithm applied to large biological molecules are presented in a companion paper24.

In all computations, unless otherwise stated, we use the following parameters:

o the linear system (18) is solved by Gauss-Seidel iterations;

o ϵs = 78.4 (water). In any case, the value of f(ϵs) has no influence on the convergence

properties of the proposed scheme as it is just a multiplicative factor of the solvation

energy.

In all our computations, we report the energy and charges in atomic units. As mentioned

earlier, the Van der Waals cavity is built using the UFF radii25 (in particular, rH = 1.443Å,

rC = 1.925Å, rN = 1.830Å, rO = 1.75Å and rF = 1.682Å) scaled by a factor 1.1. The QEq

charges33 are used for the solutes.

1. Influence of the regularization parameter η

Fig. 3 plots the variation of the solvation energy as a function of the regularization

parameter η for sufficiently large discretization and numerical quadrature parameters (N =

50, Ng = 5810), and sufficiently tight stopping criterion (incn ≤ 10−10) for hydrogen fluoride,

formaldehyde and benzene.

The relative error on the solvation energy is about 0.05% (hydrogen fluoride), 0.008%

(formaldehyde), 2% (benzene) when η varies from 0 to 0.1. The value of η therefore has a

limited impact on the value of the solvation energy.

A. Complete study of a diatomic molecule (hydrogen fluoride)

In this section, we study the influence of the above mentioned parameters on a simple

diatomic molecule where we consider hydrogen fluoride with point charges of ±0.33714 (in

atomic units). As the error depends on the geometrical parameters (centers and radii of the

balls), we will also investigate the robustness of the solvation energy with respect to those

parameters.
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Figure 3: Influence of the regularization parameter η on the solvation energy for Hydrogen

fluoride and Formaldehyde (with N = 50, Ng = 5810 and Tol = 10−10).

1. Influence of the discretization parameter N

We investigate the error on the solvation energy Es
C(η,N,Ng;Nit) and on the surface

charge distributions (ση,N,Ng ;Nit

j )1≤1≤M (measured in the H−1/2-norm), as well as the number

of iterations Nit to reach the stopping criterion, as functions of the discretization parameter

N , for different values of the regularization parameter η (see Fig. 4). We still use Ng = 5810

Lebedev integration points and the stopping criterion incn ≤ 10−10 to ensure that the error

is dominated by the effect of the degree N of the approximation. The errors are computed

with respect to a reference calculation (for each η) obtained using an axisymmetric code

with N = 200 and a very large number of Gauss-Legendre integration points.

We observe that the discretization errors due to the truncation of the spherical harmonics

basis set decay,

o for η = 0, algebraically fast for both the solvation energy and the surface charge

distribution (a least square fit yields rates of N−1.38 for the energy and N−0.93 for the

surface charge distribution);

o for η = 0.05, 0.1, exponentially fast for both the solvation energy and the surface

charge distribution.

We infer from the above analysis that, for η chosen equal to 0.05 or 0.1, the relative errors

due to the regularization parameter η on the one hand, and the discretization parameter N

on the other hand, are balanced for about N = 10.
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Figure 4: Numerical errors and number of iterations as functions of N for different values

of η = 0, 0.05, 0.1 (with Ng = 5810 and Tol = 10−10).

Regarding the number of iterations to reach the stopping criterion, we notice that for

η = 0, the number of iterations steadily increases with N , while for the cases η = 0.05 and

η = 0.1, we observe a plateau.

2. Influence of the stopping criterion

An important question to analyze is what tolerance value should be chosen for the stop-

ping criterion incn ≤ Tol. A too small value of the tolerance might yield too many iterations

which will not improve the accuracy, since the latter will be dominated by the error due to

the chosen values of N and η. A too large value of the tolerance might limit the accuracy of

the energy. The problem is even more stringent for the computation of forces that involve

derivatives of the energy24.

In Fig. 5, we present some numerical results where we analyze the influence of the stopping

criterion on the solvation energy and the relative error (with respect to the solution obtained

with Tol = 10−10), for different values of η. Since the stopping criterion is based on the

increment of the unknown functions (σ
η,N,Ng ;Nit

j )1≤1≤M , its impact on the precision of the

energy is not straightforward. The Gauss-Seidel algorithm yields more stable results (with

respect to the energy) than the Jacobi algorithm. It is worth noticing that for a given value

of Tol, the two algorithms do not yield the same accuracy on the energy. We can see on

this example that a loose convergence criterion (Tol = 10−2 for Gauss-Seidel, Tol = 10−3
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Figure 5: Influence of the stopping criterion incn ≤ Tol on the solvation energy and the

relative error for different values of η (with N = 20 and Ng = 5810).

for Jacobi) is enough to obtain a very good approximation of the solvation energy. As

expected, tighter convergence criteria are necessary to correctly approximate the atomic

forces computed by analytical derivatives. This point is addressed in Ref.24.

3. Influence of the number of integration points

We now investigate the influence on the solvation energy of the number Ng of Lebedev

integration points, or in other words, of the order Lg of the numerical quadrature. Choosing

an appropriate number of integration points is crucial since low regularity functions need to

be integrated.

Fig. 6 illustrates the variations of the solvation energy in absolute and relative quantities,

as a function of the order Lg of the numerical quadrature scheme. The numerical tests are

obtained using the Gauss-Seidel algorithm with incn ≤ 10−2, η = 0 or 0.1, and N = 10,

20, or 30. The reference solution is computed using an axisymmetric code with a very large

number of Gauss-Legendre integration points.

We observe that the number of integration points necessary to reach a given precision in

the relative error does not depend on N (in the range 10 ≤ N ≤ 30). For η = 0, it depends

in fact on the regularity of the functions σj solutions to Eq. (14). For η > 0, it depends on

the regularity of the functions ση
j solutions to the regularized version of Eq. (14) obtained
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Figure 6: Influence of the integration order Lg on the solvation energy and on its relative

error for different values of η and N (with Tol = 10−2).

by replacing χ with χη in the definition (13) of the functions χI
jk. As the functions ση

j are

more regular than the functions σj, using η = 0.1 allows us to choose a smaller value of the

integration order Lg in the asymptotic regime of large values of N . For the chosen values

of η = 0.1 and N = 10 any choice of Lg above or equal to 21 (corresponding to Ng = 170)

leads to a relative error lower than 0.1% on the energy. Note that if N is large and Lg small

the algorithm might fail to converge.

Using Lebedev quadrature leads to rotational symmetry breaking, just as using cubic

integration grids leads to translational symmetry breaking (the so-called eggbox effect in

planewave DFT calculations). Fig. 7 illustrates, for different values of η and N , the maximum

energy difference obtained when rotating the hydrogen fluoride molecule, originally oriented

along the z-axis, around the x-axis. Of course, the energy remains constant for Lg = ∞,

that is, if integrals are computed exactly. For a finite value of Lg, and in the case when

η = 0, the energy slightly jumps when integration points (which do not rotate with the

molecule) cross the molecular surface. On the other hand, the energy remains continuous

with respect to the rotation angle α when η > 0, and its variations go to zero when Lg tends

to infinity, the decay rate increasing with η. A loose convergence criterion (Tol = 10−2) has

been used to get the results in Fig. 7, but almost identical curves are obtained if a smaller

value of Tol is employed.
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Figure 7: Maximal relative variation of the solvation energy of hydrogen fluoride for

different values of η and N (with Tol = 10−2).

4. Robustness with respect to geometrical parameters

The robustness of the domain decomposition scheme with respect to geometrical parame-

ters, namely the centers of the balls and their radii, is extremely important in the perspective

of computing parametric derivatives (such as atomic forces). On the basis of the numerical

results obtained in the previous sections, we take N = 10, η = 0.1, Tol = 10−2, and let

Lg vary. In each of the upcoming tests, we compute a reference solution with parameters

N = 10, η = 0.1, Tol = 10−2, Lg = 131 and study the solvation energy and its relative error

with respect to the reference computation.

Fig. 8 presents the influence of the distance in [0.887, 0.980]Å between the centers of two

atoms of hydrogen fluoride. First, we note that the higher the order of numerical integration,

the smaller the amplitude of the relative error, which is only around 0.13% even for Lg = 17.

In additional tests we have observed that the scheme converges slower in the absence of the

regularization (η = 0).

In both cases, we observe a smooth dependency of the solvation energy on the geometrical

parameters for any value of the numerical integration order.

Fig. 9 shows the dependency of the energy and its relative error with respect to the

reference computation with Lg = 131 on the multiplicative factor β ∈ [1, 1.2] of the UFF

Van der Waals radii of hydrogen fluoride. We can observe again that the variation in the
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Figure 8: Solvation energy and its relative error when the distance between the nuclei of

hydrogen fluoride varies in the range [0.887, 0.980] Å, for different values of Lg (with

Tol = 10−2, N = 10 and η = 0.1).
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Figure 9: Solvation energy and its relative error of hydrogen fluoride depending on the

multiplicative factor β ∈ [1, 1.2] of the UFF Van der Waals radii, for different values of Lg

(with Tol = 10−2, N = 10 and η = 0.1).

relative error can be controlled by the order of the integration scheme.
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Figure 10: Relative error on the solvation energy and number of iterations for a chain of M

unit spheres separated by a distance d = 1.5, for different values of Lg (with Tol = 10−2,

N = 10 and η = 0.1). A particular configuration with M = 6 spheres is illustrated on the

right.

B. Multiple spheres configurations

In this section, we study the convergence properties of the proposed scheme depending

on the structure and topology of the molecule. In order to carefully analyze the behavior of

the numerical method in extreme cases, we allow ourselves to consider benchmark cavities

not directly connected to real molecules.

Consider a chain of M aligned unit spheres, each containing a unit point charge (in atomic

units) at its center, such that the distance between the centers of two adjacent spheres is

equal to d = 1.5. Fig. 10 illustrates the dependency on M of the relative error on the

solvation energy (with respect to reference calculations performed with Lg = 131) and the

number of iterations to reach convergence. We observe that, in the range 1 ≤ M ≤ 10,

the number of iterations is independent of M . Supplementary tests for M = 10, 20, . . . , 200

show that the number of iterations is the same for all values of M (up to M = 200).

We now study the dependency of the number of iterations with respect to the number of

simultaneously intersecting balls. For this purpose, we consider M balls of radius 1.25 whose

centers are uniformly distributed on a unit circle (Fig. 11). We observe that the number of

iterations seems to stagnate (we have observed in additional tests that this is not the case

if η = 0).

Finally, we consider a Y-shaped geometry as illustrated in Fig. 12 and study the variation

of the solvation energy and number of iterations with the angle α. Note that when α varies
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Figure 11: Relative error on the solvation energy and number of iterations for a cavity

consisting of M intersecting balls of radius 1.2 whose centers are uniformly distributed on

the unit circle, for different values of Lg (with Tol = 10−2, N = 10 and η = 0.1). A

particular configuration with M = 10 balls is illustrated on the right.

α = π/9 α = π/3

Figure 12: Configurations of the Y-shaped domain for α = π/9 and α = π/3.

from α = π/9 to α = π/3, a topological change occurs, in the sense that the triple intersection

transforms to two double intersections. We do not observe any numerical artefacts in the

energy due to this topological change in our numerical results (see Fig. 13).

C. Application to small molecules

We finally present some test cases obtained with the van der Waals cavities of the

formaldehyde, benzene and caffeine molecules, in their equilibrium geometries.

In Table II, we display the nuclear component of the solvation energy and the number

of iterations to reach convergence, for different values of N and η. The tolerance is chosen
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Figure 13: Relative error on the solvation energy and number of iterations for the

Y-configuration as a function of the angle α, for different values of Lg (with Tol = 10−2,

N = 10 and η = 0.1).

equal to Tol = 10−2, and the order of the Lebedev quadrature according to the empirical

rule (for any N)

η = 0 ⇒ Lg = 119, η = 0.05 ⇒ Lg = 113, η = 0.1 ⇒ Lg = 89. (20)

We have chosen large values for Lg in order to make sure that the Gauss-Seidel algorithm

converges for values of 0 ≤ η ≤ 0.1 and 5 ≤ N ≤ 30 (as mentioned in Section VA 3, the

algorithm might fail to converge for large values of N and small values of Lg). Fig. 14 shows

the corresponding solutions for N = 20 and η = 0.1.

formaldehyde benzene caffeine

Figure 14: Graphical representations of the functions σj for N = 20 with η = 0.1 for

formaldehyde, benzene and caffeine.
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VI. CONCLUSION

In this paper we have presented the basics of a new paradigm to compute the electrostatic

component of the solvation energy in implicit solvent models. The paradigm is developed

here on the COSMO model, with classical charge distributions and van der Waals molecular

cavities. It is inspired from the Schwarz domain decomposition method, which is widely

used in fluid and solid mechanics to solve problems arising from the discretization of partial

differential equations with finite element, finite volume, or spectral methods. In our ap-

proach, the Schwarz method is combined, for the first time in this context, with the integral

equation method. For van der Waals molecular cavities, this approach is extremely powerful

as the resulting integral equations (Eq. (14)) are set on M copies on the unit sphere, and can

be efficiently discretized using spherical harmonics basis sets. In particular, it is meshless,

and does not require to solve an integral equation on the whole molecular cavity. We believe

that this approach, which i) is mathematically sound, ii) provides smooth potential energy

surfaces, and iii) performs very well on large molecules (see Ref.24, where linear scaling on

biological molecules with more than 104 atoms is reported), is a method of choice for the

numerical simulation of implicit solvation models.

In this first paper, we have detailed the theoretical foundations of the method, and its

practical implementation. We have thoroughly tested the respective effects of the various

numerical parameters entering in the definition of the method, namely (i) the regularization

parameter η, (ii) the spherical harmonics cut-off N , (iii) the number of Lebedev quadrature

points Ng, and (iv) the tolerance Tol used in the stopping criterion for the iterations of

the Schwarz algorithm. We also checked the robustness of the method with respect to the

geometrical parameters (atomic positions and sphere radii).

This numerical study shows that good choices for the parameters η and N are η = 0.1 and

N = 10. The regularization parameter η turns out to have a major impact on the perfor-

mance of the discretization scheme: the value η = 0.1 provides a good approximation of the

solvation energy, and allows us to obtain smooth potential energy surfaces with a relatively

low number of Lebedev quadrature points, and with a controlled number of iterations, basi-

cally independent of the geometry of the molecule. To some extend, the parameter η can be

considered as a parameter of the model rather than a numerical parameter, of the same na-

ture as the radius of the rolling sphere used to define solvent accessible and solvent excluded
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surfaces in implicit solvation models10. We do not comment further here on the choices of

the parameters Ng and Tol, and refer to Ref.24, where the effects of these parameters on the

accuracy of the atomic forces (and not only of the energy) are investigated.
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Formaldehyde:

η = 0

N Energy # Iterat.

5 -0.00190623 4

10 -0.00191091 4

15 -0.00191277 4

20 -0.00191337 4

25 -0.0019136 4

30 -0.00191379 4

η = 0.05

N Energy # Iterat.

5 -0.00191451 4

10 -0.00191651 4

15 -0.00191709 4

20 -0.00191711 4

25 -0.00191702 4

30 -0.00191697 4

η = 0.1

N Energy # Iterat.

5 -0.00192264 4

10 -0.0019225 4

15 -0.00192226 4

20 -0.00192205 4

25 -0.00192192 4

30 -0.00192188 4

Benzene:

η = 0

N Energy # Iterat.

5 -0.000332549 7

10 -0.00034019 7

15 -0.000342704 7

20 -0.000343872 7

25 -0.000344457 7

30 -0.000344804 7

η = 0.05

N Energy # Iterat.

5 -0.000340895 6

10 -0.000346098 6

15 -0.000347498 6

20 -0.000347901 6

25 -0.000348055 6

30 -0.000348111 6

η = 0.1

N Energy # Iterat.

5 -0.00034783 6

10 -0.000351349 6

15 -0.000352029 6

20 -0.000352108 6

25 -0.000352107 6

30 -0.000352104 6

Caffeine:

η = 0

N Energy # Iterat.

5 -0.00349124 7

10 -0.00351916 7

15 -0.00352696 7

20 -0.00353052 7

25 -0.00353237 7

30 -0.00353352 7

η = 0.05

N Energy # Iterat.

5 -0.0035257 7

10 -0.00354396 7

15 -0.0035479 7

20 -0.00354907 7

25 -0.00354956 7

30 -0.00354981 7

η = 0.1

N Energy # Iterat.

5 -0.00355698 7

10 -0.00356799 7

15 -0.00356935 7

20 -0.00356928 7

25 -0.0035692 7

30 -0.00356916 7

Table II: Energy and number of iterations for formaldehyde, benzene and caffeine

depending on N for different values of η = 0, 0.05, 0.1.
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