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Abstract—An average consensus protocol is an iterative dis- formulated the problem as a Semi Definite Program that can
tributed algorithm to calculate the average of local values stored pe efficiently andglobally solved. However, speeding up the
at the nodes of a network. Each node maintains a local estimate convergence rate does not automatically reduce the number

of the average and, at every iteration, it sends its estimate to f that tin th twork. Th is that
all its neighbors and then updates the estimate by performing of messages that are sent In the network. the reason Is tha

a weighted average of the estimates received. The averagehe convergence is reached only asymptotically, and even if

consensus protocol is guaranteed to converge only asymptotically nodes’ estimates are very close to the average, nodes keep
and implementing a termination algorithm is challenging when on performing the averaging and sending messages to their
nodes are not aware of some global information (e.g. the diameter neighbors

of th_e network_or the total number of nodes). In this paper, we In thi lgorithm that reli |

are interested in decreasing the rate of the messages sent in the n IS pap'er we p'ropose an algorithm 'a rle Ies only on
network as nodes estimates become closer to the average. wdimited local information to reduce communication overtiea
propose a totally distributed algorithm for average consensus for average consensus. As the nodes’ estimates approach the
where nodes send more messages when they have large differtrye average, nodes exchange messages with their neighbors

ences in their estimatc_as, and reduce their message sending ratgagg frequently. The algorithm has a nice self-adaptiveufea
when the consensus is almost reached. The convergence of the

system is guaranteed to be within a predefined margim. Tuning even if it has already copverged to a stable state and the
the parameter n provides a trade-off between the precision of message exchange rate is very small, when an exogenous
consensus and communication overhead of the protocol. The event leads the value at a node to change significantly, the

proposed algorithm is robust against nodes changing their initial - g|gorithm detects the change and ramps up its communication
values and can also be applied in dynamic networks with faulty | ote The proposed algorithm provides also a trade-off betw
links. the precision of the estimated average and the number of
messages sent in the network by setting the parameRging
totally decentralized, the message reduction algorithmatso
Average consensus protocols are used to calculate irb@applied in a dynamic network with faulty links.
distributed manner the average of a set of initial values The paper is organized as follows: Section Il presents the
(e.g. sensor measurements) stored at nodes in a netweitation used and a formulation of the problem. Section Il
This problem is gaining interest nowadays due to its widgescribes the previous work on the termination of the awerag
domain of applications as in cooperative robot control [1tonsensus protocol. Section IV motivates the work by an im-
resource allocation [2], and environmental monitoring, [3possibility result for finite time termination. Section Vgsents
sometimes in the context of very large networks such #se proposed algorithm, its analysis, and the simulatidrise
wireless sensor networks for which a centralized approaalyorithm. Section VI concludes the paper.
can be unfeasible, see [4]. Under this decentralized aphroa
each node maintains a local estimate of the network average Il. PROBLEM FORMULATION
and selects weights for the estimates of its neighbors. Bbhen Consider a network of: nodes that can exchange mes-
each iteration of the consensus protocol, each node trésisreages among each other through communication links. Every
its current estimate to its neighbors and update its estimaiode in this network stores a local value, e.g. a sensor
to a weighted average of the estimates in its neighborhosdeasurement of pressure or temperature, and we need each
Under some easy-to-satisfy conditions on the selectedhigig node to calculate the average of the initial measurements by
the protocol is guaranteed to converge asymptotically & tfollowing a distributed linear iteration approach. Thevwnartk
average consensus. For an extensive literature on averafi@modes can be modeled as a gragh= (V, E) where VV
consensus protocol and its applications, check the suf#ys is the set of vertices|{| = n) and E is the set of edges
[6] and the references therein. such the{i,j} € E if nodes: and j are connected and
The asymptotic convergence rate of consensus protocodsm communicate (they are neighbors). Let alép be the
depends on the selected weights. Xiao and Boyd in [7] haweighborhood set of nodé Let z,(0) € R be the initial

I. INTRODUCTION



value at nodei. We are interested in computing the averaggnite time termination is given in [11], where the proposed
Tave = (1/n)> 1", x;(0), in a decentralized manner withalgorithm does not calculate the exact average, but estgnat
nodes only communicating with their neighbors. We considare guaranteed to be within a predefined distance from the
that nodes operate in a synchronous way: when the clock tickserage. This approach runs three consensus protocols at th
all nodes in the system perform the iteration of the aveiagisame time: the average consensus which runs continuously
protocol. In particular at iteratiot + 1, node¢ updates its and the maximum and the minimum consensus restarted every
state valuer;: U iterations wherel is an upper bound on the diameter of
the network. The difference between the maximum and the
wi(k +1) = wiwi(k) + Z wi;; (k) @ minimum consensus provides a stopping criteria for nodes.
deN; Under the assumption of asynchronous iterations, the au-
wherew;; is the weight selected by nodefor the value sent thors in [12] proposed an algorithm that leads to the termina
by its neighbor;j and w;; is the weight selected by node tion of average consensus in finite time with high probapbilit
for it own value. The topology of the network may changen their approach, each node has a countethat stores how
dynamically. This can be easily taken into account in (1) byany times the difference between the new estimate and the
letting the neighborhood and the weights be time-dependeid one was less than a certain threshaldVhen the counter
(then we haveV;(k)andw;;(k)). For the sake of simplicity in reaches a certain value, s&y the node will stop initiating
what follows we omit to explicit this dependance. The matrithe algorithm. They proved that by a correct choiceCbéind
form equation is: 7 (depending on some networks’ parameters as the maximum
. degree in the network, the number of nodes, and the number
x(k +1) = Wx(k) ) of edges) the protocol terminates with high probability.
wherex(k) is the state vector of the system afild is the A major drawback of these algorithms —beside the memory
weight matrix. requirements and the robustness of the system to changes—
In this paper, we considelV to be n x n real doubly is the assumption that each node should know some global
stochastic matrix having.(W) < 1 where )\, is the second network parameters. This intrinsically contradicts thérisp
largest eigenvalue in magnitudef 1V (these are sufficient of distributed consensus protocols. Designing a decezewhl
conditions for the convergence of the average consensus migorithm for average consensus that terminates in finite ti
tocol, see [8]). We also consider tHat is constructed locally, without using any global network information (as the diaenet
some methods for constructing the weid#tusing only local of the network or the number of nodes) is still an open problem
information can be found in [9]. Lel be the vector of all for which we prove a strong negative result in the next sactio
1s, the c'or.wergence to the average consensus is in general V. MOTIVATION
asymptotic: o
lim x(k) = Zavel. ©) We address the problem of termination of average consensus
k—oo in this paper. We will start by an impossibility result for
Since average consensus is usually reached only asympt@imination of the average consensus protocol in finite time
cally (3), the nodes will always be busy sending messagegthout using some network information.
Let N(k) be the number of nodes transmitting at iteratign

so without a termination procedure all nodes are transigitti synchronous consensus protocol described(tyand each

at iterationk, N(k) = n independently from the current o . :

. . : node only knows its history of estimates, there is no deter-
estimates. In this paper we present an algorithm that reduce. ~." .~ = . .
communication overhead and provides a trade-off betwemr%mStIC distributed algorithm that can correctly termieathe

. P onsensus with guaranteed error bounds after a finite number
precision of the consensus and number of messages sent.

of steps for any set of initial values.

Theorem 1. Given a static network where nodes run the

1. RELATED WORK Proof: Consider a path grap& of three nodes:,b, and

Some previous works considered protocols for averageas in Fig. 1 where the weight matrix is real and doubly
consensus protocol to terminate (in finite time) to conveoge stochastic withy < A2(W) < 1 (so we havew,,, we. > 0).

the exact average or to guaranteed error bounds. For exampig z,(0), z,(0), and z.(0) be the initial estimates for the

the approach proposed in [10] is based on thaimal npodesand conside\r:w,so with the average

polynomialof the matrixi¥. The authors show that a node, b¥tonsensus protocol using the synchronous iterations jra()

using coefficients of this polynomial, can calculate thecéxanpdes’ estimates will converge to asymptotically:
average from its own estimate @ consecutive iterations. The

drawback is that nodes must have high memory capabilities to kli};o a(k) = kh};c wp(k) = khfolo ze(k) = o

storen xn matrix, and high processing capabilities to calcular\%e will prove the theorem by contradiction. Suppose there
the coefficients of the minimal polynomial by solving a se

P v ind dent e Anoth h féxistsatermination algorithm for nodes to use only theonyst
of m finearly independent equations. Another approach 18t ihejr estimates and terminate the average protocol itefini

IThe second largest largest eigenvalue in magnitude of a symmeatrix M€ Within guaranteed error bounds. Then if we run this
is the second largest singular value of that matrix\so> 0. algorithm on this graph, there exists an iteratiih> 0 and
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G = 3 w=we £ changed significantly during the recent iterations). Wel wil
a b c then say that an algorithm terminates when the number of mes-
sages sent in the network disappears at least asymptaticall
Fig. 1. Path grapl&z with 3 nodes. even if the nodes are still running the algorithm internally.:
t
N(k
Waa Whh hm M = 07 (4)

Q Wap = Whq p Whe = Wep Weyep = Weel2 t—o0
by c

@ 1 whereN (k) is the number of nodes transmitting their estimate
Weye, = Weel 2 to their neighbors at iteratiok. In other words, the rate of
b, e messages in the network should decrease as the estimates con
S O Weae, = Wee/2 verge to the average consensus or to a bounded approximation

Waa Wpb

az

] ] ] V. OUR APPROACH
Fig. 2. Extended mirror graph af with 6 nodes and*' = 2 fragments.

Even if the nodes cannot terminate the algorithm in finite
time, we are interested in reducing the rate of the messages
. sent in the network correspondingly to estimates’ improve-
n > 0 such that node: (also true forb and c) decides 10 \ont For example, if nodes’ estimates are widely different
terminate at iteration’’ on the basis of the history of itSyhe messages sent at a given iteration can significantlyceedu
estimate:z,(0), 74 (1), 24(2), ..., 74 (K), and it is guaranteed y,q orror by making the estimates approach to the real averag
that ‘I“(K_) - IW}' <1, wherez,,. = a. , However, when the estimates have “almost converged”, the
We —will  define the F' extended mirror graph i, ouement from each message in terms of error reduction
of G to be a path withn = 3F nodes .., e negiigible. So from an engineering perspective, it is
at,az; ..., ar, by, b2, ..., br, €1, c3, .., CF, formed bY gesirable that nodes send more messages when they have
G1,Go,...Gp (F graphs identical toG) connected by e differences in their estimates, and less messages whe
?‘dd'F'O”a' links to form a p'ath,'the added links g, ;11 } the estimates have almost converged. In what follows we first
if 1 is odd and{a;,a;11} if [ is even (e.g. the graph for, oqent 4 centralized algorithm to provide the intuitioroaf

[’ =2is shown in Fig. 2). Let us assume first that the initial 5401 and then we describe a more practical decenttalize
estimates for nodes in the subgraphs,...Gr are identical solution.

to the estimates of the nodes in graph (e.g. for node
a we havez,, (0) = x,,(0) = ... = 24,.(0) = 2,(0)), A. A Centralized Algorithm

the weight matrix for Gi,..Gr is also identical to |n this section, we discuss a simple centralized algorithm
the weight matrix of G except for nodes incident tofor termination of average consensus protocols. We call it a
the added links, if {c;,c;41} is an added link, then centralized protocol because in this protocol there areesom
Werep = Weyy iy, = Weyery = 5= and similarly if{a;, ai+1}  global variables known to all the nodes in the network,
is an added link, them,,q, = Wa;, 0141 = Waar;n = “$*-  and each node can send a broadcast signal that triggers an
Notice that on the new generated graph we still haye = o ayeraging operation (1) at all nodes. Then, if any of the sode
and also: in the network sends this signal, all the nodes will respond b
oy (k) = Ty (k) = ... = Zap (k) = o (k) VE < K, sending the new estimates to their neighbors accordingeto th
averaging equation:
so nodea; applying the termination algorithm on the new
graph will decide to terminate after the same number of x(t+1) = Wx(?). ®)
iterations K. Consider now a valug’ > K and that the On the contrary, if no signal is sent, the nodes will preserve
initial estimate of nodecx ., is changed tox...,(0) = the same estimate:
zc(0) + n(2n + x4, (K) — @) and the new average is now
Tave = O + w . The estimates at node would x(t+1) = x(t). (6)
not change during the firdt’ steps, then node, would again |f the rate of broadcast signals convergesitcalso the rate
terminate at stef, but the error bound is no more guarantee@f the messages containing the estimates will converge to
becausdz,, (K) — Tave| = |24, (K) —a — M\ = and asymptotically no node in the network will transmit. As
2n > mn. This contradicts the fact that; terminates with above we consider a time-slotted model. In all this paper,
guaranteed error bounds. The proof can be extended tepresents a discrete time iteration.
include any grapl, not just path graphs, by using the same We now introduce formally the algorithm. Lett) and(t)
technique of generating extended mirror graphg-of m be the values of two global variables known to all the nodes
Theoreml shows that in general, nodes cannot stop execuatt timet¢, such thate(0) = 0, n(0) = ny and0 < e(t) < n(¢).
ing the algorithm. Motivated by this result, we investigadie As we are going to see, both the values of the two variables
what follows algorithms where nodes can refrain from segudirtannot decrease. L&/ be the weight matrix of the network
messages at every iteration (e.g. when estimates have satisfying convergence conditions of average consensds an




x(t) be the state vector of the system at iteratiokVe letL; nodes are transmitting messages), otherwigg) = 0 (no
be a Boolean variable (either true or false) defined at evamgpdes transmitting messages). Therefore,
iterationt as: K(t)

Li: e(t—1)+yt—1) <nt—1), (7) ;N(k)= ;N(tk)=nK(t),

wherey(t — 1) = [[Wx(t —1) —x(t — 1)llc and withLo := 00 K(t) as described earlier is the number of busy it-

False. Theny(t —1) stores the estimates change if the linegy 5,0 yntil timet. We will consider two cases depending
iterations (1) would be executed at stepnd L, evaluates if on the evolution ofK'(¢) as function oft. The simpler case
the change is negligiblel{ = False) and then no message:

. X : . is whenlim;_. K(t) < K < the number of bus
is transmitted or notl{; = True). Different actions are taken oo K(f) < oo ( y

on the basis of the.. value at timeslot. We also define the periods is bounded, e.g. nodes reach consensus in a finite
. ) ¢ ' number of iterations), then sindé(¢) is an increasing positive
simple point procesg = {t; : k > 1} to be the sequence of

. ! . ; integer sequence, the proposition follows from the follogi

strictly increasing points inequality andt — oo,
0<ty <ty <..., O<ZZ:1NU€) ﬁ

such that, € + if and only if L,, = False. Let K (t) denote - t -t
the number of points of the set that falls in the interval We consider now the other case, ilem; .., K(t) = oo.
10,¢], i.e. K(t) = max{k : t, <t}, with K(0) := 0. If Notice that for any time iteration, we have
L, is false, a broadcast signal is sent in the network and all K1) K1) 41
nodes will perform an averaging iteration; whilelit is true,
then there is no signal in the network, and the nodes keep the Z(tk “her) StS 1; (b = t-1),
same estimate as the previous iteration. Network variadiies -
changed at time > 0 according to the equations given in

k=1
or in other words

following table: K(t)—1 K(t)
(o + 1) <t< Y (ap+1),

If L is True If Ly is False k=0 k=0

Kt)=K({—-1) KO =K(t—1)+1

x(t) =x(t—1) x(t) = Wx(t — 1) So we have

et)y=e(t—1)+y(t—1) | e(t)=e(t—1) t

n(t) = n(t—1) n(t) =t = 1) + 0 2pm N(K) _ nK(@) . nK(t)

t t T akgmw-1+1

Whent ¢ v, we callt a silent iteration because the node¥Ve will prove now that the right hand side of the inequal-

have the same estimate as the previous iterationa(j(¢) = ity goes to0 ast diverges. Sincdim; .o K(t) = oo, it

;(t—1)) and there is no need to exchange messages of thisssufficient to prove thatimy .oc(ax + 1)/k = oo. Let
estimates in the network. On the other hand, whea 1, z(k) = Wx(tx) — x(tx), we can see that according to this
we call t as a busy iteration because nodes will perform agorithm,

averaging (i.ex(t) = Wx(t — 1)) and the estimates must n(ty) — e(ty)
be exchanged in the network. Lej, be the number of silent Qi = LwJ
iterations between, andty,, SO we have thaty, =t — >
ty — 12, ' ah L nt = 1) +mo/k? —e(ty —=1)
After introducing this deterministic procedure, we show a |2 ()l
by the following lemma that the messages according to this >__ " (8)

— k2[z(R)]]2
The last inequality derives from the fact that for any iteEnat
t we haven(t) > e(t), and that for any vector, the norm
inequality ||v||2 > ||v]|l= holds. Moreover,z(k) evolves
according to the following equation:

algorithm disappear asymptotically:

Proposition 1. For any initial conditionx(0), the message
rate of the centralized deterministic algorithm descrilzdxbve
disappears asymptotically, i.e.:

t
Jim w o, a(k) = (W — J)a(k — 1)
—00
- - = (W — J)"2(0),
where N (k) is the number of nodes transmitting messages at
iteration k. whereJ = 1/n117, so
Proof: The number of nodes transmitting at an iteration |2(k)|]2 < C (p(W — ), )

t depends on the conditioh;. If ¢ € 1, then N (¢) = n (all where C' = [|2(0)]|» and p(W — J) = As(W) > 0 is the

24, — tp_1 is sometimes called the® interarrival time in the context of spectral radius of the matrid’ —.J. We know tha) < A, <1
point processes. (0 < Ao becausdim;_, ., K(t) = co and A2 < 1 becauséV



satisfies the condition of a converging matrix (see [8])}tiRg following we present a key theorem for the convergence in
everything together, we get finally that: a decentralized setting.

(10) Theorem 2. Consider a system governed by the equagidt),

a2 o — 1,
Ck2A3 let F(k) = F(k,x(k),x(k — 1)) be a matrix that depends on

and the iterationk and two history state vectors(k) and x(k —
ar +1 > _ o 1). Suppose that(k + 1) = e(k) — F(k)x(k) and assume the
k= Ck3\y’ following conditions on the matriced (k) = W + F(k) and
hence(ay + 1)/k — oo ask — co. Consequently, the rate ot F'(k):
messages sent in the network vanishes, namely (@) a;(k) >0 for all 4, j, andk, and >=7_, a;;(k) = 1 for
: all < and &,
lim 2= N (k) -0. (b) Lower bound on positive coefficients: there exists some
t—o0 t a > 0 such that ifa;;(k) > 0, thena;;(k) > «, for all
| i, j, and k,

Three main factors in the above algorithm cause the ale) Positive diagonal coefficientsi;; (k) > «, for all 4, k,
gorithm to be centralized: the global scalgr), the global (d) Cut-balance: for anyi with a;;(k) > 0, we havej with
scalarn(t), and the broadcast signal. In the following sections,  a;;(k) > 0,
we will present a decentralized algorithm inspired from th€e) lim;, ... x(k) = x* = limy_o F(k,x(k),x(k —
centralized one, but all global scalars are changed to local 1))x(k) = 0.
ones, and the nodes are not able to send a broadcast signai{g,

. ) . limy— o x(k) = z' .1 where o/ €
trigger an iteration.

ave ave

[min; z;(0), max; 2;(0)]; if furthermore e(0) = 0 and

B. Decentralized Environment ei(k) <nforall i andk, then|zave — 5,0 < 7.

1) Modified SettingsThe analysis of the system becomes  Proof: Let us first prove thak(k) converges. By substi-
more complicated when we deal with the decentralized sdeting the equation oé(k + 1) in (11), we obtain:
nario. Each node works independently. We keep the assump-
tion of synchronous operation, but the decision to trangmit x(k+1) = A(k)x(k), (12)

not is local, so a node can be silent, while its neighbor is not .
In this scenario, even the convergence of the system might Mé‘ere A(k) = W + F(k). From the conditions (a),(b),.(c),
89 (d) onA(k), we have from [15] thatx converges, i.e.

be guaranteed and we see that within an iteration, some no 1) — x* Since th o i ina. then
will be transmitting and others will be silent. This can cau lka_“ X(li = x7. >lnce fhsil_s em IS converging, then trom
instability in the network because the average of the estigna®auation (11), we can see that:

at every iteration is now not conserved(this is an important Wt 4 i B — e(k + 1
property of the standard consensus protocols tha can Hg easi x x kggo(e( ) —elk+1))
checked), and the scalaj&k) ande(k) defined in the previous =Wx* + klim F(k)x(k)

subsection are now vectorgk) and e(k) wheren;(k) and
e;(k) are the values corresponding to a nadand are local

to every node. To conserve the average in the decentra“_zﬁ‘?erefore,x* is an eigenvector corresponding to the highest
setting,e(k) must take part in the state equation as we W'gigenvalue X: = 1) of W. So we can conclude that* —

show in what follows. , 2! .1 wherez! _ is a scalar (Perron-Frobenius theorem).
2) System Equationtn our approach, we consider a more

1 K f h wd The condition1”W = 17 on the matrixW/ in equation
general framework for average consensus where we stu y&fleads to the preservation of the average in the network,
convergence of the following equation:

17x(k) = nxq.. Yk. This condition is not necessary satisfied
x(k+1)+e(k+1) = Wx(k) + e(k). (11) by A(k), so let us prove now that the system preserves the

averagerye:
Some work has studied the following equation as a perturbed

average consensus and considesgd) to be zero mean noise 17 (x(k+1)+ek+1)=1"(Wx(k) +e(k)) (13)

with vanishing variance (see [13], [14]). However, in our — 17 (x(k) + e(k)). (14)

model, we considee as a deterministic part of the state of

the system and not a random variable. We consider sufficiemie |ast equality comes from the fact théitis sum preserving

conditions for the system to converge, and we use theS§@ce1™W =1".

conditions to design an algorithm that can reduce the numbelrinally by a simple recursion we have that (x(k) +

of messages sent in the network. e(k)) = 1"x(0) = na.., and the average is conserved.
In the standard consensus algorithms, the state of thensysi@oreover, sincde; (k)| < n for all i and k we have:

is defined by the state vectar, but in the modified system,

the state equation is defined by the cougle e}. In the |(1/n)1Tx(k) — Zave| < 71 VEk. (15)

= Wx*.



But we just proved thafimg_. . x(k)

ave

2/ 1, so this Algorithm 1 Termination Algorithm -node- Phase 1

consensus is withim from the desirede,,.: 1:

(16)

|x:we — Zave| <1

This ends the proof. [ ]

In the decentralized environment, we gave the conditions
for the system to converge. In the following section we will
design an algorithm that satisfies these conditions andsneed

only local communications. s
4:

C. Message Reducing Algorithm 5:

We try to solve the termination problem througlfiudly de- 6:
centralizedapproach. We consider large-scale networks wheré’
nodes have limited resources (in terms of power, processing§’
and memory), do not use any global estimate (e.g. diameték
of the network or number of nodes), keep only one iteratioro:
history, and can only communicate with their neighborsi1:
Our goal is to reduce the number of messages sent while
guaranteeing that the protocol converges within a givergimar 13:
from the actual average. 14:

The main idea is that a node, sayfor example, will 15:
compare its new calculated value with the old one. Accordints:
to the change in the estimatewill decide either to broadcast 17:
its new value or not to do so. We divide an iteration intas:
two parts, in the first part of the iteration, only nodes with
significant change in their estimates are allowed to seng:
messages. However, in the second part of the iteration, ordg.

{z;(k),e;(k)} are the state values of nodeat iteration
kE,0<a<w;<l—a<l1,counter; =1 is the counter
for the number of transmissions so far(1) = n/2 € R,
T is set of Transmit state.W) set corresponding to
Wit state. Initially we havel, = W), = @. Every node
1 follows the following algorithm at iteratiofk.
yi(k +1) — wizi(k) + 3225 N, wijz; (k)
d; — yz(k + 1) — xz(k‘) + €i(k)
if |d;| < n;(counter;) then

i changes to &Vait state.\ \ i € W
else

counter; = counter; + 1

n; (counter;) = n;(counter; — 1) + n;(1)/counter?

¢ s (yi(k +1)— ;z:i(k)s

if |¢;| < le;(k)| then

el(k + ].) — 62(]{) — Slgr‘(clez(k))cl
else
ei(k+1)«0

end if

i changes to &ransmitstate.\ \ i € Ty,

Notify the neighbors having maximum and minimum

values.
end if
Go to Phase 2

nodes polled by their neighbors from phase 1 are allowed to
send an update.
Before starting the linear iterative equation, nodes veilest

the Transmitstate (depending if they were polled by any

weights as in the standard consensus algorithm. The weight of their neighbors).

matrix considered here must be doubly stochastic Witk
a < wy < 1—a < 1 for some constante. Each node in
the network keeps two state values at iteration

« x;(k): the estimate of nodeé used in the iterative equa-
tions by the other nodes.

« ¢;(k): areal value that monitors the shift from the average
due to the iterations where nodelid not send a message
to its neighbors. It is initially set to zere,(0) = 0.

Each node also keeps its own boundary threshgld)
where 7;(1) = 2 constant Vi. Note that this eta is
increased after every transmission as in the centralized, ca
but the difference here is that it is local to every node.

Each iteration is divided into two phases:

In the second part of the iteration, nodes that aréVip will
be classified as follows:

« Silent The set of nodes corresponding to this state is

S;. These are the nodes that will remain silent with no
message sent from their part in the network. The nodes
in S; have that non of their neighbors sending them any
poll message.

Cut-Balance The set of nodes corresponding to this state
is Bi. They are called'ut— Balance because they insure
the cut-balance condition (d) of Theorem 2. They are
the nodes inlV;, that have been polled by at least one
neighbor inTj}, .

The two phases of the termination protocol implemented at

In the first phase, a nodecan be in one of the two following each node are described by pseudocode in Algorithm 1 and 2.

states:

Nodes in theTy, set (the set of nodes that are irfaansmit

« Transmit The set of nodes corresponding to this statgtate) will broadcast their estimate to their neighborshat t
is Ty, where the subindek corresponds to the fact thatend of the first phase, while nodes v, set (orWWait state)
the set can change with every iteratibn The nodes in will postpone their decision to send or not till the next phas
T} send their new calculated estimate to their neighbofdodes that do not receive a message from their neighbors at a
They also poll the nodes having maximum and minimurmertain iteration, uses the last seen estimate from thefigaec
estimates in their neighborhood to transmit in phase 2neighbors (note: absence of messages from a neighbor during
o Wait The set of nodes corresponding to this state & iteration doesiot mean the failure of link, it means that
Wy. The node’s decision will be taken in the seconthe neighbor is broadcasting the same old estimate as before
phase of the iteration based on the action of nodes so we may differentiate the link failure by a “keep alive”



Algorithm 2 Termination Algorithm - Phase 2 to satisfy all these conditions that guarantee convergence
1: {z;(k),e;(k)} are the state values of nodeat iteration Starting with the state equation, we can notice from the

k. Algorithm 1 given that whatever the condition the nodes face
2: for all nodesi having Wait statedo it is always true that the sum of the new generated state value
3: yb(k + 1) — U)“$L(k) + ZjENi wijxj(k:) {J)L(k + 1), eL(k: + 1)} is as follows:
4. if 4 received a poll message from any neighbuen
5 zilk + 1) — (wi + Y jennw, wij)wi(k) + zi(k+1)+e(k+1) =y (k+1)+e;(k),
e, Wi (k) wherey; (k+1) = wi;zi(k)+> ;c y, wijz;(k). As aresult the

zilk +1) — 2z (k+1)

ei(k + 1) — yl(k + 1) - Zt(k' + 1) + €L(k)

i changes to &'ut — Balance state.\ \ i € By,
else
11: ei(k’—l—l) <—yl(k‘+ 1) —wi(k‘) —l—el(k)

system equation is the one studied in section V-B2 (equation
(11)). It can also be checked that according to the algorithm
given in pseudo code, we haegk + 1) = e(k) — F(k)x(k)
for some matrixF'(k) such thatF'(k)1 = 0 ( see [16] for
more details).

Now we can study the conditions mentioned in the Theorem

© o N o

12: i changes to &ilentstate.\ \ i € Sk X

13 end if 2 on the matrixA(k) = W + F (k).

14: end for Lemma 1. A(k) is a stochastic matrix that satisfies conditions
15 k+1«k (a),(b),and (c) of Theorem 2.

Proof: First, we can see thal(k)1 =1 sinceW1l =1

and F(k)1 = 0. It remains to prove that all entries in the

message sent frequently to main'_[ain connectivity_ and set{% trix A(k) are non negative, due to space limits the proof is
neighbors). Thenput for the algorithm are the estimates oila our technical report [16]. m

the neighbor of, the weights selected for these neighbors, an
the state value$z;(k),e;(k)}. Theoutput of the first phase Definition 1. Two matrices, A and B, are said to be equivalent
is the new state valuefr;(k + 1),e;(k + 1)} for nodes in with respect to a vectoy if and only if Av = Bv.

T, and the output of the second phase is the new state Valueﬁlotice that A
{zi(k+1),e;(k+1)} for nodes inl¥;. Let us go through the
lines of the algorithm. In phase 1;(k + 1) of line 2 is the ) ) :
weighted average of the estimates (receinad by ripdéthout because for a nodec T that transmitsq;; (k) > 0¥ j € N;,

L . but it can be thallj € N; such thata;; = 0 if j was silent at
the termination protocol this value would be sent to all 'tﬁ1at iteration § € S;). However, the next lemma shows that
neighbors. The protocol evaluates how mugtk + 1) differs kJ: '

from the state value; (k). This difference accumulates if) there is a matrix3 (k) equivalent toA(k) with respect ta(k)

in line 3. If this shift is less than a given threshojd the node that satisfies all the conditions.

will wait for next phase to take decision. If the condition inLemma 2. For all k, there exists a matrix3(k) equivalent
line 4 is not satisfied, that means the node will send a new A(k) with respect tox(k) such that B(k) satisfies the
value to its neighbors. Lin€s — 8 concerns the extending of conditions (a),(b),(c), and (d) of Theorem 2.

the boundary threshold; (k) after every transmission. Note
that by this extension method, we haygk) < n Vi, k since

(k) satisfies conditions (a),(b), and (c) of
Theorem 2, but possibly not the cut balance condition (d)

Proof: Due to space limits, the proof is presented in the

technical report [16]. [ ]
lim n;(k) = ’71’(1)(2 1/k%) <ni(1) x2=n. Lemma 3. The message reduction algorithm (Phases 1, 2)
k—o0 ‘ o fi g
i=1 satisfies condition (e) of Theorem 2.

We introduce in lined a new scalar; used for deciding which Proof: We will prove it by contradiction. Suppose
portion of e;(k) the node will send in the network. In lineslim; .., x(k) = x*, but limj_ . F(k)x(k) # 0, then
11—12 and14 — 15, the algorithm satisfies the equation (11)there exists a nodé such thatlimy .. z;(k) = z; and
Then the new state valug (k+1) is sent to the neighbors andlim;, ., y;(k + 1) = wixf + Yjen, wijTy = yf, but

ei(k+ 1) is updated accordingly. In Phageof the algorithm y* —z* = §* > 0. From Algorithm 1, we can see that the node
(Algorithm 2), nodes initially in the wait state will decidewill enter a transmit state infinitely often (becaugencreases
either to send a cut-balance massage or to remain silent, fihearly with §* and it will reach the thresholg;). Then, the
cut balance messages are sent when a node receives arnmle: will update its estimate according to the equation
message from any of its neighbors.

(yi(k +1) — i (k).

zik+1) = ys(k + 1) + 1_0‘ -

D. Convergence study Wy

The convergence of the previous algorithm is mainly due t£tting & — oo yields
the fact that the proposed algorithm satisfies the conditan «
convergence given in V-B2. In fact, the algorithm is desijne (1+

)o* = 0.

1 —wi



Thus, §* = 0 which is a contradiction, and the algorithm 550 RO (12500, connectvty radius 0.09%)
satisfies condition (e) of Theorem 2. [ ] O === At = B B =)
The algorithm also provides th#t; (k)| < n;(k) Vk,i and ; 450 7 Sandand Mgt
n:(k) < n Vi, k, as in the first phase this condition is satisfied g, A =10
by construction, and for the second phase of the iteration, §§ %0 g::g,i
nodes from Phaskcan check for worst case analysis and they 2L 0 n=o0
only enter intoWait state if they are sure that the condition 5% Jool
can be satisfied in the next phase iteration. o8 sl

Now we are ready to state the main Theorem in this section: § 100}
Theorem 3. The nodes applying the message reducing al- 527 ‘ ‘ ‘ ‘
gorithm given in pseudocode by Algorithm 1 and 2, have 0 2000 emtonnumper 0100
estimates converging to a consensus within a margfrom RGG (n=500, connectivty radius 0.093)
Zave, 1-€. limg o0 x(k) = 21,1 and |2}, . — Tape| < 0. . T gindc gt

Proof: The theorem is due to the fact that the Lemmas -1 i:igi

given in this subsection show that the algorithm satisfiés al 2 R g gj;‘ﬁ
the convergence conditions of Theorem 2. [ ] b

As a result, the convergence of nodes’ estimates of the
distributed algorithm for message reduction is guarantéésl
study in the next section the performance of this algorithm

log(normalized error)

on random networks, we also address the case of faulty Ll %,
unreliable links, and we show the stability of the algorithm ‘ ‘ N\I | |
in the presence of nodes changing their estimate possildy du o 2000 4000 6000 8OO0 10000

to faulty estimates or due to a changing environment.

. . Fig. 3. The effect of) in the message reduction algorithm on RGG networks.
E. Simulations In standard algorithms nodes’ estimates converge to the veahge, so the

h . . | ith h . | error decreases linearly, but nodes are not aware of hove dlesy are to
The termination algorithm (the message reduction alg@snsensus. so they are all always active sending messaggstewhination

rithm) is simulated on two types of random graphs, thagorithm, nodes converge to a value at mgsiway from the real average,
Random Geometric Graphs (RGG) and the Erdos Renyi (E iferent values ofn give different precision error. The algorithm gives a

. trade-off between precision and number of messages (Theasthatfjorithm
graphs. To measure the distance from the average, we Congiflist a special case of termination algorithm fpe= 0).

ered the normalized error metric defined as,
_ Ix(k) —x]l2

[1%(0) = x| each phase depends on the valuenofSimilar results were
wherex = z,,.1. Note that wherlog(normalizederror) = given on ER graphs but are omitted due to lack of space.
—3 for example, that means the error becaf&% of the Links in networks (specially wireless networks) can be
initial one. Initially, each node has a uniformly randomu&l unreliable. The algorithm being totally decentralized] ases
betweer) and10. On the RGG withb00 nodes and connectiv- only one history estimate can be applied for the dynamic
ity radius 0.093, Fig. 3 gives a comparison between standagtenario. The weight matrix is then dynamic and at every
average consensus algorithms and the termination algorititeration k£ a different W (k) is considered and constructed
proposed in this paper. The figure shows the effect of varyitgcally as following. Before starting the algorithm we let
the precisionn in the termination algorithm on the number¥ (0) be generated locally satisfying convergence conditions
of messages (active nodes per iteration). In the study of the throughout the paper. At iteratiéna weight on a link can
convergence of the algorithm, we showed that the algorithiake two values, the original weightf; (k) = w;;(0)) if link
converges to at mosj from the true average. As the figurel ~ {i,j} is active orw;;(k) = 0 if the link failed. When
shows, with termination algorithm the error converges to there are failures of links, some weight is added to the self-
value z/, . different from the real average,,., smallern weight of nodes to preserve the double stochastic property
gives closer estimate t@,,. but more messages are sent. lof the matrix W (k). In Fig. 4, we consider the RGG of
fact, the termination algorithm passes through three ghas#00 nodes and connectivity radius 0.19 with unreliabledink
the first phase is the initial start where nodes usually have= 0.01 is fixed for both graphs (the graph with the high link
large differences in their estimates and they tend to semty mdailure probability graph and the low link failure probatjl
messages while decreasing the error (same start as standae). With high link failure probability, the network sends
algorithm), thesecondphase is the most efficient phase wherkess messages because there are less links in the network, bu
nodes saves messages while continuing to decrease the ether speed to consensus is slower than that of the low failure
Thefinal phase is the stabilizing phase where nodes convemg®bability. Note that non of the synchronous termination
to a value close to the true average. The start and durationatgorithms given in the related work consider a dynamic

normalized error(k)



Dynamic RGG n=100, connectivity radius r=0.19, link failure probability f
0

behavior. With every change in the estimates, the netwa gi
a burst of messages to stabilize the network to the new awerag

O Low Link Failure Probability f=10%
It O High Link Failure Probability f=70%
—— Number of messages per iteration
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VI. CONCLUSION

In this paper, we give an algorithm to reduce the messages
sent in average consensus. The algorithm is totally deslentr
ized and does not depend on any global variable, it only uses
the weights selected to neighbors and one iteration higibry
the estimates to decide to send a message or not. We proved
that this algorithm is converging to a consensus at mdsim
the true average. The algorithm can be applied on dynamic
Fig. 4. Termination algorithm on a dynamic RGG with differeinklfailure graphs and is also robust and adaptive to errors caused by a

probabilities. On low link failure probability graphs, theessages are less Node suddenly changing its estimate.
than that of the high failure probability, but the convergespeed is slower.
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number of messages sent by nodes per iteration
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