
HAL Id: hal-00916103
https://hal.science/hal-00916103v1

Submitted on 12 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Lightweight Continuous Jobs Mechanism for
MapReduce Frameworks

Trong-Tuan Vu, Fabrice Huet

To cite this version:
Trong-Tuan Vu, Fabrice Huet. A Lightweight Continuous Jobs Mechanism for MapReduce Frame-
works. 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, CCGrid
2013, Jun 2013, Netherlands. pp.269-276. �hal-00916103�

https://hal.science/hal-00916103v1
https://hal.archives-ouvertes.fr

A Lightweight Continuous Jobs Mechanism for MapReduce Frameworks

Trong-Tuan Vu

INRIA Lille Nord Europe, France

trong-tuan.vu@inria.fr

Fabrice Huet

INRIA-University of Nice, France

fabrice.huet@inria.fr

Abstract—MapReduce is a programming model which allows
the processing of vast amounts of data in parallel, on a large
number of machines. It is particularly well suited to static
or slow changing set of data since the execution time of a
job is usually high. However, in practice data-centers collect
data at fast rates which makes it very difficult to maintain
up-to-date results. To address this challenge, we propose in
this paper a generic mechanism for dealing with dynamic
data in MapReduce frameworks. Long-standing MapReduce
jobs, called continuous Jobs, are automatically re-executed to
process new incoming data at a minimum cost. We present a
simple and clean API which integrates nicely with the standard
MapReduce model. Furthermore, we describe cHadoop, an
implementation of our approach based on Hadoop which
does not require modifications to the source code of the
original framework. Thus, cHadoop can quickly be ported
to any new version of Hadoop. We evaluate our proposal
with two standard MapReduce applications (WordCount and
WordCount-N-Count), and one real world application (RDF
Query) on real datasets. Our evaluations on clusters ranging
from 5 to 40 nodes demonstrate the benefit of our approach
in terms of execution time and ease of use.

Keywords-publish/subscribe, continuous MapReduce.

I. INTRODUCTION

A. Context and Motivation

Computing challenges from different scientific fields,

e.g. climatic changes, bio-informatics, health sciences and

engineering, require an enormous amount of resources to

be solved in a reasonable time. Computing resources are

more and more available in the form of clusters, grids

and clouds. As a result, the trend of using these resources

for large-scale computation is recently growing rapidly and

it is expected to replace high-end servers because of its

unlimited computation resources and cheap investment. This

change focuses on the huge number of commodity machines

working in parallel to perform intensive computations within

a reasonable time. However, efficient use of these resources

by providing the users with simple tools is still a challenging

issue. New programming models should provide the simple

tool through which the users can easily express complex

distributed programs by hiding all underlying complexity.

Among them, MapReduce [5] is one of the most popular

programing framework in the distributed environments. The

MapReduce framework is very attractive both commercially

and academically due to its simplicity. Hadoop [9], an open

source implementation of MapReduce has been widely used

in many large companies and institutions, e.g. Yahoo!, Face-

book, Amazon etc, for large-scale data analysis. The users

can quickly develop a complicated distributed application us-

ing MapReduce without a comprehensive knowledge of par-

allel and distributed systems. Furthermore, many algorithms

as well as applications naturally fall into the MapReduce

model, such as word count, grep, equi-join queries etc. and

other applications required large data analysis coming from

other domains (biology, geography, physics, etc). Therefore,

it is considered as an important platform for large-scale,

massively parallel data computation.

The MapReduce framework is particularly well suited to

static or slow changing sets because of the dependency

betwen the map and the reduce phases. Some applica-

tions, however, work on dynamic data, either added to

the initial input set or generated during the execution, and

should generate updated results without human intervention.

This decoupling of data production and consumption is

widespread and gives birth to many different programming

models. As an example, the Publish/Subscribe model allows

asynchronous generation and processing of data and is often

used in large dynamic systems.

There are two key problems while adapting the above iter-

ative applications in standard MapReduce. The first problem

is that MapReduce jobs implementing the iterative applica-

tions have to be manually resubmitted to the system at each

iteration. In the current implementations of MapReduce,

there is no mechanism allowing MapReduce jobs to be

resubmitted automatically to the system whenever their input

dataset increase. Lack of such mechanism makes mainte-

nance of up-to-date results difficult, not to say impossible.

The second problem is that even though most of the dataset

are processed in the previous iterations, the data must be re-

loaded and re-processed at each iteration while only few new

incoming data are added, inducing unnecessary overhead.

B. Contributions

There are several research works based on MapReduce

frameworks,which try to improve the performance of the

original MapReduce or extend its applicability to more types

of applications. However to the best of our knowledge, there

has not been any research work providing a low level API

for writing continuous MapReduce jobs.

From the framework side, we propose a modified MapRe-

duce architecture, called continuous MapReduce, which sup-

ports continuous jobs. In our framework, a continuous job,

which is submitted to the system, runs implicitly over a

long time span, and keeps notifying new results to the users

as each increment of the data occurs. In other words, after

being submitted to the system, the continuous job will be

invoked by new incoming data and will process them. To

validate our approach, we develop cHadoop, a continuous

version of Hadoop which is designed to efficiency handle the

above type of applications. Our implementation is developed

on top of the original Hadoop implementation without any

modification of the original source code so that it can be

easily ported to new versions of Hadoop.

To summarize, this paper makes the following contribu-

tions:

• a continuous job framework adapted to the MapReduce

programming model.

• an extension to standard MapReduce jobs to deal with

the complexity of data management for continuous

jobs.

• an implementation, called cHadoop, which supports

standard and continuous jobs and requires no direct

modification of Hadoop source code

• an evaluation of the performance with two standard

MapReduce applications (WordCount, WordCount-N-

Count) and a realistic application (RDF queries).

The remaining of the paper is organized as follows.

Section II presents the background of MapReduce and some

most related papers to our research work. Section III is

dedicated to a high level presentation of our approach and its

main components. Section IV describes the implementation

of our approach on top of Hadoop. Section V presents some

case studies of the framework in detail. In the next section,

Section VI, the results of our experiments are reported with

some analysis of the performance of our approach. Finally,

we conclude the paper and discuss some open issues.

II. BACKGROUND AND RELATED WORKS

A. Background

1) MapReduce: Processing large amount of data often

requires a lot of computations which are distributed on a

large set of machines.

Google has proposed the MapReduce programming model

[5] that allows the users to develop complex distributed

programs but conceals all the underlying sophistications.

The most attractive feature of MapReduce is its simplicity:

a MapReduce program is comprised of only two primitive

functions, called map and reduce, which are written by users

to process key/value pairs.

First, a user-defined map function reads a set of records

from an input file, then performs any desired operation,

producing a set of intermediate key-value pairs. All pairs

with the same key are grouped together and passed to the

same reduce function. The reduce function process all

values associated to a particular key and produces key-value

pairs. Generally, all map/reduce instances are distributed on

different nodes of a cluster.

Algorithm 1 The Standard MapReduce WordCount Code

function MAP(key, value)

EmitIntermediate (value, 1)

end function

function REDUCE(key, values[])
for v in values do

result ← result + v

end for

EmitOutput (key, result)

end function

For instance, as presented in Algorithm 1, we consider

the wordcount example which is directly taken from the

original MapReduce article [5]. Each map function takes

names of input documents as keys and their contents as

values. Then it emits intermediate key-value pairs for every

word in the document. Each pair contains a word as key,

and an associated count of its occurrences as value, i.e. 1.

In the reduce function, all intermediate key-value pairs are

grouped based on the intermediate key, thus in this example,

every word is associated with its occurrence values in the

document. Finally, each reduce function sums together all

word counts emitted for a specific word and writes the final

output as a new file to the distributed file system.

2) Hadoop: Hadoop [9] is the Apache Software Foun-

dation open source and Java-based implementation of the

MapReduce framework. It provides a tool for processing a

vast amount of data using the MapReduce model. Data are

processed in-parallel on large clusters in a reliable and fault-

tolerant manner.

The Hadoop framework contains two main compo-

nents: Hadoop Distributed FileSystem (HDFS) and Hadoop

MapReduce. HDFS is an open source implementation of

the Distributed Google File System (GFS) [10]. It provides

a unified storage by aggregating disk space from different

machines called DataNodes. It supports standard opera-

tions such as reading and writing, and provides redundancy

through block replication. It does not however, support

modification of existing files; appending data to files is still

experimental and should not be used for production work.

When a file is copied to HDFS, it is divided into 64MB

blocks which are randomly distributed on the data nodes.

Although HDFS is distributed, it still has a single point of

access, called NameNode, which maintains meta-data for the

whole filesystem.

The Hadoop MapReduce distribution comprises the in-

frastructure to execute MapReduce Jobs. A master node,

called JobTracker controls the distribution and execution of

the jobs on the computation nodes (TaskTrackers) across the

cluster.

B. Related Works

Hadoop Online Prototype (HOP) [4], is an approach

for getting "early results” from a job while it is being

executed by a flush API. The flush API forces the job’s

mappers to send their current results to the job’s reducers,

and so it can return a snapshot of a final output to the

users by processing the intermediate results. HOP can be

considered as a potential approach for running MapReduce

jobs continuously, however the authors only consider it

in terms of returning snapshots of the final output to the

users. There is no guarantee that the snapshots represent a

possibly correct output of the job. It is only adapted to jobs

where the output converge toward the final one. Recently,

several research works have been studied to implement

iterative algorithms efficiently on MapReduce frameworks

such as HaLoop [2], Twister [6] or PIC [8]. The common

characteristic of iterative applications is that they operate on

both the original input data set (often called static data) and a

generated one (called dynamic or variable data). These data

sets are processed iteratively until the computation satisfies

a convergence or termination condition. The distinction

between the two types of data can be used to avoid repeated

loading of the static data and improve performance.

Therefore, [2], [6], [8] propose some techniques to im-

prove the performance by avoiding the repeated loading

of unchanged original input data at each iteration. In our

opinion, the current techniques could not be applied to our

problem due to following limitation. The original input of

their iterative applications is always static and does not

change during the computation. As a consequence, there

is no trigger mechanism to automatically re-launch the

computation as input data sets evolve.

A low latency continuous MapReduce model is described

in [1]. It is designed to quickly and efficiently process

incoming data but does not seem to be able to maintain

states between successive executions. At a higher level, [12]

describes a workflow manager which pushes new data to Pig

programs running on top of Hadoop. In their framework,

the de-duping operation allows a task to emit data to be

used for subsequent executions. Finally, the work in [3] is

probably the closest to our proposal. The authors propose

to save intermediate states of complex queries (SQL) in

buffers using user defined functions. However neither the

semantic nor the integration of such functions in a Map-

Reduce workflow is clearly described.

Although these frameworks bear some close similarities

to our proposal, there are some notable differences:

• The existing iterative frameworks (e.g. [2], [6], [8])

assume that the only new data added to the system

comes from previous iterations and not from outside

source.

• Uninterrupted execution until the end of the computa-

tion is assumed. Thus, they lack mechanism to auto-

matically re-launch jobs when input data sets evolve.

• The implementation of current approaches (e.g. [2],

[4], [8]) extensively modify the original Hadoop which

makes it difficult to keep-up with the latest official

release.

• The higher level frameworks (e.g. [3]) are not directly

applicable to standard MapReduce jobs since they

usually rely on specific languages or external APIs.

To the best of our knowledge, our proposal is the only

one to work at the level of a MapReduce job and offer a

simple and elegant solution to maintain state between exe-

cutions. Because it does not rely on extensive modification

of Hadoop, it can also be easily ported on new versions of

Hadoop.

III. CONTINUOUS MAPREDUCE JOBS

We will call continuous jobs as a set of jobs which have to

be executed automatically when new input data are available

in a specified location of the filesystem. A continuous job

should have the following properties:

• efficiency: it should not process the whole dataset at

each iteration.

• correctness: the merging of all results should be equiv-

alent to those obtained if running on the whole dataset.

A naive approach to implement continuous jobs is to simply

re-execute jobs on new data added after the last execution,

using timestamps. However, the main issue with this algo-

rithm is that it does not have the correctness property. To

clearly understand the above properties, consider a continu-

ous version of the wordcount application. Let’s assume that

at time t0, it runs on the dataset which only contains the

word foo once. At time t1, some new data is added which

also contains foo. If the job only runs on the new data, it

will report foo as appearing once although there are two

occurrences in the whole dataset.

In order to hold the above properties, continuous jobs

need to have the following features. The first one is to

keep the efficiency property by taking only new data into

consideration for the new re-execution, instead of the whole

dataset. The second one is to hold the correctness property

by saving some of the current data or results for the

next execution. It is worth noting that, depending on the

application, only a subset of the results should be carried to

the next execution.

From our analysis, data can be classified into three dif-

ferent categories.

• New data have been added to the system since the last

execution of a continuous job.

• Result data have been produced by a continuous job.

• Carried data have to be saved for subsequent runs.

The notion of carried data is application dependent and

should be decided by the programmer. In our previous

example, the carried data for word-count would be the result

of the previous run, as we will explain in detail in section

IV-D. A natural place to decide which data should be carried

is the reduce phase because it is usually the place producing

the final results of the job. Therefore, the output of the carry

and reduce operations are expected to be similar: both should

produce (key, value) pairs. We propose a modification to

the definition of the MapReduce job which adds a carry

operation during the reduce phase, as shown in Figure 1.

The data generated by this method will be re-injected as an

output of the map phase of the next execution. The rational is

that they were generated by the previous reduce phase from

"mapped" data. Hence, having them go through a mapper

again might just be redundant. In practice, the developer

simply calls a carry function to output (key, value) pairs

from inside the code of the reduce function.

Figure 1: Execution Flow of Continuous Job

The new execution flow of the continuous job is described

in Figure 1. During the first execution, it only scans existing

data. If a carry method is defined, carried data will be

produced and added to the input of reducers of the next

execution. When new data are added, the job is executed

against them and the carried one.

IV. IMPLEMENTATION

In this section, we discuss in detail the implementation

of our continuous job mechanism in cHadoop, a continuous

version of Hadoop. We have to address three different points.

First, we need to store jobs submitted by a user so that they

can be re-executed when necessary. Second, we need the

filesystem to trigger the re-execution of a job whenever new

data is added. Finally, we need to limit the continuous jobs to

new data by using the timestamp mechanism. Therefore, we

introduce two main components, a Continuous Job Tracker,

a Continuous NameNode, which are central to managing and

executing continuous jobs. To help users develop continu-

ous jobs, we provide a ContinuousJob and the associated

ContinuousMapper and ContinuousReducer. A global view

of cHadoop is given in Figure 2.

job3
continuous

job2

continuous
job1

task11 task12 task13

task21 task22 task23

task31 task32 task33

Data Nodes

Local File System

CHadoop Component CommunicationHadoop Component

Job Tracker
Job Tracker Task Tracker

Continuous

F
R

A
M

E
W

O
R

K
A

P
P

L
IC

A
T

IO
N

Continuous Name Node

Figure 2: The cHadoop framework

A. Continuous Job Tracker

As explained in section II-A2, the Job Tracker is respon-

sible for managing the users’ submitted jobs and scheduling

them on the cluster. Once they are finished, they are dis-

carded and cannot be run again unless they are manually

resubmitted. We introduce a new component, the Continuous

Job Tracker, which acts as a proxy to the standard one.

Therefore, instead of submitting continuous jobs to the

Job Tracker, they are submitted to the Continuous Job

Tracker which will resubmit them when necessary. The

whole communication for submitting jobs to the Continuous

Job Tracker or resubmitting them to the Job Tracker are

transparently performed by the framework. They are imple-

mented using public Hadoop APIs, making them easier to

port to new versions.

As in the original Hadoop, non continuous jobs can

be directly submitted to the Job Tracker. By keeping all

the features provided in Hadoop, cHadoop not only brings

new features for enabling continuous jobs but also supports

standard jobs and tools such as the web frontend.

B. Continuous Name Node

In Hadoop, the Name Node is responsible for file sys-

tem management and acts as a single entry point to the

distributed filesystem. In the latest stable Hadoop release

available at the time of writing 1 , there was no public

API to listen to filesystem events such as file creation.

Thus we could not avoid replacing the NameNode with

1Hadoop 1.0.4

our own version to have a ContinuousNameNode which

triggers events for changes in the filesystem. Our version

simply subclasses the NameNode class and overrides the

required methods. When new data are added, an event will

be sent to the Continuous Job Tracker. If there are any

continuous jobs monitoring the path storing the new data,

they will be resubmitted to the cluster. The communication

is implemented using the RPC protocol provided by the

Hadoop IPC/RPC API.

Furthermore, the Continuous Name Node also plays an

important role in data management, which strongly impact

the performance of our framework.

C. Continuous Data Management

In order to limit a continuous job to new data, we

chose to timestamp the data when they are added to the

system. In Hadoop or other MapReduce implementations,

data are split in fixed size blocks which are distributed

among data nodes. Appending data to existing files is at

best experimental and no in-place modification are allowed.

Thus the timestamping can be done at the block level.

More precisely, when data are copied to the filesystem,

all of their data blocks are time-stamped as follows: <

timestamp, block_data1, block_data2, ..., block_datan >.

Therefore, the overhead is expected to be negligible both in

time and space.

Only blocks added to the filesystem after the last execu-

tion time of a continuous job are considered valid and will

be selected as an input for the next execution. Other blocks

are discarded as they do not contain any new data.

To implement such mechanism, we use the standard

InputFormat which breaks the input of a job into InputSplits,

i.e data blocks to be processed by mappers. We provide

a ContinuousInputFormat which only passes valid splits to

mappers using Algorithm 2.

Algorithm 2 Block Selection for Continuous Job j

TSj ← get timestamp of job j

Tj ← get all data blocks of a given input path of job j

Vj ← ∅

for each block b in Tj do

time_stamp ← get timestamp value of b

if time_stamp ≥ TSj then

Vj ← Vj + b

end if

end for

return Vj to job j

D. API example

The design choices made in the implementation make the

code of a continuous job very similar to a standard one. To

write a continuous job, we provide "continuous" versions

of the required Hadoop classes (Job, Mapper, Reducer, ...)

through sub-classing. In most cases, simply changing the

name of the classes and the corresponding imports will be

the only necessary step. In Hadoop, it is standard practice

to not access the filesystem directly but rather rely on the

Context object provided at runtime to write data at the

end of the reduce phase. We provide a ContinuousContext

which exposes a carry method to save data for subsequent

executions. A slightly simplified Java version of the reducer

of the continuous Word-Count is shown in Listing 1.

class WordCountReducer extends ContinuousReducer {

...

void continuousReduce(..., ContinuousContext context){

int sum = 0;

for(IntWritable i : values) {

sum = sum + i.get();

}

context.write(key, sum);

context.carry(key, sum);

}}

Listing 1: Java code for the reducer of continuous Word-

Count in cHadoop

V. CASE STUDIES

A. WordCount and WordCount-N-Count

The first application, WordCount is simply a continuous

version of the famous WordCount job. WordCount-N-Count,

on the other hand, reports words which appear at least N

times in the input file. For WordCount, we simply need to

carry the current result for the next execution. Hence the

carried data are the same as those normally output by the

reducer. For WordCount-N-Count, only words which appear

less than N times need to be carried because new data might

change their number of occurences (Algorithm 3).

Algorithm 3 Reduce function of WordCount-N-Count in

cHadoop

function REDUCE(key,values[])
for v in values do

result ← result + v

end for

if result ≥ N then

EmitOutput (key, result)

else

Carry (key, result)

end if

end function

B. RDF Query

To further validate our proposal, we now consider the

problem of distributed RDF queries [13] on large data

sets. RDF is a data format extensively used in seman-

tic web technologies. Data are represented as triple in

the form subject, predicate, object. A dedicated language,

SPARQL, is used to perform complex queries over them. A

query is usually made of a set of triple patterns and some

filtering and returns only the triples matching all patterns

and filters. We have implemented the query processing in

Hadoop using the algorithm described in [11]. It is based

on two phases: the selection phase and the join phase. The

selection phase filters the RDF data that satisfy at least one

triple pattern and the join phase runs iteratively based on the

number of join variables in the Basic Graph Pattern of the

query [11].

SELECT ?yr

WHERE {

?journal rdf:type bench:Journal.

?journal dc:title "Journal 1 (1940)"^^xsd:string.

?journal dcterms:issued ?yr

}

Listing 2: Query Q1 of SP 2Bench

Figure 2 presents the query Q1 of the benchmark

SP 2Bench [14] which will be considered in our experi-

ments. It consists in three sub-queries joined by a shared

join variable journal. Basically this query returns the

issued year (dcterms : issued) of a publication of type

bench : journal with title Journal 1 (1940). In cHadoop,

this query is implemented as two continuous MapReduce

jobs. The first one, called Selection Job, takes RDF triples

as input and outputs only those matching at least one of the

subqueries. The second job performs a Join on the journal

variable to identify, among the candidate triples, those which

match the whole query. The non matching triples of the

join job are carried for subsequent executions. The overall

execution flow of the query is presented in Figure 3.

Figure 3: Execution flow of query Q1 in cHadoop

VI. EXPERIMENT RESULTS

In this section, we report the results of executing three

applications using cHadoop on two clusters of different

sizes. All results are compared to a similar application

implemented using standard Hadoop.

A. Experimental Setup

We have run our experiments on two clusters, namely

small and large to demonstrate the use of the cHadoop

framework and its benefits at different scales. The small

testbed is a 5 nodes cluster and the large one a 40 nodes clus-

ter. Each node is equipped with two Intel 2.26Ghz processors

(4cores/processor), 32GB of RAM and 510GB of storage

space. The nodes are connected in a mesh topology with

10 gigabit Ethernet links. The framework was configured as

follows: the masters (ContinuousJobTracker, JobTracker and

ContinuousNameNode) were running on the same physical

machine, and the clients, i.e TaskTracker and DataNode,

were distributed among the 5 and 40 physical machines in

the small and large testbed, respectively. From Hadoop point

of view, the small (resp. large) cluster is configured to have

a total 40 map and 20 reduce slots (resp. 320 map and 160

reduce slots). Finally, Hadoop 1.0.4 and Java 1.7 are used

in our experiments.

The scenario for all experiments is as follows. An ap-

plication, implemented as a continuous job, is submitted to

the system which initially contains no data. More precisely,

the application takes (subscribes to) an empty folder in

the file system as its input. We then add new data to this

folder which triggers the execution. This step is repeated for

some iterations to increase the total amount of data in the

filesystem. For the standard approach, after inserting a new

dataset, the jobs need to be resubmitted manually.

For the applications WordCount and WordCount-N-Count,

we use the benchmark [7]. At each iteration, 20GB of data,

containing approximately 45 million words, are inserted. For

the RDF query experiment, we use SP2Bench [14] and add

3GB of data containing 20 million triples at each iteration.

In all experiments, the number of reducers was set to the

maximal configuration of the Hadoop cluster.

For all experiments we report the total execution time and

the speedup achieved by cHadoop over standard Hadoop.

B. Experiment Results

Figure 4 shows the execution time and the speedup experi-

enced on the small cluster for our three test applications. For

the first iteration, there is no significant difference between

standard Hadoop and cHadoop, showing that the overhead

introduced by our framework is negligible. However, as

the dataset keeps increasing, our approach starts to outper-

form the original one because each subsequent execution

processes only a small fraction of the data (the new and

carried one). The speedup of our approach increases with the

number of iteration because its execution times only slowly

increases with the amount of data.

Using the same dataset, we have ran the experiments

on the large cluster (Figure 5). In this situation, the large

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9
 0

 1

 2

 3

 4

 5

E
x
e
c
u
ti
o
n
 t

im
e
 (

th
o
u
s
a
n
d
 s

e
c
o
n
d
)

S
p
e
e
d
u
p
 (

ti
m

e
s
 X

)

Iteration

Hadoop cHadoop Speedup

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6 7 8 9
 0

 1

 2

 3

 4

 5

 6

 7

E
x
e
c
u
ti
o
n
 t

im
e
 (

th
o
u
s
a
n
d
 s

e
c
o
n
d
)

S
p
e
e
d
u
p
 (

ti
m

e
s
 X

)

Iteration

Hadoop cHadoop Speedup

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 3 4 5 6 7 8 9
 0

 1

 2

 3

 4

 5

 6

 7

 8

E
x
e
c
u
ti
o
n
 t

im
e
 (

th
o
u
s
a
n
d
 s

e
c
o
n
d
)

S
p
e
e
d
u
p
 (

ti
m

e
s
 X

)

Iteration

Hadoop cHadoop Speedup

Figure 4: Experiments on small cluster. Left: WordCount. Middle: WordCount-N-Count, N = 20. Right: RDF Query.

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4 5 6 7 8 9
 0

 0.5

 1

 1.5

 2

 2.5

 3

E
x
e
c
u
ti
o
n
 t
im

e
 (

h
u
n
d
re

d
 s

e
c
o
n
d
)

S
p
e
e
d
u

p
 (

ti
m

e
s
 X

)

Iteration

Hadoop cHadoop Speedup

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 3 4 5 6 7 8 9
 0

 0.5

 1

 1.5

 2

 2.5

 3

E
x
e
c
u
ti
o
n
 t
im

e
 (

h
u
n
d
re

d
 s

e
c
o
n
d
)

S
p
e
e
d
u

p
 (

ti
m

e
s
 X

)

Iteration

Hadoop cHadoop Speedup

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6 7 8 9
 0

 1

 2

 3

 4

 5

E
x
e
c
u
ti
o
n
 t
im

e
 (

h
u
n
d
re

d
 s

e
c
o
n
d
)

S
p
e
e
d
u

p
 (

ti
m

e
s
 X

)

Iteration

Hadoop cHadoop Speedup

Figure 5: Experiments on large cluster Left: WordCount. Middle: WordCount-N-Count, N = 20. Right: RDF Query.

number of computing resources greatly reduces the amount

of data to be processed on each node, hence lowering

the impact of the growing dataset. Indeed for WordCount

and WordCount-N-Count, we only achieve half the speedup

of the small cluster. The RDF experiment maintains a

better speedup because of the two phases: the join phase

does not manipulate a large amount of data but still takes

significant execution time because of overhead in Hadoop.

This experiment shows that having continuous jobs on small

dataset, compared to the cluster size, still provides significant

performance improvements.

The obtained speedup can be explained by the much lower

number of mappers started, as shown in Figure 6. In Hadoop,

the number of mappers is dependent on the block size of

the distributed filesystem and hence, the data input size. For

the original job, the number of mappers increases with the

size of the whole dataset since it simply takes the whole

data set as its input. In contrast, the continuous job only

needs to process new and carried data, greatly reducing

the overhead in computation during its re-execution. More

precisely, for example, in the WordCount application, carried

data are increased by 0.6 GB on average by each iteration.

However, since they have already been processed, they are

in a much more compact form and requires less resources

when re-executing. Similarly, in WordCount-N-Count, the

size of carried data is about 1.7 GB after each iteration. This

is an important benefit from our approach: the number of

computing resources needed for executing continuous jobs

is reduced compared to a standard job. This allows for better

sharing of the Hadoop cluster among many users.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a framework to support

continuous MapReduce applications frameworks. Jobs reg-

istered by the user are automatically re-executed when new

data is added to the system. Since running the job only on

new data can lead to incorrect results so we have introduced

the notion of carried data. These data are produced by a

carry function in the reduce phase of continuous job and

are automatically added as an input for the subsequent run.

We have provided an implementation in Hadoop which does

not require modifications to the original framework and

is thus easily ported to new versions of the library. New

data are identified using a timestamping mechanism, totally

transparent to the user. The provided API is very close

to the standard one, making it very easy to turn existing

jobs into continuous one. Using two standard MapReduce

applications and a non-trivial example of SPARQL queries,

we have highlighted the good performance and the low

overhead of our implementation. A limitation of the current

implementation is the latency of the job re-execution. Since

we strictly follow the standard Hadoop workflow, restarting

a job on our cluster can take up to 20 seconds, which is

very inefficient especially when the set of new and carried

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8 9
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

#
M

a
p
p
e
rs

D
a
ta

 (
G

B
)

Iteration

Hadoop cHadoop Data

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 3 4 5 6 7 8 9
 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 30

#
M

a
p
p
e
rs

D
a
ta

 (
G

B
)

Iteration

Hadoop cHadoop Data

Figure 6: Impact of Continuous Data Management. Left: Number of mappers in both WordCount and WordCount-N-Count.

Right: Number of mappers of the Selection Job in RDF Query.

data is small. We plan to investigate this in future work.

VIII. ACKNOWLEDGEMENT

The authors would like to thank Clément Agarini, An-

thony Damiano, Ludwig Poggi and Justine Rochas for their

work on the implementation. Experiments presented in this

paper were carried out using the Grid’5000 experimental

testbed, being developed under the INRIA ALADDIN de-

velopment action with support from CNRS, RENATER and

several Universities as well as other funding bodies (see

https://www.grid5000.fr).

REFERENCES

[1] N. Backman, K. Pattabiraman, and U. Cetintemel. C-mr:
A continuous-mapreduce processing model for low-latency
stream processing on multi-core architectures. Technical
Report Technical Report CS-10-01, Department of Computer
Science, Brown University, 2010.

[2] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D.
Ernst. Haloop: efficient iterative data processing on large
clusters. Proceedings of the VLDB Endowment, 3(1-2):285–
296, September 2010.

[3] Qiming Chen and Meichun Hsu. Continuous mapreduce
for in-db stream analytics. In Proceedings of the 2010
International Conference on On The Move to Meaningful
Internet Systems, OTM, pages 16–34. Springer-Verlag, 2010.

[4] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Heller-
stein, Khaled Elmeleegy, and Russell Sears. Mapreduce
online. In Proceedings of the 7th USENIX Conference on
Networked Systems Design and Implementation, NSDI, pages
21–21. USENIX Association, 2010.

[5] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified
data processing on large clusters. In Proceedings of the 6th
conference on Symposium on Operating Systems Design &
Implementation, pages 10–10, 2004.

[6] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gu-
narathne, Seung-Hee Bae, Judy Qiu, and Geoffrey Fox.
Twister: a runtime for iterative mapreduce. In Proceedings of
the 19th ACM International Symposium on High Performance
Distributed Computing, HPDC, pages 810–818. ACM, 2010.

[7] Mithuna Thottethodi Faraz Ahmad, Seyong Lee and T.N.
Vijaykumar. Puma: Purdue mapreduce benchmarks suite.
Technical report, Purdue University, 2012.

[8] Reza Farivar, Anand Raghunathan, Srimat Chakradhar,
Harshit Kharbanda, and Roy H. Campbell. Pic: Partitioned
iterative convergence for clusters. In Proceedings of the 2012
International Conference on Cluster Computing, CLUSTER,
pages 391–401. IEEE, 2012.

[9] Apache Software Foundation. Apache hadoop.

[10] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The google file system. SIGOPS Operating System Review,
37:29–43, 2003.

[11] Jaeseok Myung, Jongheum Yeon, and Sang-goo Lee. Sparql
basic graph pattern processing with iterative mapreduce. In
Proceedings of the 2010 Workshop on Massive Data Analytics
on the Cloud, MDAC, pages 6:1–6:6. ACM, 2010.

[12] Christopher Olston, Greg Chiou, Laukik Chitnis, Francis
Liu, Yiping Han, Mattias Larsson, Andreas Neumann, Vel-
lanki B.N. Rao, Vijayanand Sankarasubramanian, Siddharth
Seth, Chao Tian, Topher ZiCornell, and Xiaodan Wang. Nova:
continuous pig/hadoop workflows. In Proceedings of the 2011
International Conference on Management of Data, SIGMOD,
pages 1081–1090. ACM, 2011.

[13] Eric Prud’hommeaux and Andy Seaborne. Sparql query
language for rdf (working draft). Technical report, W3C,
2007.

[14] Michael Schmidt, Thomas Hornung, Michael Meier,

Christoph Pinkel, and Georg Lausen. Sp2bench: A sparql
performance benchmark. In Semantic Web Information
Management, pages 371–393. 2009.

