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Abstract. We study the number Nn of open paths of length n in supercritical
oriented percolation. We prove that on the percolation event {inf Nn > 0},

N
1/n
n almost surely converges to a deterministic constant. The proof relies on

subadditive arguments and on a recent result of Birkner, Cerny, Depperschmidt
and Gantert about the behaviour of the random walk on the backbone of the
infinite cluster of oriented percolation.

1. Introduction

Consider supercritical oriented percolation. It seems natural to think that, on
the percolation event "the cluster of the origin is infinite", the number Nn of open
paths with length n starting from the origin should grow exponentially fast in n.

The present paper aims to prove that N
1/n
n (or rather 1

n log Nn) has an almost
sure limit on the percolation event. Surprisingly, this result does not seem to
be available in the litterature. More precisely, denoting by Pp the probability of
Bernoulli percolation conditioned by the fact that the cluster of (0, 0) is infinite, we
proved

Theorem 1.1. There exists α > 0 such that Pp-almost surely,

lim
n→+∞

log Nn

n
= α.

We now define precisely the oriented percolation model we work with.

Oriented percolation in dimension d + 1. Let d ≥ 1 be fixed, and let ‖.‖ be
the norm on R

d defined by

‖x‖ =
d

∑

i=1

|xi|.

We note B(x, R) the associated balls. We consider the oriented graph whose set of
sites is

{(z, n) ∈ Z
d × N},

where N = {0, 1, 2, . . . }, and we put an oriented edge from (z1, n1) to (z2, n2) if and
only if

n2 = n1 + 1 and ‖z2 − z1‖ ≤ 1;

the set of these edges is denoted by
−→
E

d+1
alt . We say that γ = (γi, i)0≤i≤n ∈ (Zd ×

N)n+1 is a path if and only if

∀i ∈ {0, . . . , n − 1} ‖γi+1 − γi‖ ≤ 1.
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Fix now a parameter p ∈ [0, 1], and open independently each edge with prob-

ability p. More formally, consider the probability space Ω = {0, 1}
−→
E

d+1
alt , endowed

with its Borel σ-algebra and the probability

Pp = (Ber(p))⊗
−→
E

d+1
alt ,

where Ber(p) stands for the Bernoulli law of parameter p. For a configuration

ω = (ωe)
e∈

−→
E

d+1
alt

∈ Ω, say that the edge e ∈ −→
E

d+1
alt is open if ωe = 1 and closed

otherwise. A path γ = (γi, i)0≤i≤n ∈ (Zd × N)n+1 is said open in the configuration
ω if all its edges are open in ω. For two sites (v, m), (w, n) in Z

d × N, we denote
by {(v, m) → (w, n)} the existence of an open path from (v, m) to (w, n). By
extension, we denote by {(0, 0) → +∞} the percolation event, i.e. the event that
there exists an infinite open path starting from the origin.

There exists a critical propability −→pc
alt(d + 1) ∈ (0, 1) such that:

• if p ≤ −→pc
alt(d + 1), then Pp((0, 0) → +∞) = 0,

• if p > −→pc
alt(d + 1), then Pp((0, 0) → +∞) > 0.

In the following, we assume p > −→pc
alt(d + 1), and we will mainly work under the

following conditional probability:

Pp(.) = Pp(.|(0, 0) → +∞).

Finally, we denote by Nn the random variable giving the number of open paths
starting from (0, 0) with length n. Note that

Ep(Nn) = ((2d + 1)p)n.

Previous results. The problem of the existence of a limit for N
1/n
n is related to

some questions that we recall now.

First, as noticed by Darling [3], the sequence
(

Nn

(2d+1)npn

)

n≥0
is a non-negative

martingale, so there exists a non-negative random variable such that

Pp − a.s.
Nn

(2d + 1)npn
−→ W and Ep[W ] ≤ 1.

Therefore, it is easy to see that

1

n
log Nn → log((2d + 1)p) on the event {W > 0}.

In that case, Nn has thus the same growth rate as its expectation.
In his paper [3], Darling was seeking for conditions implying that W > 0. It

seems that these questions have been forgotten for a while, but there is currently
an increased activity due to the links with random polymers – see for example
Lacoin [7] and Yoshida [8].

Actually, it is not always the case that W > 0. Let us summarize some known
results:

• Pp(W > 0) ∈ {0, 1} (see Lacoin [7]).
• W = 0 a.s. if d = 1 or d = 2 (see Yoshida [8]).
• for d ≥ 3, there exists −→pc,2

alt(d + 1) ∈ [−→pc
alt(d + 1), 1) such that W > 0 on

{(0, 0) → ∞} when p > −→pc,2
alt(d + 1) (see remark 2.7 in Lacoin [7]).
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• The random variable χ = lim
n→+∞

1
n log Nn is Pp-almost surely constant

(see Lacoin [7]). Note that a simple Borel-Cantelli argument ensures that
χ ≤ log((2d + 1)p).

It is believed that −→pc,2
alt(d+1) > −→pc

alt(d+1). Lacoin [7] proved that the inequality
is indeed strict for L-spread-out percolation for d ≥ 5 and L large. Then, it is clear
that we need a proof of the existence of a limit for 1

n log Nn that would not require
that W > 0.

A natural idea to prove the existence of such a limit is to use Kingman’s sub-
additive ergodic theorem. Obviously, if N(a, b) denotes the number of open paths
from a to b, we have the inequality

log N(a, c) ≥ log N(a, b) + log N(b, c).

The problem is naturally that log N(·, ·) may be infinite, and therefore not inte-
grable. Those kind of problem may be solved by using convenient subsequences
that lead to integrable variables. To this aim, we use the technics of essential hit-
ting times we introduced in Garet–Marchand [6] to establish a shape theorem for
the contact process in random environment.

To recover the convergence along the full sequence, we need some kind of conti-
nuity. This continuity is obtained as a consequence of the following fact: most open
paths from (0, 0) to the n-th level have their end in the ball B(0, εn). This fact is
an easy consequence of a recent result of Birkner et al. [2] about the behaviour of
the random walk on the backbone of the infinite cluster of oriented percolation.

2. Preliminary results

Exponential estimates for supercritical oriented percolation. We work on
the graph Z

d × N, as defined in the introduction. We set, for n ∈ N and x ∈ Z
d,

ξx
n = {y ∈ Z

d : (x, 0) → (y, n)},

ξZ
d

n = ∪
x∈Z

d
ξx

n,

τx = min{n ∈ N : ξx
n = ∅},

Hx
n = ∪

0≤k≤n
ξx

k ,

Kx
n = (ξx

n∆ξZ
d

n )c = ξx
n ∪ (Zd\ξZ

d

n ).

For instance, τ0 is the length of the longest open path starting from the origin,
and the percolation event is equal to {τ0 = +∞}. The set Kx

n ∩ Hx
n is called the

coupled zone. As for the contact process, the sets (Hx
n)n≥0 and the coupled zones

(Kx
n ∩ Hx

n)n≥0 grow as least linearly in case of survival and the length of finite
oriented paths has exponential moments:

Lemma 2.1. We consider independent oriented percolation on Z
d × N. For every

p > −→pc
alt(d + 1), there exist strictly positive constants A, B, C such that for every

x ∈ Z
d, for every L, n > 0:

Pp(τx = +∞, B(x, L) 6⊂ Kx
CL+n) ≤ Ae−Bn,(1)

Pp(τx = +∞, B(x, L) 6⊂ Hx
CL+n) ≤ Ae−Bn,(2)

Pp(n ≤ τx < +∞) ≤ Ae−Bn.(3)



4 OLIVIER GARET AND RÉGINE MARCHAND

Proof. For the contact process, Durrett [4] showed how to deduce an analogous
result from the construction of Bezuidenhout–Grimmett [1]. As explained in [1],
the proofs remain valid for oriented percolation, which is the discrete-time analogous
of the contact process. �

Essential hitting time and associated translation. Define
−→
E

d in the following

way: in
−→
E

d, there is an oriented edge between two points z1 and z2 in Z
d if and

only if ‖z1 − z2‖1 ≤ 1. The oriented edge in
−→
E

d+1
alt from (z1, n1) to (z2, n2) can be

identified with the couple ((z1, z2), n2) ∈ −→
E

d × N
∗. Thus, we identify

−→
E

d+1
alt and−→

E
d × N

∗. We also define, for n ≥ 0, the time translation θn on Ω by:

θn((ω(e,k))e∈
−→
E d,k≥1

) = (ω(e,k+n))e∈
−→
E d,k≥1

.

We now introduce the (next) essential hitting time σ: it is a random time T ≥ 1
such that (0, 0) → (0, T ) → +∞. It is defined through a family of stopping times
as follows: we set u0 = v0 = 0 and we define recursively two increasing sequences
of stopping times (un)n≥0 and (vn)n≥0 with u0 = v0 < u1 < v1 < u2 . . . as follows:

• Assume that vk is defined. We set uk+1 = inf{t > vk : 0 ∈ ξ0
t }.

If vk < +∞, then uk+1 is the first time after vk where 0 is once again
infected; otherwise, uk+1 = +∞.

• Assume that uk is defined, with k ≥ 1. We set vk = uk + τ0 ◦ θuk
.

If uk < +∞, the time τ0 ◦ θuk
is the length of the oriented percolation

cluster starting from (0, uk); otherwise, vk = +∞.

We then set

(4) K = min{n ≥ 0 : vn = +∞ or un+1 = +∞}.

This quantity represents the number of steps before the success of this process:
either we stop because we have just found an infinite vn, which corresponds to a
time un when 0 is occupied and has infinite progeny, or we stop because we have just
found an infinite un+1, which says that after vn, site 0 is never infected anymore.
It is not difficult to see that

Pp(K > n) ≤ Pp(τ0 < +∞)n,

and thus K is Pp almost surely finite. We define the next essential hitting time σ
by setting

σ = uK ∈ N ∪ {+∞}.

Note however that σ is not necessary the first positive time when 0 is occupied
and has infinite progeny: for instance, such an event can occur between u1 and v1,
being ignored by the recursive construction. Note moreover that (2) implies that,
conditionally to the event {τ0 = ∞}, the process necessarily stops because of an
infinite vn, and thus σ < +∞. At the same time, we define the operator θ̃ on Ω,
which is a random translation, by:

θ̃(ω) =

{

θσ(ω)ω if σ(ω) < +∞,

ω otherwise.

The essential hitting time σ can be seen as a regeneration time for the process
under Pp:

Lemma 2.2. We consider independent oriented percolation on Z
d ×N with param-

eter p > −→pc
alt(d + 1).
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(1) The probability measure Pp is invariant under the translation θ̃.

(2) The random variables (σ ◦ (θ̃)j)j≥0 are independent and identically dis-

tributed under Pp.

(3) The measure-preserving dynamical system (Ω, F ,Pp, θ̃) is mixing.

Proof. It is sufficient to mimic the proof of the lemmas and corollaries numbered
from 6 to 10 in Garet-Marchand [5]. �

We also have a good control of the tail of the essential hitting time σ :

Lemma 2.3. There exist positive constants A, B such that

∀t ≥ 0 P(σ > t) ≤ A exp(−B
√

t).

Proof. Again, we follow closely Garet–Marchand [5]. Proceeding as in lemmas 14
and 15 in Garet–Marchand [5], we show that

P(σ > Kt) ≤ A exp(−Bt).

Since K has exponential tail, this gives the desired result. �

Random walk on the backbone of oriented percolation. Consider indepen-
dent oriented percolation on Z

d × N with parameter p > −→pc
alt(d + 1). Birkner et

al. [2] study the random walk on the backbone of the oriented percolation cluster,
and prove in particular that it satisfies a strong law of large numbers.

This random walk (Xn)n≥0 is only defined on the event {τ0 = +∞}: it starts
at 0, and knowing that Xn = x, Xn+1 is uniformly distributed among the sites

{y ∈ Z
d : ‖y − x‖ ≤ 1 and (y, n + 1) → +∞}.

Let us define this walk more precisely. We choose an arbitrary order, for example
the lexicographic order, on

V = {x ∈ Z
d : ‖x‖ ≤ 1}.

We consider the enlarged set Ω̃ = Ω × [0, 1]N
∗

, endowed with the probability

P̃p = Pp ⊗ U([0, 1])⊗N,

where U([0, 1]) denotes the uniform law on [0, 1]. We denote by (ω, η) the generic
element of Ω̃: ω = (ωe)

e∈
−→
E

d+1
alt

is the environment (oriented percolation) where the

random walk lives while η = (ηn)n≥1 encodes the randomness of the steps of the
walk.

Proposition 2.4 (Birkner et al. [2]). Define (Xn)n≥0 by setting X0 = 0 and, for

n ≥ 0

Vn = {k ∈ V : (Xn + k, n + 1) → ∞},

Dn = inf

{

k ∈ V : ηn <

∑

i≤k 11{i∈Vn}
∑

i∈V 11{i∈Vn}

}

,

Xn+1 = Xn + Dn.

Then P̃p-almost surely, (Xn/n)n≥0 converges to 0 when n goes to +∞.
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3. Proof of Theorem 1.1

Let d ≥ 1 be fixed. Consider independent oriented percolation on Z
d × N with

parameter p > −→pc
alt(d + 1). Remember that C has been defined in Lemma 2.1. We

set

(5) D = 2(C + 1).

Notation. For n ≥ 1, 0 < ε < 1/D and x ∈ Z
d, we denote by

• Nn the number of open paths from (0, 0) to Z
d × {n},

• Nn the number of open paths from (0, 0) to Z
d ×{n} that are the beginning

of an infinite open path,
• Nx

n the number of open paths from (0, 0) to (x, n),

• N
x

n the number of open paths from (0, 0) to (x, n) that are the beginning
of an infinite open path,

• Nε
n the number of open paths γ = ((γi, i)0≤i≤n) from (0, 0) to (B(0, εn) ∩

Z
d) × {n} such that, moreover, γ⌊(1−Dε)n⌋ ∈ B(0, εn),

• N
ε

n the number of open paths γ = ((γi, i)0≤i≤n) from (0, 0) to (B(0, εn) ∩
Z

d) × {n} such that, moreover, γ⌊(1−Dε)n⌋ ∈ B(0, εn) and that are the
beginning of an infinite open path,

• Nx,ε
n the number of open paths γ = ((γi, i)0≤i≤n) from (0, 0) to (x, n) such

that, moreover, γ⌊(1−Dε)n⌋ ∈ B(0, εn)

• N
x,ε

n the number of open paths γ = ((γi, i)0≤i≤n) from (0, 0) to (x, n) such
that, moreover, γ⌊(1−Dε)n⌋ ∈ B(0, εn) and that are the beginning of an
infinite open path.

In fact, we are going to prove the following stronger theorem:

Theorem 3.1. There exists α > 0 such that Pp-almost surely,

lim
n→+∞

log Nn

n
= lim

n→+∞

log Nn

n
= α.

We work under Pp, and we set, for every n ≥ 1,

(6) Sn =

n−1
∑

k=0

σ ◦ θ̃k.

Sn is the n-th essential hitting time of 0.
We recall that under Pp, the random variables (σ ◦ θ̃j)j≥0 are independent and

identically distributed (see Lemma 2.2) with finite first moment (by Lemma 2.3),
thus the strong law of large numbers ensures that Pp-almost surely

(7) lim
n→+∞

Sn

n
= Ep(σ).

Applying Kingman’s subadditive ergodic theorem to fn = − log N0
Sn

, we can prove
the following limits:

Lemma 3.2. There exists α′ > 0 such that Pp-almost surely,

lim
n→+∞

1

n
log N0

Sn
= lim

n→+∞

1

n
log N

0
Sn

= α′.
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Set α = α′/Ep(σ); then Pp-almost surely,

lim
n→+∞

1

Sn
log N0

Sn
= lim

n→+∞

1

Sn
log N

0
Sn

= α.

Proof. Note that by definition of σ, Pp-almost surely, for every n ≥ 1, (0, 0) →
(0, Sn) → +∞ and consequently, N

0
Sn

= N0
Sn

≥ 1.
For n ≥ 1, we set

fn = − log N
0
Sn

= − log N0
Sn

.

Let n, p ≥ 1. Note that Sn + Sp ◦ θ̃n = Sn+p. As N0
Sp

◦ θ̃n counts the number of

open paths from (0, Sn) to (0, Sn + Sp ◦ θ̃n), concatenation of paths ensures that

N0
Sn

× N0
Sp

◦ θ̃n ≤ N0
Sn+p

, which implies that

∀n, p ≥ 1 fn+p ≤ fn + fp ◦ θ̃n.

As 1 ≤ N0
Sn

≤ (2d + 1)Sn ,

−Sn log(2d + 1) ≤ fn ≤ 0.

The integrability of σ thus implies the integrability of every fn: so we can apply
Kingman’s subadditive ergodic theorem: if we define

−α′ = inf
n≥1

Ep(fn)

n
,

we have Pp-almost surely and in L1(Pp): lim
→n+∞

fn

n
= −α′.

The two last limits follow then directly from (7).
Finally α′ ≥ Ep(−f1) = Ep(log N0

σ). Since N0
σ ≥ 1 Pp-a.s. and N0

σ ≥ 2 with
positive probability, it follows that α′ > 0, and consequently α > 0. �

In the next step, we prove that open paths from (0, 0) to Z
d × {n} are in some

sense concentrated around the vertical axis. This Lemma follows from the recent
result of Birkner et al. [2] concerning the random walk in the random environment
given by the backbone of the supercritical oriented percolation cluster. This ex-
plains why we first work with open paths that are the beginnings of infinite open
paths:

Lemma 3.3. For every ε > 0, Pp-almost surely, lim
n→+∞

N
ε

n

Nn

= 1.

Proof. As in Proposition 2.4, we work on Ω̃ = Ω×[0, 1]N
∗

with P̃p = Pp⊗U([0, 1])⊗N

and consider the random walk (Xn)n≥0 in the random environment given by the

backbone of the supercritical oriented percolation cluster. By Proposition 2.4, P̃p-
almost surely, (Xn/n)n≥1 converges to 0 as n goes to +∞. So if we set

Yn = 11{‖Xn‖≤εn}∩{‖X⌊(1−Dε)n⌋‖≤εn},

then Yn goes P̃p-almost surely to 1. Denote by E the σ-field generated by the ori-
ented percolation. The conditional version of the dominated convergence theorem
ensures that Ẽp[Yn|E ] goes P̃p-almost surely to 1. But after a short moment of
thought, we see that

Ẽp[Yn|E ] =
N

ε

n

Nn

,
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so
N

ε

n

Nn

tends P̃p-almost surely to 1, which also means that
N

ε

n

Nn

tends Pp-almost

surely to 1. �

Now, we prove that working with open paths or with open paths that are the
beginning of an infinite open path is essentially the same:

Lemma 3.4. Pp-almost surely,

lim
n→+∞

log Nn

n
= lim

n→+∞

log Nn

n
and lim

n→+∞

log Nn

n
= lim

n→+∞

log Nn

n
.

Proof. Fix 0 < ε < 1 and define, for n ≥ 1, the following event

En = ∩
‖z‖≤n

{τz ◦ θ⌊n(1−ε)⌋) < εn or τz ◦ θ⌊n(1−ε)⌋) = +∞}.

Assume that En occurs. Consider a path γ = (γi, i)0≤i≤n from (0, 0) to Z
d×{n} and

set z = γ⌊n(1−ε)⌋: as τz ◦θ⌊n(1−ε)⌋) ≥ εn, the event En implies that τz ◦θ⌊n(1−ε)⌋) =

+∞. So (γi, i)0≤i≤⌊n(1−ε)⌋ contributes to N ⌊n(1−ε)⌋ and thus, on En,

Nn ≤ (2d + 1)εn+1N ⌊n(1−ε)⌋,

so
log Nn

n
≤ (ε +

1

n
) log(2d + 1) +

log N ⌊n(1−ε)⌋

n

≤ (ε +
1

n
) log(2d + 1) +

log N ⌊n(1−ε)⌋

⌊n(1 − ε)⌋ .

The exponential estimate (3) on the long but finite lifetimes in supercritical oriented
percolation ensures that

∀n ≥ 1 Pp(Ec
n) ≤ CdAnd exp(−Bεn) ≤ A′ exp(−B′n).

With the Borel–Cantelli lemma, this leads to:

lim
n→+∞

log Nn

n
≤ ε log(2d + 1) + lim

n→+∞

log Nn

n
.

By taking ε to 0, we obtain

lim
n→+∞

log Nn

n
≤ lim

n→+∞

log Nn

n
.

The proof for the inequality with lim instead of lim is identical. Since Nn ≤ Nn,
the reversed inequalities are obvious. �

The next step consists in proving a continuity property which says that close
points linked to (0, 0) have close number of open paths linking them to (0, 0). To
prove this, we use the at least linear growth (1) of the coupled zone in supercritical
oriented percolation, and must thus consider paths close to the time axis:

Lemma 3.5 (Continuity Lemma). Let 0 < ε < 1/D be fixed. There exist constants

A, B > 0 such that for every n ≥ 1,

(8) Pp

(

∃y ∈ B(0, εn) such that (0, 0) → (y, n) and

Nε
n > Ny,ε

n × (2d + 1)Dεn

)

≤ A exp(−Bn).



THE NUMBER OF OPEN PATHS IN ORIENTED PERCOLATION 9

Proof. We recall that D is defined in (5). Define, for n ≥ 1,

(9) Gn =

{

∀z ∈ B(0, εn) (τz ≤ Dεn or τz = +∞);
∀z ∈ B(0, εn) (τz = +∞) ⇒ B(0, nε) ⊂ Kz

Dεn

}

.

Since B(0, εn) ⊂ B(z, 2nε) for each z ∈ B(0, εn), lemma 2.1 gives

(10) ∀n ≥ 1 P(Gc
n) ≤ Cnd2A exp(−BDεn) ≤ A′ exp(−B′n).

Let y ∈ B(0, εn). Let us show that the inequality

Nε
n ≤ Ny,ε

n × (2d + 1)Dεn(11)

holds on the event {Gn ◦ θ⌊(1−Dε)n⌋} ∩ {(0, 0) → (y, n)}: this will end the proof of
the lemma.

Assume that {Gn ◦θ⌊(1−Dε)n⌋}∩{(0, 0) → (y, n) → ∞} holds. Denote by N ε
n the

set of open paths γ = ((γi, i)0≤i≤n) from (0, 0) to some (γn, n) with γn ∈ B(0, εn)
and γ⌊(1−Dε)n⌋ ∈ B(0, εn): it has cardinality Nε

n. Note also N y,ε
n the set of γ ∈ N ε

n

with γn = y.
Let γ be a path in N ε

n and note z = γ⌊(1−Dε)n⌋ ∈ B(0, εn). As τz ◦ θ⌊(1−Dε)n⌋ ≥
Dεn, the occurrence of Gn ◦ θ⌊(1−Dε)n⌋ ensures that τz ◦ θ⌊(1−Dε)n⌋ = +∞, and
that

y ∈ B(0, εn) ⊂ Kz
Dεn ◦ θ⌊(1−Dε)n⌋.

Since there exists a path from (0, 0) to (y, n), y also belongs to ξZ
d

Dεn ◦ θ⌊(1−Dε)n⌋,
so y ∈ ξz

Dεn ◦ θ⌊(1−Dε)n⌋. Then, there exists an open path γ′ from (z, ⌊(1 − Dε)n⌋)
to (y, n). Now, we associate to the path γ ∈ N ε

n the couple Θ(γ) = (Θ1(γ), Θ2(γ)),
where

• Θ1(γ) is the concatenation of the portion of γ between (0, 0) and (z, ⌊(1 −
Dε)n⌋) and of γ′: it is thus in N y,ε

n ;
• Θ2(γ) is the portion of γ between (z, ⌊(1 − Dε)n⌋) and (x, n).

As we can recover γ from Θ(γ), Θ is an injection from N ε
n into a set of cardinality

Ny,ε
n × (2d + 1)Dεn, which gives (11). �

Proof of Theorem 3.1. Let 0 < ε < 1/D be fixed. Remember that (Sn)n≥1 is the
random subsequence of times defined by (6). With a Borel-Cantelli argument,
Lemma 3.5 gives, Pp-almost surely, for all n large enough,

(0, 0) → (0, n) =⇒ Nε
n ≤ N0,ε

n × (2d + 1)Dεn.

But N
ε

Sn
≤ Nε

Sn
, N0,ε

Sn
= N

0,ε

Sn
≤ N

0
Sn

and {(0, 0) → (0, Sn)} always hold, so

Pp-almost surely, for large n, we have

N
ε

Sn
≤ N

0
Sn

× (2d + 1)DεSn ,

or, equivalently, log N
ε

Sn
≤ log N

0
Sn

+ DεSn log(2d + 1).

As N0
Sn

= N
0
Sn

≤ NSn
and log NSn

= log
NSn

N
ε

Sn

+ log N
ε

Sn
, we get that Pp-almost

surely, for large n

log N0
Sn

≤ log NSn
≤ log

NSn

N
ε

Sn

+ log N0
Sn

+ DεSn log(2d + 1).
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Lemma 3.2, Lemma 3.3 and the strong law of large numbers (7) for Sn ensure that

α′ ≤ lim
n→+∞

1

n
log NSn

≤ lim
n→+∞

1

n
log NSn

≤ α′ + DεEp(σ) log(2d + 1).

By taking ε to 0, this implies that Pp-almost surely

lim
n→+∞

1

n
log NSn

= α′.

Equation (7) ensures that Sn ∼ nEp(σ), and (Nn)n≥1 is non decreasing, thus Pp-
almost surely

lim
n→+∞

1

n
log Nn = lim

n→+∞

1

Sn
log NSn

=
α′

Ep(σ)
= α.

Finally, the limit for 1
n log Nn follows from Lemma 3.4. �

Corollary 3.6. Let (an) be a non-negative sequence with lim
n→+∞

an

n = 0. For

each η > 0, Pp-almost surely, there exists n0 such that for n ≥ n0:

∀x ∈ Z
d; ‖x‖ ≤ an and (0, 0) → (x, n) =⇒ α − η ≤ log N((0, 0), (x, n))

n
≤ α + η.

Proof. The upper bound obviously follows from the inequality

sup
‖x‖≤an

Nx
n) ≤ ∑

‖x‖≤an

N((0, 0), (x, n)) ≤ Nn.

Take ε > 0 with Dε log(2d + 1) < η/2. Putting Lemma 3.3 and Theorem 3.1

together, we get that Pp almost surely,
log Nε

n

n > α − η/2 for large n.
For large n, B(0, an) ⊂ B(0, εn), by Lemma 3.5, we see that for large n, (0, 0) →

(x, n) =⇒ log Ny,ε
n

n ≥ log Nε
n

n − Dε log(2d + 1), which gives the result. �

4. Possible extensions

There are several directions of extension of the results presented here.
A first way is to change the percolating structure. Here, the bond between (x, n)

and (y, n + 1) is open with probability p11{‖x−y‖≤1}. A natural extension is to take
the model in Lacoin [7]: then, the probability of being open is pϕ(x − y), where ϕ
is a non-negative function with finite support. Some discussions with the authors
of [2] let think that an extension of Proposition 2.4 is possible. Also, the change
of percolating structure (with possible jumps) creates some difficulties, but they
should be tractable.

Another interesting question is to observe the number of path along precise di-
rections. We have already seen in corollary 3.6 what happens in the main direction.
We can for example imagine the following extension:

Conjecture 1. Let y ∈ R
d. There exists α(y) ≥ 0 such that, for each non-negative

sequence (an) with lim
n→+∞

an

n = 0, for each η > 0, Pp − a.s., there exists n0 such

that for n ≥ n0:

∀x ∈ Z
d; x ∈ B(ny, an) and (0, 0) → (x, n) =⇒ α(y) − η ≤ log Nx

n

n
≤ α(y) + η.
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Presumably, α(y) > 0 if and only if y belongs to the open cone of oriented
percolation.
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