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INTRODUCTION

Linear time-frequency and time-scale analysis are standard tools for the study of nonstationnary signals, or deterministic signals with varying frequency content. In particular, multicomponent signals, ie superpositions of amplitude-and frequency modulated waves (AM-FM), are accurately analyzed by the short-time Fourier transform (STFT) [START_REF] Gabor | Theory of communication. part 1: The analysis of information[END_REF] or the continuous wavelet transform (CWT) [START_REF] Grossmann | Decomposition of Hardy functions into square integrable wavelets of constant shape[END_REF]. It is well known that both transforms for such signals draw strips in the time-frequency (TF) or time-scale (TS) plane, centered at the ridges corresponding to the instantaneous frequencies [START_REF] Delprat | Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies[END_REF].

The Synchrosqueezing transform, introduced in [START_REF] Daubechies | A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models[END_REF], is a kind of reassignment method [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF] that aims to sharpen a timescale representation, while remaining invertible. This method received a renewed interest in 2011 with the publication of a strong theoretical result concerning the decomposition of multicomponent signals with Synchrosqueezing [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decompositionlike tool[END_REF]. A wide range of applications have been developped since, for instance in [START_REF] Thakur | The synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications[END_REF][START_REF] Franco | Synchrosqueezing to investigate cardio-respiratory interactions within simulated volumetric signals[END_REF][START_REF] Iatsenko | Evolution of cardiorespiratory interactions with age[END_REF]. In this work, we will focus on the theoretical fundations of the method.

The SST was indeed originally introduced in the context of wavelet analysis, and it has not been entirely adapted to the STFT. For example, [START_REF] Thakur | Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples[END_REF] proposes a SST-like decomposition based on the STFT, that comes with an approximation result. But this transform does not allow the reconstruction of the modes, which is yet one of the main characterisstics of the original SST. More problematic, the assumptions on the modes are global, whereas the STFT and the CWT are local transforms. A more natural extension has been proposed and used for example in [START_REF] Auger | Time-frequency reassignment and synchrosqueezing: An overview[END_REF], but without any theoretical considerations.

This paper addresses this issue by defining properly and Fourier-based SST (FSST), and providing an approximation theorem similar to [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decompositionlike tool[END_REF], but adapted to the case of the STFT. Besides, a substantial part of this paper will be devoted to a comparison between wavelets and STFT, both on a theoretical and a numerical perspective. To this end, we start by defining the STFT and CWT, then we introduce the FSST and state the approximation result, underlining the differences with the CWT-based SST. Finally, these differences are illustrated and demonstrated though numerical experiments on synthetic multicomponent signals.

SHORT-TIME FOURIER TRANSFORM AND MULTICOMPONENT SIGNALS

In the paper we denote by f (ν) the Fourier transform of function f with the following normalization:

f (ν) = R f (x)e 2iπνx dx. (1) 
The short-time Fourier transform (STFT) is a local version, obtained through the use of a sliding window g:

V f (η, t) = R f (τ )g(τ -t)e -2iπη(τ -t) dτ. (2) 
The representation of |V f (η, t)| 2 in the time-frequency plane is called the spectrogram of signal f . Let us also recall the wavelet transform W f , which uses an admissible wavelet ψ ∈

L 2 (R) (satisfying 0 < C ψ = ∞ 0 | ψ(ξ)| 2 dξ ξ < ∞)
, and is defined for anyt time t and scale a > 0 by:

W f (a, t) = 1 a R f (τ )ψ τ -t a * dτ. (3) 
We now want to study the STFT of a multicomponent signal of the form

f (t) = K k=1 f k (t) = K k=1 A k (t)e 2iπφ(t) . (4) 
If we assume slow variations on the instantaneous amplitudes A k and frequencies φ ′ k , we can write the following approximation, wich amounts to approximate f by a sum of pure waves:

f (τ ) ≈ K k=1 A k (t)e 2iπ[φ(t)+φ ′ (t)(τ -t)] . (5) 
The corresponding approximation for the STFT then writes:

V f (η, t) ≈ K k=1 f k (t)ĝ(η -φ ′ k (t)). (6) 
This shows that the representation of a multicomponent signal in the time-frequency plane is concentrated around the socalled ridges, defined by η = φ ′ k (t). If the frequencies φ ′ k are separated enough compared to the support of ĝ, each mode occupies a distinct domain of the TF plane, allowing their detection, separation and reconstruction.

FOURIER-BASED SYNCHROSQUEEZING

The aim of the synchrosqueezing is twofold : first, to provide a concentrated representation of multicomponent signals in the time-frequency plane; second, to give a decomposition method, that allows to separate and demodulate the different modes. A major theoretical result, originally stated in [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decompositionlike tool[END_REF] in the wavelet context, shows its usefulness for separated lowmodulated multicomponent signals. This sections defines the STFT-based synchrosqueezing (FSST), and then extends the approximation result of [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decompositionlike tool[END_REF] to the case of the STFT. We will pay a particular attention to the differences between the FSST and the wavelet-based synchrosqueezing (WSST).

Motivation, definition

Starting from the TFCT V f , the SST moves the coefficients V f (η, t) according to the map (η, t) → (ω f (η, t), t), where ωf is the local instantaneous frequency defined by

ωf (η, t) = 1 2π ∂ t arg V f (η, t). ( 7 
)
This operator is simply the instantaneous frequency of the signal at time t, filtered at frequency η. We will see that it is indeed a good local approximation of the instantaneous frequencies φ ′ k (t). The second key ingredient of the synchrosqueezing is the following "vertical" reconstruction formula, which stands in L 2 (R) provided that the window g is continuous and does not vanish at 0:

f (t) = 1 g(0) R V f (η, t) dη. (8) 
The synchrosqueezing consists in resticting the integration domain in equation ( 8) to the interval where ωf (η, t) = ω, by formally writing:

T f (ω, t) = 1 g(0) R V f (η, t)δ (ω -ωf (η, t)) dη. ( 9 
)
The next section defines more mathematically the SST, and extends the approximation theorem of [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decompositionlike tool[END_REF].

An approximation result

Definition 3.1. Let ε > 0 and ∆ ∈ (0, 1). The set B ∆,ε of multicomponent signals with modulation ε and separation ∆ is the set of all signals

f (t) = K k=1 f k (t) where • the f k (t) = A k (t)e 2iπφ k (t) satisfy: A k ∈ C 1 (R) L ∞ (R), φ k ∈ C 2 (R), sup t φ ′ k (t) < ∞ and for all t, A k (t) > 0, φ ′ k (t) > 0, |A ′ k (t)| ≤ ε and |φ ′′ k (t)| ≤ ε. • the f k are separated with resolution ∆, ie for all k ∈ {1, • • • , K -1} and all t, φ ′ k+1 (t) -φ ′ k (t) > 2∆. (10) 
Definition 3.2. Let ρ ∈ D(R) be such that ρ = 1, and consider γ, δ > 0, and f ∈ B ∆,ε , the STFT-based synchrosqueezing (SST) of f with threshold γ and accuracy δ is defined by:

T δ,γ f (ω, t) = 1 g(0) |V f (η,t)|>γ V f (η, t) 1 δ ρ ω -ωf (η, t) δ dη. (11) 
If we make δ and γ tend to zero, we formally obtain the usual signal processing definition (9). Theorem 3.1. Consider f ∈ B ∆,ε , and ν ∈ (0, 1 2 ). Let g ∈ S(R) be such that supp g ∈ [-∆, ∆], and ρ ∈ D(R) satisfying ρ = 1. Then, if ε is small enough, the following holds:

• |V f (η, t)| > ε ν only when there exists k ∈ {1 • • • , K} such that (η, t) ∈ Z k := {(η, t) / |η -φ ′ k (t)| < ∆}. • For all k ∈ {1 • • • , K} and all (η, t) ∈ Z k such that |V f (η, t)| > ε ν , we have |ω f (η, t) -φ ′ k (t)| ≤ ε ν . (12) 
• For all k ∈ {1 • • • , K}, there exists a constant C such that for all t ∈ R,

lim δ→0 |ω-φ ′ k (t)|<ε ν T δ,γ f (ω, t) dω -f k (t) ≤ Cε ν . (13) 
This theorem gives a strong approximation result, since is ensures that the non-zero coefficients of the SST are localized around the ridges, and that a reconstruction of the modes is easily obtained from the concentrated representation. The proof of this result is very similar to [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decompositionlike tool[END_REF], and will not be detailed here. We will just give the main steps leading to the results, referring the reader to [START_REF] Oberlin | Analyse de signaux multicomposantes[END_REF], appendix A for a complete and detailed proof.

Sketch of the proof. The proof starts by approximating V f and ωf using a Taylor expansion. One obtains:

V f (η, t) - K k=1 f k (t)ĝ(η -φ ′ k (t)) ≤ εΓ 1 (t), (14) 
where

Γ 1 (t) = KI 1 +πI 2 K k=1 A k (t), I n = R |x| n |g(x)| dx. ∂ t V f (η, t) -2iπ K k=1 f k (t)φ ′ k (t)ĝ(η -φ ′ k (t)) ≤ ε (Γ 2 (t) + 2π|η|Γ 1 ) , (15) 
where

Γ 2 (t) = KI ′ 1 +πI ′ 2 K k=1 A k (t), I ′ n = R |x| n |g ′ (x)| dx. Then we show that, if ε satisfies ε ≤ Γ 1 (t) -1 1-ν , (16) 
then for any 1 ≤ k ≤ K and (η, t) such that |η -

φ ′ k (t)| < ∆ and |V f (η, t)| > ε ν , |ω f (η, t) -φ ′ k (t)| ≤ (2φ ′ k (t) + ∆)Γ 1 (t) + 1 2π Γ 2 (t) ε 1-ν .
(17) The end of the proof needs the following conditions on ε:

ε ν < ∆ and ε < (2φ ′ k (t) + ∆)Γ 1 (t) + 1 2π Γ 2 (t) -1 1-2ν , (18 
) and uses mainly the Fubini and dominated convergence theorems.

Relation with wavelet-based Synchrosqueezing

We will not define the wavelet-based synchrosqueezing here, but only underline the differences. They concern two different aspects :

• The assumptions on the modulation for the waveletbased SST depends on the instantaneous frequency, ie they writes

|A ′ k (t)| ≤ εφ ′ k (t) and |φ ′′ k (t)| ≤ εφ ′ k (t).
• The frequency separation between the components is logarithmic, and writes

φ ′ k+1 (t)-φ ′ k (t) φ ′ k+1 (t)+φ ′ k (t) > ∆,
where the wavelet is supposed to satisfy supp ψ ⊂ [1-∆, 1+∆].

NUMERICAL RESULTS

The following numerical experiments use the classical logarithmic discretization of the scales of the CWT. We will use the Gaussian window and the complex Morlet wavelet, depending on a parameter σ and defined in the Fourier domain by:

ĝ(ν) = σ 1 2 e -πσ 2 ν 2 and ψ(ν) = σ 1 2 e -πσ 2 (1-ν) 2 .
The Matlab code used to create all the figures of the paper can be downloaded from http://www-ljk.imag.fr/ membres/Thomas.Oberlin/ic14.tar.gz.

Limiting modulations

Let us start by determining which kind of signals are adapted to which method, either wavelets or the STFT. The question is : considering a fixed ε > 0, what are the signals that satisfies the assumptions? The pure waves obviously satisfy the assumptions for either the FSST or the WSST, and any ε.

To simplify, we will first consider only single modes without AM, which write h(t) = e 2iπφ(t) . We are particularly interesting in the strongest possible modulation, ie the phases φ satisfying |φ ′′ (t)| = ε for the FSST, or |φ ′′ (t)| = εφ ′ (t) for the WSST. One easily sees that the first kind of modes are linear chirp, ie they have a quadratic phase φ with φ ′′ = ε, whereas the second ones are exponential chirp whose phase writes h(t) = e 2iπCe εt .

To illustrate this, we draw on Figure 1 both transforms for a linear chirp with phase φ(t) = 10t + 100t 2 . It is clear that the quality of the representation given by the FSST remains constant along the time. For the WSST however, the representation is very concentrated around t = 1, but it is of poor quality for low t. This is because the quality of the representation depends on φ ′ (t). Then, we show on Figure 2 test, but for an exponential chirp whose phase is φ(t) = 10e 3t . As we expected, the FSST provides a sharp representation for low t, but does not manage to handle the high frequency modulation φ ′′ (t) for higher times. Interestingly, the WSST does not provide a representation with constant quality, but seems to be more concentrated for high t. Actually, the result in [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decompositionlike tool[END_REF] shows that the error for this kind of signal remains globally constant. But since the scales are discretized in a logarithmic way, the representation is sharper for high frequencies. In order to obtain a representation with constant quality, the mode must satisfy a constant ration φ ′′ /φ ′2 . To check this numerically, we present the same test for such a signal, called an hyperbolic chirp, whose phase is φ(t) = -50 * log(1.02 -t). One makes sure easily that the corresponding WSST remains sharp whatever the instantaneous frequency. 

separation vs localization

Let us here discuss the role of parameter σ, ie the size of the window or wavelet. From theorem 3.1 and the separation condition [START_REF] Thakur | Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples[END_REF], it is clear that supp g should be small enough, which requires a parameter σ sufficiently high. Nevertheless, when detailing the error term in the constant C, one shows that it depends on the positive moments R x n |g(x)| dx, thus σ should be small enough to ensure a good reassignment step. This phenomenon is illustrated on Figure 4, where one displays the FSST for a sum of polynomial chirps, using two different sizes of window g. For the small value σ = (left), one gets a sharp representation but interferences, and the contrary is observed for a high σ. The same kind of phenomenon is observed on Figure 5, but in the wavelet case. This shows that σ must be chosen carefully to achieve a tradeoff between localization and separation. When one has only little a priori information on the signal, a convenient way to chose between the Fourier-and wavelet-based synchrosqueezing is the frequency range of the signal. The STFT can indeed handle a wide range of modulations at low frequency, and the WSST will behave satisfactorily at high frequencies in most cases.

CONCLUSION

This paper gave a natural extension of the Synchrosqueezing transform in the setting of the short-time Fourier transform, extending the approximation result shown in [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decompositionlike tool[END_REF]. We insisted on the main differences between the wavelet-based and the Fourier-based SST, namely the frequency separation and the low-modulations assumptions. This allowed us to determine which class of modulations are analyzed best with wich transform. We showed that the FSST is adapted to linear or sublinear modulations, whereas the WSST can deal with exponential and hyperbolic chirps. This results have been illustrated and confirmed through numerical examples, where we also put the emphasis on the size of the window or wavelet. We also showed that a tradeoff is needed between localization and separation, that can not be satisfactorily solved for some highly modulated multicomponent signals containing close instantaneous frequencies. In this regard, we should attempt in future works to extend the synchrosqueezing to strong modulations, that are already handled in the original reassignment method, as partially done by [START_REF] Li | Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform[END_REF][START_REF] Wang | Matching demodulation transform and synchrosqueezing in time-frequency analysis[END_REF]. Another interesting perspective to keep in mind is to use adaptive window's sizes σ(t), as done for instance in [START_REF] Stankovic | Algorithm for the instantaneous frequency estimation using time-frequency distributions with adaptive window width[END_REF][START_REF] Xiao | Multitaper time-frequency reassignment for nonstationary spectrum estimation and chirp enhancement[END_REF].

Fig. 1 .

 1 Fig. 1. Comparison of the methods on a linear chirp with a constant frequency modulation φ ′′ . Left: the FSST. Right: the WSST.
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 2 Fig. 2. Comparison of the methods on an exponential chirp with constant ratio φ ′′ /φ ′ . Left: the FSST. Right: the WSST.
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 3 Fig. 3. Comparison of the methods on an hyperbolic chirp with constant ratio φ ′′ /φ ′2 . Left: the FSST. Right: the WSST.
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 4 Fig. 4. FSST of s sum of polynomial chirps, using two different windows : σ = 0.02 (left) and σ = 0.04 (right).
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 5 Fig. 5. WSST of s sum of highly modulated chirps, using two different windows : σ = 2 (left) and σ = 5 (right).