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THE NUMBER OF OPEN PATHS IN ORIENTED

PERCOLATION

OLIVIER GARET, JEAN-BAPTISTE GOUÉRÉ AND RÉGINE MARCHAND

Abstract. We study the number Nn of open paths of length n in
supercritical oriented percolation on Z

d ×N, with d ≥ 1. We prove that

on the percolation event {inf Nn > 0}, N
1/n
n almost surely converges to

a deterministic constant. The proof relies on the introduction of adapted
sequences of regenerating times and on subadditive arguments.

1. Introduction

Consider supercritical oriented percolation. It seems natural to think
that, on the percolation event ”the cluster of the origin is infinite”, the
number Nn of open paths with length n starting from the origin should

grow exponentially fast in n. The present paper aims to prove that N
1/n
n

has an almost sure limit on the percolation event. Let us first define precisely
the oriented percolation model we work with.

Oriented percolation in dimension d + 1. Let d ≥ 1 be fixed, and let
‖.‖ be the norm on R

d defined by

‖x‖1 =

d
∑

i=1

|xi|.

We consider the oriented graph whose set of sites is Z
d × N, where N =

{0, 1, 2, . . . }, and we put an oriented edge from (z1, n1) to (z2, n2) if and
only if

n2 = n1 + 1 and ‖z2 − z1‖1 ≤ 1;

the set of these edges is denoted by
−→
E

d+1
alt . We say that γ = (γi, i)0≤i≤n ∈

(Zd ×N)n+1 is a path if and only if

∀i ∈ {0, . . . , n− 1} ‖γi+1 − γi‖1 ≤ 1.

Fix now a parameter p ∈ [0, 1], and open independently each edge with

probability p. More formally, consider the probability space Ω = {0, 1}
−→
E

d+1
alt ,

endowed with its Borel σ-algebra and the probability

Pp = (Ber(p))⊗
−→
E

d+1
alt ,

where Ber(p) stands for the Bernoulli law of parameter p. For a configuration

ω = (ωe)e∈
−→
E

d+1
alt

∈ Ω, say that the edge e ∈
−→
E

d+1
alt is open if ωe = 1 and

closed otherwise. A path γ = (γi, i)0≤i≤n ∈ (Zd × N)n+1 is said open in the
configuration ω if all its edges are open in ω. For two sites (v,m), (w,n) in
Z
d ×N, we denote by {(v,m) → (w,n)} the existence of an open path from

(v,m) to (w,n). By extension, we denote by {(v,m) → +∞} the percolation
1
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event, i.e. the event that there exists an infinite open path starting from
(v,m). There exists a critical probability −→pc

alt(d+ 1) ∈ (0, 1) such that:

• if p ≤ −→pc
alt(d+ 1), then Pp((0, 0) → +∞) = 0,

• if p > −→pc
alt(d+ 1), then Pp((0, 0) → +∞) > 0.

In the following, we assume p > −→pc
alt(d+1), and we will mainly work under

the following conditional probability:

Pp(.) = Pp(.|(0, 0) → +∞).

Finally, we denote by Nn the random variable giving the number of open
paths starting from (0, 0) with length n. We prove the following convergence
result:

Theorem 1.1. For every p > −→pc
alt(d+1), there exists αp ∈ (0, log((2d+1)p)]

such that Pp-almost surely, and in L1(Pp),

lim
n→+∞

1

n
logNn = αp.

We are currently working to prove, with the same methods, the existence
of directional limits, when one counts paths with a prescribed slope.

Previous results. The problem of the existence of a limit for N
1/n
n is

related to some questions that we recall now.
First, note that Ep(Nn) = ((2d + 1)p)n. As noticed by Darling [2], the

sequence
(

Nn
(2d+1)npn

)

n≥0
is a non-negative martingale, so there exists a non-

negative random variable such that

Pp − a.s.
Nn

(2d+ 1)npn
−→ W and Ep[W ] ≤ 1.

Therefore, it is easy to see that

1

n
logNn → log((2d + 1)p) on the event {W > 0}.

In that case, Nn has thus the same growth rate as its expectation.
In his paper [2], Darling was seeking for conditions implying that W > 0.

It seems that these questions have been forgotten for a while, but there is
currently an increasing activity due to the links with random polymers – see
for example Lacoin [7] and Yoshida [8].

Actually, it is not always the case that W > 0. Let us summarize some
known results:

• Pp(W > 0) ∈ {0, 1}. The random variable χ = lim
n→+∞

1
n logNn

is Pp-almost surely constant (see Lacoin [7]). Note that a simple
Borel-Cantelli argument ensures that χ ≤ log((2d+ 1)p).

• W = 0 a.s. if d = 1 or d = 2 (see Yoshida [8]).
• for d ≥ 3, there exists −→pc,2

alt(d + 1) ∈ [−→pc
alt(d + 1), 1) such that

Pp(W > 0) = 1 when p > −→pc,2
alt(d+1) (see remark 2.7 in Lacoin [7]).

• It is believed that −→pc,2
alt(d+1) > −→pc

alt(d+1). Lacoin [7] proved that
the inequality is indeed strict for L-spread-out percolation for d ≥ 5
and L large.
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Then, it is clear that we need a proof of the existence of a limit for 1
n logNn

that would not require that W > 0.
Note that if one does not count open paths with length n but rather paths

with length n using at least θn open edges with θ ∈ [0, 1), the existence of
the limit has been proved in Comets–Popov–Vachkovskaia [1] and in Kesten–
Sidoravicius [6] by different methods.

A natural idea to prove the existence of such a limit is to use Kingman’s
subadditive ergodic theorem. Obviously, if N(a, b) denotes the number of
open paths from a to b, by concatenation of paths we see that N(a, c) ≥
N(a, b)N(b, c), and thus we have the superadditivity property:

logN(a, c) ≥ logN(a, b) + logN(b, c).

The problem is naturally that logN(·, ·) may be infinite, and therefore not
integrable. Those kind of problem may be solved by using convenient sub-
sequences that lead to integrable variables. To this aim, we use the technics
of essential hitting times introduced in Garet–Marchand [4] to establish a
shape theorem for the contact process in random environment.

Notation. For n ≥ 1 and x ∈ Z
d, we denote by

• Nn the number of open paths from (0, 0) to Z
d × {n},

• Nn the number of open paths from (0, 0) to Z
d × {n} that are the

beginning of an infinite open path,
• N(x,n) the number of open paths from (0, 0) to (x, n),

2. Preliminary results

Oriented percolation is known as the analogue in discrete time for the
contact process. Usually, results are proved for one model, and it is com-
monly admitted that the proofs could easily be adapted to the other one.
For the results concerning supercritical oriented percolation we recall now,
we will thus sometimes give the reference for the property concerning the
contact process without any further explanation.

2.1. Exponential estimates for supercritical oriented percolation.

We work on the graph Z
d × N, as defined in the introduction. We set, for

n ∈ N and x ∈ Z
d,

ξxn = {y ∈ Z
d : (x, 0) → (y, n)},

ξZ
d

n = ∪
x∈Zd

ξxn,

τx = min{n ∈ N : ξxn = ∅},

Hx
n = ∪

0≤k≤n
ξxk ,

K ′x
n = ∩

k≥n
(ξxk∆ξZ

d

k )c.

To simplify, we often write ξn, τ,Hn,K
′
n instead of ξ0n, τ

0,H0
n,K

′0
n .

For instance, τ is the length of the longest open path starting from the
origin, and the percolation event is equal to {τ = +∞}. First, finite open
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paths cannot be too long (see Durrett [3]):

(1) ∀p > −→pc
alt(d+ 1) ∃A,B > 0 ∀n ∈ N Pp(n ≤ τ < +∞) ≤ Ae−Bn.

The set K ′
n∩Hn is called the coupled zone. As for the contact process, the

growth of the sets (Hn)n≥0 and the coupled zones (K ′
n∩Hn)n≥0 is governed

by a shape theorem (see, for the supercritical contact process, Durrett [3]
or Garet-Marchand [4]):

Proposition 2.1 (Shape theorem). We consider independent oriented per-

colation on Z
d × N. For every p > −→pc

alt(d + 1), there exists a norm µp on

R
d which rules the growth of the oriented percolation conditioned to survive:

for every ε > 0, Pp almost surely, there exists N ∈ N such that for every

n ≥ N ,

Bµp(0, (1 − ε)n) ⊂ (K ′
n ∩Hn) + [0, 1]d ⊂ Hn + [0, 1]d ⊂ Bµp(0, (1 + ε)n),

where Bµp(x, r) = {y ∈ R
d : µp(y − x) ≤ r}.

We even have large deviations inequalities (see Garet-Marchand [5] for
the contact process):

Proposition 2.2 (Large deviations inequalities). We consider independent

oriented percolation on Z
d × N. For every p > −→pc

alt(d + 1), for every ε > 0
there exist positive constants A,B such that, for every n ≥ 1,

Pp

(

Bµp(0, (1 − ε)n) ⊂ (K ′
n ∩Hn) + [0, 1]d

⊂ Hn + [0, 1]d ⊂ Bµp(0, (1 + ε)n)

)

≥ 1−Ae−Bn.

2.2. Essential hitting times and associated translations. We now in-
troduce the analogues, in the discrete setting of oriented percolation, of the
essential hitting times used by Garet–Marchand to study the supercritical
contact process conditioned to survive in [4] and [5]. As said before, the
proofs of the following lemmas are all direct adaptations of the correspond-
ing lemmas for the contact process. We thus just give precise references for
the contact process case.

We define a set of oriented edges
−→
E

d of Z
d in the following way: in

(Zd,
−→
E

d), there is an oriented edge between two points z1 and z2 in Z
d if

and only if ‖z1 − z2‖1 ≤ 1. The oriented edge in
−→
E

d+1
alt from (z1, n1) to

(z2, n2) can be identified with the couple ((z1, z2), n2) ∈
−→
E

d × N
∗. Thus,

we identify
−→
E

d+1
alt and

−→
E

d × N
∗. We also define, for (y, h) ∈ Z

d × N, the
translation θ(y,h) on Ω by:

θ(y,h)((ω(e,k))e∈
−→
E d,k≥1

) = (ω(e+y,k+h))e∈
−→
E d,k≥1

.

At some point, we will also need to look backwards in time. So we replace
Z
d × N by Z

d × Z as set of sites, and we introduce the following reversed

time translation defined on {0, 1}Z
d×Z by

θ↓(y,h)((ω(e,k))e∈
−→
E d,k∈Z

) = (ω(e+y,h−k))e∈
−→
E d,k∈Z

.

Fix p > −→pc
alt(d+ 1).

We now recall the construction of the essential hitting times σ(x), for
x ∈ Z

d, and the associated translations introduced in [4]. Fix x ∈ Z
d.

The essential hitting time σ(x) is a random time T ≥ 1 such that (0, 0) →
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(x, T ) → +∞. It is defined through a family of stopping times as follows:
we set u0 = v0 = 0 and we define recursively two increasing sequences of
stopping times (un)n≥0 and (vn)n≥0 with u0 = v0 < u1 < v1 < u2 . . . as
follows:

• Assume that vk is defined. We set uk+1 = inf{t > vk : x ∈ ξ0t }.
If vk < +∞, then uk+1 is the first time after vk where x is once again
infected; otherwise, uk+1 = +∞.

• Assume that uk is defined, with k ≥ 1. We set vk = uk + τ0 ◦ θ(x,uk).

If uk < +∞, the time τ0 ◦ θ(x,uk) is the length of the oriented perco-
lation cluster starting from (x, uk); otherwise, vk = +∞.

We then set

K(x) = min{n ≥ 0 : vn = +∞ or un+1 = +∞}.

This quantity represents the number of steps before the success of this pro-
cess: either we stop because we have just found an infinite vn, which corre-
sponds to a time un when x is occupied and has infinite progeny, or we stop
because we have just found an infinite un+1, which says that after vn, site 0
is never infected anymore. It is not difficult to see that

Pp(K(x) > n) ≤ Pp(τ
0 < +∞)n,

and thus K(x) is Pp almost surely finite. We define the essential hitting
time σ(x) by setting

σ(x) = uK(x) ∈ N ∪ {+∞}.

By construction (0, 0) → (x, σ(x)) → +∞ on the event {τ = +∞}. Note
however that σ(x) is not necessarily the first positive time when x is occupied
and has infinite progeny: for instance, such an event can occur between u1
and v1, being ignored by the recursive construction. It can be checked that
conditionally to the event {τ0 = ∞}, the process necessarily stops because
of an infinite vn, and thus σ(x) < +∞. At the same time, we define the

operator θ̃ on Ω, which is a random translation, by:

θ̃x(ω) =

{

θ(x,σ(x))ω if σ(x) < +∞,

ω otherwise.

If (x1, . . . , xm) is a sequence of points in Z
d, we also introduce the shortened

notation

θ̃x1,...,xm = θ̃xm ◦ θ̃xm−1 · · · ◦ θ̃x1 .

For n ≥ 1, we denote by Fn the σ-field generated by the maps (ω 7→
ω(e,k))e∈

−→
E d,1≤k≤n

. We denote by F the σ-field generated by the maps (ω 7→

ω(e,k))e∈
−→
E d,k≥1

.

Proposition 2.3. We consider independent oriented percolation on Z
d ×N

with parameter p > −→pc
alt(d+ 1). Fix x1, . . . , xm ∈ Z

d.

a. Suppose A ∈ B(R), B ∈ F . Then for each x ∈ Z
d,

Pp(σ(x) ∈ A, θ̃−1
x (B)) = Pp(σ(x) ∈ A)Pp(B).

b. The probability measure Pp is invariant under θ̃x1,...,xm.
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c. The random variables σ(x1), σ(x2) ◦ θ̃x1 , σ(x3) ◦ θ̃x1,x2 , . . . , σ(xm) ◦

θ̃x1,...,xm−1 are independent under Pp.

d. Suppose t ≤ m, A ∈ Ft, B ∈ F

Pp(A, θ̃
−1
x1,...,xm

(B)) = Pp(A)Pp(B).

e. For every x ∈ Z
d, µp(x) = lim

n→+∞

Ep(σ(nx))

n
= inf

n≥1

Ep(σ(nx))

n
.

f. There exists α, β > 0 such that

∀x ∈ Z
d

Ep(exp(ασ(x)) ≤ exp(β(‖x‖1 ∨ 1)).

Proof. To prove a.-d., it is sufficient to mimic the proofs of Lemma 8 and
Corollary 9 in [4]. The convergence e. has been proved for the contact
process in [4], Theorem 22. The existence of exponential moments for σ has
been proved for the contact process in [5], Theorem 2. �

3. Directional limits along subsequences of regenerating times

We next define, for (y, h) ∈ Z
d ×N a regenerating time s(y, h) by setting

s(y, h) = σ(y) +

h
∑

i=1

σ(0) ◦ θ̃i−1(0) ◦ θ̃(y),

and the associated translation:

θ̂(y,h)(ω) =

{

θ(y,s(y,h))ω if s(y, h) < +∞,

ω otherwise.

Note that on {τ = +∞}, (0, 0) → (y, s(y, h)) → +∞ and θ̂(y,h) = θ̃y,0,...,0
(with h zeros). We can easily deduce from Proposition 2.3 the following
properties of the time s(y, h) under Pp:

Lemma 3.1. We consider independent oriented percolation on Z
d ×N with

parameter p > −→pc
alt(d+ 1), and we fix (y, h) ∈ Z

d ×N.

a. The probability measure Pp is invariant under the translation θ̂(y,h).

b. The random variables (s(y, h) ◦ (θ̂(y,h))
j)j≥0 are independent and

identically distributed under Pp.

c. The measure-preserving dynamical system (Ω,F ,Pp, θ̂(y,h)) is mix-

ing.

d. There exists α, β > 0 such that

∀y ∈ Z
d ∀h ∈ N Ep(exp(αs(y, h))) ≤ exp(β(‖y‖ ∨ 1 + h)).

We fix (y, h) ∈ Z
d × N. We work under Pp, and we set, for every n ≥ 1,

Sn = Sn(y, h) =

n−1
∑

k=0

s(y, h) ◦ θ̂k(y,h).

The points (ny, Sn(y, h))n≥1 are the sequence of regenerating points associ-
ated to (y, h) along which we are going to look for subadditivity properties.

As, under Pp, the random variables (s(y, h) ◦ θ̂j(y,h))j≥0 are independent and
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identically distributed with finite first moment (see Lemma 3.1), the strong
law of large numbers ensures that Pp-almost surely

(2) lim
n→+∞

Sn(y, h)

n
= Ep(s(y, h)) = Ep(σ(y)) + hEp(σ(0)).

Thus, for large n, the point (ny, Sn(y, h)) is not far from the line R(y,Ep(s(y, h))).
To apply directional limits along subsequences, we first apply Kingman’s

subadditive ergodic theorem to fn = − logN(ny,Sn(y,h)) for a fixed (y, h) ∈

Z
d × N.

Lemma 3.2. Let us consider independent oriented percolation on Z
d × N

with parameter p > −→pc
alt(d+1). Fix (y, h) ∈ Z

d×N. There exists αp(y, h) ∈

(0, log(2d+ 1)] such that Pp-almost surely and in L1(Pp),

lim
n→+∞

1

Sn(y, h)
logN(ny,Sn(y,h)) = αp(y, h).

Proof. Fix (y, h) ∈ Z
d × N. To avoid heavy notations, we omit all the

dependence in (y, h). For instance Sn = Sn(y, h) and θ̂ = θ̂(y,h). Note that

by definition, Pp-almost surely, for every n ≥ 1, (0, 0) → (ny, Sn) → +∞
and consequently, N(ny,Sn) ≥ 1. For n ≥ 1, we set

fn = − logN(ny,Sn).

Let n, p ≥ 1. Note that Sn + Sp ◦ θ̂
n
(y,h) = Sn+p. As N(py,Sp) ◦ θ̂

n counts the

number of open paths from (ny, Sn) to ((n+p)y, Sn+Sp◦ θ̂
n), concatenation

of paths ensures that N(ny,Sn) ×N(py,Sp) ◦ θ̂
n ≤ N((n+p)y,Sn+p) which implies

that

∀n, p ≥ 1 fn+p ≤ fn + fp ◦ θ̂
n.

As 1 ≤ N(ny,Sn) ≤ (2d + 1)Sn ,

−Sn log(2d+ 1) ≤ fn ≤ 0.

The integrability of s thus implies the integrability of every fn. So we can
apply Kingman’s subadditive ergodic theorem. By property c. in 3.1, the
dynamical system (Ω,F ,P, θ̂) is mixing. Particularly, it is ergodic, so the
limit is deterministic: if we define

−α′
p(y, h) = inf

n≥1

Ep(fn)

n
,

we have Pp-almost surely and in L1(Pp): lim
n→+∞

fn
n

= −α′
p(y, h).

The limit of the lemma follows then directly from (2) by setting

αp(y, h) =
α′
p(y, h)

Eps(y, h)
.

Finally α′
p(y, h) ≥ Ep(−f1) = Ep(logN(y,S1)). Since N(y,S1) ≥ 1 Pp-a.s.

and N(y,S1) ≥ 2 with positive probability, it follows that α′
p(y, h) > 0, and

consequently αp(y, h) > 0.
As N(ny,Sn) ≤ (2d + 1)Sn , we see that αp(y, h) ≤ log(2d + 1) and that the

convergence also holds in L1(Pp). �
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We can now introduce a natural candidate for the limit in Theorem 1.1:

(3) αp = sup
{

αp(y, h) : (y, h) ∈ Z
d × N

}

< +∞.

Indeed, at the logarithmic scale we are working with, we can expect that the
dominant contribution to the number Nn of open paths to level n will be
due to the number N(nz,n) of open paths to level n in the direction (z, 1) that
optimizes the previous limit. Note however that in our construction, (y, h)
has no real geometrical signification, but it is just a useful encoding: as said
before, the asymptotic direction of the regenerating point (ny, Sn(y, h)) in
Z
d × N is

(

y

Ep(s(y, h)
, 1

)

.

To skip from the subsequences to the full limit, we approximate Bµp(0, 1)
with a finite number of points:

Lemma 3.3. We have the inclusion Bµp(0, 1) ⊂
(

y

Ep(s(y,h))

)

y∈Zd,h∈N
.

Proof. Note that the set {z
l : (z, l) ∈ Z

d × N
∗ and µp(z) < l} is dense in

Bµp(0, 1). Thus fix (z, l) ∈ Z
d × N

∗ such that µp(z) < l and consider

(yn, hn) =

(

nz,

⌊

n(l − µp(z)

Ep(σ(0))

⌋)

.

Then
yn

Ep(s(yn, hn))
=

nz

Ep(σ(yn)) + hnEp(σ(0))
→

z

l

as n goes to +∞. �

Finally, for (y, h) ∈ Z
d × N, we denote by

∀n ∈ N ϕ(n) = ϕ(y,h)(n) = inf{k ∈ N : Sk(y, h) ≥ n}.(4)

Thus, for large n, (ϕ(n).y, Sϕ(n)) is the first point among the sequence of
renewal points associated to (y, h) to be above level n. By the renewal
theory, Pp almost surely,

(5) lim
n→+∞

ϕ(y,h)(n)

n
=

1

Ep(s(y, h))
and lim

n→+∞

Sϕ(y,h)(n)(y, h)

n
= 1.

It is also not too far above level n:

Lemma 3.4. There exist positive constants A,B such that

∀n ∈ N P(Sϕ(n) − n ≥ n) ≤ A exp(−Bn).

Proof. As we work in discrete time, ϕ(n) ≤ n. So

Pp(Sϕ(n) − n ≥ n) ≤ Pp(∃k ≤ n : s(y, h) ◦ θ̂k(y,h) ≥ n) ≤ nPp(s(y, h) ≥ n).

As s(y, h) admits exponential moments thanks to Lemma 3.1, we can con-
clude with the Markov inequality. �
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4. Proof of Theorem 1.1

Let d ≥ 1 be fixed. Consider independent oriented percolation on Z
d ×N

with fixed parameter p > −→pc
alt(d+ 1). The proof of Theorem 1.1 is a direct

consequence of the forthcoming Lemmas 4.1, 4.2 and 4.3. Remember that
αp is defined in (3).

Lemma 4.1. Pp-almost surely, lim
n→+∞

1

n
logNn ≥ αp.

Proof. Take (y, h) ∈ Z
d × N. Note that (Nn)n≥1 is non-decreasing, and

considering the increasing sequence Sk = Sk(y, h), we see that, Pp almost
surely, for every integer n such that Sk ≤ n ≤ Sk+1,

1

n
logNn ≥

1

Sk+1
logNSk

≥
Sk

Sk+1

logN (ky,Sk)

Sk
.

With (2) and Lemma 3.2, we deduce that Pp almost surely,

lim
n→+∞

1

n
logNn ≥ αp(y, h),

which completes the proof. �

Lemma 4.2. Pp-almost surely, lim
n→+∞

1

n
logNn ≤ αp.

Proof. Fix ε > 0 and η ∈ (0, 1). We first approximate Bµp(0, 1) with a finite

number of points: with Lemma 3.3, we can find a finite set F ⊂ Z
d×N such

that

Bµp(0, 1 + ε) ⊂
⋃

(y,h)∈F

Bµp

(

(1 + ε)y

Ep(s(y, h))
, (1− η)ε/2

)

.

Then, for n large, we will control the number Nn using these directions.
We define Mn(y, h) as the first point in the sequence (ky, S(y,h)(k))k≥1 of
regerating points associated to (y, h) to be above level n(1 + ε). Using the
notation introduced in (4), we set

∀(y, h) ∈ F kn = kn(y, h) = ϕ(y,h)(n(1 + ε)),

Zn = Zn(y, h) = kn.y ∈ Z
d and Vn = Vn(y, h) = Skn(y, h) ∈ N,

Mn = Mn(y, h) = (Zn, Vn).

For a given (y, h) ∈ F , the law of large numbers (5) says that

kn(y, h) ∼
n(1 + ε)

Ep(s(y, h))
and Vn(y, h) ∼ n(1 + ε).(6)

So Pp almost surely, for all n large enough

∀(y, h) ∈ F Bµp

(

(1 + ε)ny

Ep(s(y, h))
, (1 − η)εn/2

)

⊂ Bµp (Zn(y, h), (1 − η)εn) ,

and so, Pp almost surely, for all n large enough

(7) ξn ⊂ Bµp(0, (1 + ε)n) ⊂ ∪
(y,h)∈F

Bµp (Zn(y, h), (1 − η)εn) .
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The strategy is to prove that for n large enough, then for each x ∈ Bµp(0, n(1+

ε)) the number of open paths from (0, 0) to (x, n) that contribute toNn is not
far from NMn(y,h) for the (y, h) ∈ F such that x ∈ Bµp(Zn(y, h), (1 − η)εn).
To do so, we use the coupled zone. Note

Gn = ∩
M∈{−2n,...,2n}d×{0,...,2n}

{

τ < n(1 + ε)
or K ′

nε ⊃ Bµp(0, (1 − η)εn) ∩ Z
d

}

◦ θ↓M .

Since θ↓M preserves Pp, we easily deduce from (1), Proposition 2.2 and a

Borel–Cantelli argument that Pp almost surely, Gn holds for n large enough.
Now take n large enough such that (7) holds, Gn hold, together with

Vn(y, h) ≤ 2n for each (y, h) ∈ F (which is possible thanks to (6)) and
ξn ⊂ Bµp(0, n(1 + ε)).

Fix x ∈ ξn such that (x, n) → ∞. As ξn ⊂ Bµp(0, n(1+ ε)) and (7) holds,
choose (y, h) ∈ F such that x ∈ Bµp(Zn(y, h), (1 − η)εn).

Since (0, 0) → Mn and Vn ≥ n(1 + ε), we know that τ ◦ θ↓Mn
≥ n(1 + ε).

Since Mn ∈ {−2n, . . . , 2n}d × {0, . . . , 2n}, µp(x − Zn) ≤ (1 − η)εn and Gn

holds, we have x − Zn ∈ K ′
nε ◦ θ↓Mn

. Note that Vn(y, h) ≥ n(1 + ε), so

Vn(y, h)− n ≥ εn. Note that (x, n) → ∞ implies that x− Zn ∈ ξZ
d

Vn(y,h)−n ◦

θ↓Mn
. By definition of the coupled zone, we have x− Zn ∈ ξ0Vn(y,h)−n ◦ θ↓Mn

.

Going back to the initial orientation, it means that (x, n) → Mn. So

Nn ≤
∑

(y,h)∈F

NMn(y,h).

(0, 0)

(x, n)

Mn = (Zn, Vn)

coupled zone of Mn

asymptotic direction

n(1 + ε)

n

0

Figure 1. Red paths are the part above n of paths from
(0, 0) to infinity. Green paths are the part above n of paths
from (0, 0) to infinity that meet some Mn. To bound Nn, we
prove that each start of a red path is the start of a green
path.
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Next, we use the directional limits given by Lemma 3.2: Pp almost surely,

∀(y, h) ∈ F lim
n→+∞

1

Vn(y, h)
logNMn(y,h) = αp(y, h).

As Vn(y, h) ∼ n(1+ε), we obtain from the Shape Theorem (Proposition 2.1)
that Pp almost surely, for all n large enough

∀(y, h) ∈ F
1

n(1 + ε)
logNMn(y,h) ≤ αp(y, h) + ε ≤ αp + ε.

So, for n large enough, we have Pp almost surely,

Nn ≤
∑

(y,h)∈F

NMn(y,h) ≤ |F | exp((αp + ε)n(1 + ε)),

so lim
n→+∞

1

n
log(Nn) ≤ (1 + ε)(αp + ε).

We complete the proof by letting ε go to 0. �

Finally, we prove that working with open paths or with open paths that
are the beginning of an infinite open path is essentially the same:

Lemma 4.3. Pp-almost surely,

lim
n→+∞

logNn

n
= lim

n→+∞

logNn

n
and lim

n→+∞

logNn

n
= lim

n→+∞

logNn

n
.

Proof. Fix 0 < ε < 1 and define, for n ≥ 1, the following event

En = ∩
‖z‖≤n

{τ < εn or τ = +∞} ◦ θ(z,⌊n(1−ε)⌋).

Assume that En occurs. Consider a path γ = (γi, i)0≤i≤n from (0, 0) to
Z
d×{n} and set z = γ⌊n(1−ε)⌋: as τ ◦θ(z,⌊n(1−ε)⌋) ≥ εn, the event En implies

that τ ◦ θ(z,⌊n(1−ε)⌋) = +∞. So (γi, i)0≤i≤⌊n(1−ε)⌋ contributes to N ⌊n(1−ε)⌋

and thus, on En,

Nn ≤ (2d+ 1)εn+1N ⌊n(1−ε)⌋,

so
1

n
logNn ≤

(

ε+
1

n

)

log(2d+ 1) +
1

n
logN ⌊n(1−ε)⌋

≤

(

ε+
1

n

)

log(2d+ 1) +
1

⌊n(1− ε)⌋
logN ⌊n(1−ε)⌋.

The exponential estimate (1) ensures that

∀n ≥ 1 Pp(E
c
n) ≤ CdAn

d exp(−Bεn) ≤ A′ exp(−B′n).

With the Borel–Cantelli lemma, this leads to:

lim
n→+∞

1

n
logNn ≤ ε log(2d + 1) + lim

n→+∞

1

n
logNn.

By taking ε to 0, we obtain

lim
n→+∞

logNn

n
≤ lim

n→+∞

logNn

n
.



12 OLIVIER GARET, JEAN-BAPTISTE GOUÉRÉ AND RÉGINE MARCHAND

The proof for the inequality with lim instead of lim is identical. Since
Nn ≤ Nn, the reversed inequalities are obvious. �

Olivier Garet and Régine Marchand would like to warmly thank Matthias

Birkner and Sun Rongfen for pointing out an error in a previous version of

the paper.
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