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ABSTRACT

The short-time Fourier transform (STFT) and continuous

wavelet transform (CWT) are intensively used to analyze and

process multicomponent signals, ie superpositions of mod-

ulated waves. The synchrosqueezing is a post-processing

method which circumvents the uncertainty relations, inherent

to these linear transforms, by reassigning the coefficients in

scale or frequency. Originally introduced in the setting of

the continuous wavelet transform, it provides a sharp, con-

centrated representation, while remaining invertible. This

technique received a renewed interest with the recent publi-

cation of an approximation result, which provides guarantees

for the decomposition of a multicomponent signal. This paper

adapts the formulation of the synchrosqueezing to the STFT,

and states a similar theoretical result. The emphasis is put on

the differences with the CWT-based synchrosqueezing, and

all the content is illustrated through numerical experiments.

Index Terms— multicomponent signals, short-time Fourier

transform, ridge analysis, synchrosqueezing, reassignment

1. INTRODUCTION

Linear time-frequency and time-scale analysis are standard

tools for the study of nonstationnary signals, or deterministic

signals with varying frequency content. In particular, multi-

component signals, ie superpositions of amplitude- and fre-

quency modulated waves (AM–FM), are accurately analyzed

by the short-time Fourier transform (STFT) [1] or the contin-

uous wavelet transform (CWT) [2]. It is well known that both

transforms for such signals draw strips in the time-frequency

(TF) or time-scale (TS) plane, centered at the ridges corre-

sponding to the instantaneous frequencies [3].

The Synchrosqueezing transform, introduced in [4], is a

kind of reassignment method [5] that aims to sharpen a time-

scale representation, while remaining invertible. This method

received a renewed interest in 2011 with the publication

of a strong theoretical result concerning the decomposition

of multicomponent signals with Synchrosqueezing [6]. A

wide range of applications have been developped since, for

instance in [7, 8, 9]. In this work, we will focus on the

theoretical fundations of the method.

The SST was indeed originally introduced in the context

of wavelet analysis, and it has not been entirely adapted to

the STFT. For example, [10] proposes a SST-like decompo-

sition based on the STFT, that comes with an approximation

result. But this transform does not allow the reconstruction

of the modes, which is yet one of the main characterisstics of

the original SST. More problematic, the assumptions on the

modes are global, whereas the STFT and the CWT are local

transforms. A more natural extension has been proposed and

used for example in [11], but without any theoretical consid-

erations.

This paper addresses this issue by defining properly and

Fourier-based SST (FSST), and providing an approximation

theorem similar to [6], but adapted to the case of the STFT.

Besides, a substantial part of this paper will be devoted to a

comparison between wavelets and STFT, both on a theoret-

ical and a numerical perspective. To this end, we start by

defining the STFT and CWT, then we introduce the FSST

and state the approximation result, underlining the differences

with the CWT-based SST. Finally, these differences are il-

lustrated and demonstrated though numerical experiments on

synthetic multicomponent signals.

2. SHORT-TIME FOURIER TRANSFORM AND

MULTICOMPONENT SIGNALS

In the paper we denote by f̂(ν) the Fourier transform of func-

tion f with the following normalization:

f̂(ν) =

∫

R

f(x)e2iπνx dx. (1)

The short-time Fourier transform (STFT) is a local version,

obtained through the use of a sliding window g:

Vf (η, t) =

∫

R

f(τ)g(τ − t)e−2iπη(τ−t) dτ. (2)

The representation of |Vf (η, t)|
2 in the time-frequency plane

is called the spectrogram of signal f . Let us also recall the

wavelet transformWf , which uses an admissible wavelet ψ ∈

L2(R) (satisfying 0 < Cψ =
∫∞

0
|ψ̂(ξ)|2 dξ

ξ
< ∞), and is

defined for anyt time t and scale a > 0 by:

Wf (a, t) =
1

a

∫

R

f(τ)ψ

(

τ − t

a

)∗

dτ. (3)



We now want to study the STFT of a multicomponent sig-

nal of the form

f(t) =

K
∑

k=1

fk(t) =

K
∑

k=1

Ak(t)e
2iπφ(t). (4)

If we assume slow variations on the instantaneous amplitudes

Ak and frequencies φ′k, we can write the following approx-

imation, wich amounts to approximate f by a sum of pure

waves:

f(τ) ≈

K
∑

k=1

Ak(t)e
2iπ[φ(t)+φ′(t)(τ−t)]. (5)

The corresponding approximation for the STFT then writes:

Vf (η, t) ≈
K
∑

k=1

fk(t)ĝ(η − φ′k(t)). (6)

This shows that the representation of a multicomponent sig-

nal in the time-frequency plane is concentrated around the so-

called ridges, defined by η = φ′k(t). If the frequencies φ′k are

separated enough compared to the support of ĝ, each mode

occupies a distinct domain of the TF plane, allowing their de-

tection, separation and reconstruction.

3. FOURIER-BASED SYNCHROSQUEEZING

The aim of the synchrosqueezing is twofold : first, to provide

a concentrated representation of multicomponent signals in

the time-frequency plane; second, to give a decomposition

method, that allows to separate and demodulate the different

modes. A major theoretical result, originally stated in [6] in

the wavelet context, shows its usefulness for separated low-

modulated multicomponent signals. This sections defines the

STFT-based synchrosqueezing (FSST), and then extends the

approximation result of [6] to the case of the STFT. We will

pay a particular attention to the differences between the FSST

and the wavelet-based synchrosqueezing (WSST).

3.1. Motivation, definition

Starting from the TFCT Vf , the SST moves the coefficients

Vf (η, t) according to the map (η, t) 7→ (ω̂f (η, t), t), where

ω̂f is the local instantaneous frequency defined by

ω̂f (η, t) =
1

2π
∂t arg Vf (η, t). (7)

This operator is simply the instantaneous frequency of the

signal at time t, filtered at frequency η. We will see that it

is indeed a good local approximation of the instantaneous

frequencies φ′k(t). The second key ingredient of the syn-

chrosqueezing is the following “vertical” reconstruction for-

mula, which stands in L2(R) provided that the window g is

continuous and does not vanish at 0:

f(t) =
1

g(0)

∫

R

Vf (η, t) dη. (8)

The synchrosqueezing consists in resticting the integra-

tion domain in equation (8) to the interval where ω̂f (η, t) =
ω, by formally writing:

Tf (ω, t) =
1

g(0)

∫

R

Vf (η, t)δ (ω − ω̂f (η, t)) dη. (9)

The next section defines more mathematically the SST, and

extends the approximation theorem of [6].

3.2. An approximation result

Definition 3.1. Let ε > 0 and ∆ ∈ (0, 1). The set B∆,ε of

multicomponent signals with modulation ε and separation ∆
is the set of all signals f(t) =

∑K
k=1 fk(t) where

• the fk(t) = Ak(t)e
2iπφk(t) satisfy: Ak ∈ C1(R)

⋂

L∞(R),
φk ∈ C2(R), supt φ

′
k(t) <∞ and for all t, Ak(t) > 0,

φ′k(t) > 0, |A′
k(t)| ≤ ε and |φ′′k(t)| ≤ ε.

• the fk are separated with resolution ∆, ie for all k ∈
{1, · · · ,K − 1} and all t,

φ′k+1(t)− φ′k(t) > 2∆. (10)

Definition 3.2. Let ρ ∈ D(R) be such that
∫

ρ = 1, and con-

sider γ, δ > 0, and f ∈ B∆,ε, the STFT-based synchrosqueez-

ing (SST) of f with threshold γ and accuracy δ is defined by:

T δ,γf (ω, t) =
1

g(0)

∫

|Vf (η,t)|>γ

Vf (η, t)
1

δ
ρ

(

ω − ω̂f (η, t)

δ

)

dη.

(11)

If we make δ and γ tend to zero, we formally obtain the

usual signal processing definition (9).

Theorem 3.1. Consider f ∈ B∆,ε, and ν ∈ (0, 12 ). Let

g ∈ S(R) be such that supp g ∈ [−∆,∆], and ρ ∈ D(R)
satisfying

∫

ρ = 1. Then, if ε is small enough, the following

holds:

• |Vf (η, t)| > εν only when there exists k ∈ {1 · · · ,K}
such that (η, t) ∈ Zk := {(η, t) / |η − φ′k(t)| < ∆}.

• For all k ∈ {1 · · · ,K} and all (η, t) ∈ Zk such that

|Vf (η, t)| > εν , we have

|ω̂f (η, t)− φ′k(t)| ≤ εν . (12)

• For all k ∈ {1 · · · ,K}, there exists a constant C such

that for all t ∈ R,

∣

∣

∣

∣

∣

lim
δ→0

(

∫

|ω−φ′

k
(t)|<εν

T δ,γf (ω, t) dω

)

− fk(t)

∣

∣

∣

∣

∣

≤ Cεν .

(13)



This theorem gives a strong approximation result, since

is ensures that the non-zero coefficients of the SST are local-

ized around the ridges, and that a reconstruction of the modes

is easily obtained from the concentrated representation. The

proof of this result is very similar to [6], and will not be de-

tailed here. We will just give the main steps leading to the

results, referring the reader to [12], appendix A for a com-

plete and detailed proof.

Sketch of the proof. The proof starts by approximating Vf
and ω̂f using a Taylor expansion. One obtains:

∣

∣

∣

∣

∣

Vf (η, t)−

K
∑

k=1

fk(t)ĝ(η − φ′k(t))

∣

∣

∣

∣

∣

≤ εΓ1(t), (14)

where Γ1(t) = KI1+πI2
∑K
k=1Ak(t), In =

∫

R
|x|n|g(x)| dx.

∣

∣

∣

∣

∣

∂tVf (η, t)− 2iπ
K
∑

k=1

fk(t)φ
′
k(t)ĝ(η − φ′k(t))

∣

∣

∣

∣

∣

≤ ε (Γ2(t) + 2π|η|Γ1) ,

(15)

where Γ2(t) = KI ′1+πI
′
2

∑K
k=1Ak(t), I

′
n =

∫

R
|x|n|g′(x)| dx.

Then we show that, if ε satisfies

ε ≤ Γ1(t)
−1

1−ν , (16)

then for any 1 ≤ k ≤ K and (η, t) such that |η − φ′k(t)| < ∆
and |Vf (η, t)| > εν ,

|ω̂f (η, t)−φ
′
k(t)| ≤

[

(2φ′k(t) + ∆)Γ1(t) +
1

2π
Γ2(t)

]

ε1−ν .

(17)

The end of the proof needs the following conditions on ε:

εν < ∆ and ε <

[

(2φ′k(t) + ∆)Γ1(t) +
1

2π
Γ2(t)

]

−1

1−2ν

,

(18)

and uses mainly the Fubini and dominated convergence theo-

rems.

3.3. Relation with wavelet-based Synchrosqueezing

We will not define the wavelet-based synchrosqueezing here,

but only underline the differences. They concern two different

aspects :

• The assumptions on the modulation for the wavelet-

based SST depends on the instantaneous frequency, ie

they writes |A′
k(t)| ≤ εφ′k(t) and |φ′′k(t)| ≤ εφ′k(t).

• The frequency separation between the components is

logarithmic, and writes
φ′

k+1(t)−φ
′

k(t)

φ′

k+1
(t)+φ′

k
(t) > ∆, where the

wavelet is supposed to satisfy supp ψ̂ ⊂ [1−∆, 1+∆].

4. NUMERICAL RESULTS

The following numerical experiments use the classical loga-

rithmic discretization of the scales of the CWT. We will use

the Gaussian window and the complex Morlet wavelet, de-

pending on a parameter σ and defined in the Fourier domain

by:

ĝ(ν) = σ
1
2 e−πσ

2ν2

and ψ̂(ν) = σ
1
2 e−πσ

2(1−ν)2 .

The Matlab code used to create all the figures of the pa-

per can be downloaded from http://www-ljk.imag.fr/

membres/Thomas.Oberlin/ic14.tar.gz.

4.1. Limiting modulations

Let us start by determining which kind of signals are adapted

to which method, either wavelets or the STFT. The question

is : considering a fixed ε > 0, what are the signals that satis-

fies the assumptions? The pure waves obviously satisfy the

assumptions for either the FSST or the WSST, and any ε.
To simplify, we will first consider only single modes with-

out AM, which write h(t) = e2iπφ(t). We are particularly

interesting in the strongest possible modulation, ie the phases

φ satisfying |φ′′(t)| = ε for the FSST, or |φ′′(t)| = εφ′(t)
for the WSST. One easily sees that the first kind of modes are

linear chirp, ie they have a quadratic phase φ with φ′′ = ε,
whereas the second ones are exponential chirp whose phase

writes h(t) = e2iπCe
εt

.

To illustrate this, we draw on Figure 1 both transforms for

a linear chirp with phase φ(t) = 10t + 100t2. It is clear that

the quality of the representation given by the FSST remains

constant along the time. For the WSST however, the repre-

sentation is very concentrated around t = 1, but it is of poor

quality for low t. This is because the quality of the represen-

tation depends on φ′(t). Then, we show on Figure 2 the same
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Fig. 1. Comparison of the methods on a linear chirp with a

constant frequency modulation φ′′. Left: the FSST. Right: the

WSST.

test, but for an exponential chirp whose phase is φ(t) = 10e3t.
As we expected, the FSST provides a sharp representation for

low t, but does not manage to handle the high frequency mod-

ulation φ′′(t) for higher times. Interestingly, the WSST does

not provide a representation with constant quality, but seems

to be more concentrated for high t. Actually, the result in [6]



shows that the error for this kind of signal remains globally

constant. But since the scales are discretized in a logarithmic

way, the representation is sharper for high frequencies.
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Fig. 2. Comparison of the methods on an exponential chirp

with constant ratio φ′′/φ′. Left: the FSST. Right: the WSST.

In order to obtain a representation with constant quality,

the mode must satisfy a constant ration φ′′/φ′2. To check

this numerically, we present the same test for such a signal,

called an hyperbolic chirp, whose phase is φ(t) = −50 ∗
log(1.02 − t). One makes sure easily that the corresponding

WSST remains sharp whatever the instantaneous frequency.
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Fig. 3. Comparison of the methods on an hyperbolic chirp

with constant ratio φ′′/φ′2. Left: the FSST. Right: the WSST.

4.2. separation vs localization

Let us here discuss the role of parameter σ, ie the size of the

window or wavelet. From theorem 3.1 and the separation con-

dition (10), it is clear that supp g should be small enough,

which requires a parameter σ sufficiently high. Nevertheless,

when detailing the error term in the constant C, one shows

that it depends on the positive moments
∫

R
xn|g(x)| dx, thus

σ should be small enough to ensure a good reassignment step.

This phenomenon is illustrated on Figure 4, where one dis-

plays the FSST for a sum of polynomial chirps, using two

different sizes of window g. For the small value σ = (left),

one gets a sharp representation but interferences, and the con-

trary is observed for a high σ. The same kind of phenomenon

is observed on Figure 5, but in the wavelet case. This shows

that σ must be chosen carefully to achieve a tradeoff between

localization and separation. When one has only little a priori

information on the signal, a convenient way to chose between

the Fourier- and wavelet-based synchrosqueezing is the fre-

quency range of the signal. The STFT can indeed handle a
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Fig. 4. FSST of s sum of polynomial chirps, using two differ-

ent windows : σ = 0.02 (left) and σ = 0.04 (right).
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Fig. 5. WSST of s sum of highly modulated chirps, using two

different windows : σ = 2 (left) and σ = 5 (right).

wide range of modulations at low frequency, and the WSST

will behave satisfactorily at high frequencies in most cases.

5. CONCLUSION

This paper gave a natural extension of the Synchrosqueezing

transform in the setting of the short-time Fourier transform,

extending the approximation result shown in [6]. We insisted

on the main differences between the wavelet-based and the

Fourier-based SST, namely the frequency separation and the

low-modulations assumptions. This allowed us to determine

which class of modulations are analyzed best with wich trans-

form. We showed that the FSST is adapted to linear or sub-

linear modulations, whereas the WSST can deal with expo-

nential and hyperbolic chirps. This results have been illus-

trated and confirmed through numerical examples, where we

also put the emphasis on the size of the window or wavelet.

We also showed that a tradeoff is needed between local-

ization and separation, that can not be satisfactorily solved

for some highly modulated multicomponent signals contain-

ing close instantaneous frequencies. In this regard, we should

attempt in future works to extend the synchrosqueezing to

strong modulations, that are already handled in the original

reassignment method, as partially done by [13, 14]. Another

interesting perspective to keep in mind is to use adaptive win-

dow’s sizes σ(t), as done for instance in [15, 16].
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