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Perceptual decisions often involve integrating evidence from multiple
concurrently available sources. Uncertainty arises when the inte-
grated (mean) evidence fails to support one alternative over another.
However, evidence heterogeneity (variability) also provokes uncer-
tainty. Here, we asked whether these 2 sources of uncertainty have
independent behavioral and neural effects during choice. Human ob-
servers undergoing functional neuroimaging judged the average
color or shape of a multielement array. The mean and variance of the
feature values exerted independent influences on behavior and brain
activity. Surprisingly, BOLD signals in the dorsomedial prefrontal
cortex (dmPFC) showed polar opposite responses to the 2 sources
of uncertainty, with the strongest response to ambiguous tallies of
evidence (high mean uncertainty) and to homogenous arrays (low
variance uncertainty). These findings present a challenge for models
that emphasize the role of the dmPFC in detecting conflict, errors, or
surprise. We suggest an alternative explanation, whereby evidence
is processed with increased gain near the category boundary.

Keywords: categorization, dorsomedial prefrontal cortex, fMRI, gain
modulation, perceptual averaging

Introduction

Perceptual categorization involves quantifying sensory evidence
and comparing it to a criterion or boundary (Green and Swets
1966; Ashby and Maddox 2005; Freedman and Miller 2008).
For example, a particular color might separate “ripe” from
“unripe” fruit for a foraging animal. Items with feature values
close to this boundary elicit prolonged decision latencies, a
delay that computational models attribute to the need resolve
uncertainty—or conflict—between closely matched rival
responses (Botvinick et al. 2001; Bogacz et al. 2006). In the
human brain, this process has been attributed to a network in-
cluding the medial prefrontal cortex, anterior insular cortex, and
lateral parietal cortex (Botvinick et al. 1999; Huettel et al. 2005;
Grinband et al. 2006).

While laboratory-based tasks typically involve categoriz-
ation of an isolated visual stimulus, in the real world, decisions
often require observers to integrate information from multiple
sources (e.g., by averaging). For example, a hungry animal
might decide where to forage by averaging the size or color of
all the fruit in a tree. Critically, judgments about the average
information in a multielement array are made in the face of 2
potentially orthogonal sources of decision-level uncertainty—
those owing to the “mean” and “variability” of the feature
values respectively. Placing a bet on a soccer match, one might
consider the average skill level of all the players in a team.
However, picking a winner will be challenging when mean
ability in the 2 teams is well matched, or when skill levels are
variable (e.g., one team has excellent strikers but a weak

goalkeeper). Both the mean and variance of evidence can
influence error rates and prolong decisions (de Gardelle and
Summerfield 2011), suggesting that human observers can
compute such summary statistics about visual stimuli (for a
review, see Alvarez 2011). However, little is known about the
brain mechanisms that underlie these computations.

Here, thus, humans undergoing functional magnetic reson-
ance imaging (fMRI) categorized an array of 8 elements ac-
cording to either its average color or shape. Critically, we
manipulated independently the parameters of the distributions
from which feature information was drawn, thereby varying
uncertainty due to the mean (UM) and variance (UV) of the evi-
dence on both behavior and brain activity. When the array
mean was closer to the category boundary (increased UM),
BOLD activity in the dorsomedial prefrontal cortex (dmPFC)
and anterior insular cortices (AINS) increased as previously de-
scribed (Huettel et al. 2005; Grinband et al. 2006). Remarkably
however, and contrary to our predictions, increasing the varia-
bility (thereby increasing UV) had the opposite effect, with
dmPFC and AINS showing relatively “decreased” BOLD
responses when evidence variability was increased, that is,
when the feature values were more heterogeneous (and per-
formance declined). These findings are hard to explain if the
function of the dmPFC is to monitor for uncertainty (Botvinick
et al. 2001), predict errors (Brown and Braver 2005), or scale
with time-on-task (Grinband et al. 2011). We suggest an
alternative explanation, whereby information near to a cat-
egory boundary is processed with enhanced gain in the
dmPFC and insular cortex.

Materials and Methods

Participants
Twenty right-handed volunteers (reporting normal or corrected-
normal vision and no history of neurological problems), aged between
20 and 35 (9 females, 11 males), provided informed consent and were
paid £30 compensation for taking part. The study was approved by
local ethics committees.

Stimuli
Stimuli were created and displayed using PsychToolBox (www.
psychtoolbox.org) for MATLAB (Mathworks). Stimuli were presented
on a custom shielded Samsung 40″ LCD screen (LTA400HF1) at a dis-
tance of 240 cm. On each trial participants viewed an array of
8 elements (colored shapes) circularly arranged (radius ∼3° visual arc)
around a white central fixation point (5 pixels radius). Elements were
equally spaced, equiluminant, and covered an equal area on the screen
(width = height = 50 pixels for pure circle). Stimuli were presented on
an equiluminant gray background. Each element was defined by a
shape parameter (S) that determined its position on a continuous tran-
sition between a square (S =−1) and a circle (S = +1), and a color par-
ameter (C) that determined its position on a continuous transition
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between blue (C =−1) and red (C = +1). This is described in detail else-
where (de Gardelle and Summerfield 2011). On each trial, the par-
ameter values for each dimension were drawn independently from a
Gaussian distribution with mean μ and standard deviation σ. To ensure
equal precision of the mean in all conditions, resampling occurred
until the sampled trial μ and σ fell within a tolerance of 0.1% of the
desired values.

Design
The mean μ could take 1 of 4 values: 2 either side of the category
boundary, giving rise to 2 absolute distances to category boundary,
|μ|, which we refer to as low-mean versus high-mean conditions. The
standard deviation σ was manipulated in 3 levels. The shape and color
dimension were manipulated independently within and across trials.
The task involved only 1D (either color or shape), varied across differ-
ent blocks, such that each dimension could in turn be relevant or irrele-
vant for the decision. This afforded us a 2 (relevant |μ|) × 3 (relevant
σ) × 2 (irrelevant |μ|) × 3 (irrelevant σ) within-participant factorial
design.

Thresholding
To equalize difficulty across participants and shape and color tasks, we
used an adaptive procedure, in which the mean parameter of the array
was varied to achieve an accuracy of 75% (low-mean condition) or 85%
(high-mean condition). The 3 levels of variance were identical for all

participants (0.1, 0.2, and 0.3). Each participant completed this stair-
case procedure (4 blocks: low and high mean condition in both tasks,
with 144 trials in each block) on a standard testing PC on a day prior to
the scanning session.

Task and Procedure
On each trial, observers classified a circular array of 8 elements (squir-
cles) according to their average color or shape (Fig. 1a). As described
above, each of the 8 elements took on a color value (red to blue) and
shape value (square to circle), both parameterized in the range −1 to 1,
with the category boundary falling at zero (Fig. 1b). Color and shape
were deemed decision-relevant in alternating blocks and the observers’
task was thus to respond circle/square or red/blue according to
whether the average feature value on the “relevant” dimension was
greater or less than zero (ignoring the “irrelevant” dimension).

As shown in Figure 1a, the stimulus array appeared 500 ms after the
onset of central fixation point, and remained on the screen for 1500
ms, during which time participants judged the average shape or color
of the elements in the array, depending on the task block. Responses
were made by pressing 1 of 2 keys on a button box (scanner) or com-
puter mouse (thresholding task). In the scanner, participants used the
index fingers of both hands to make responses whilst for thresholding
the index and middle fingers of the same hand were used. Response
mappings were fully counterbalanced across both dimensions
between participants. At array offset, auditory feedback indicated
response accuracy on each trial. Two ascending tones (400–800 Hz,

Figure 1. Task, behavior and modeling. (a) Schematic representation of a trial: a white central fixation point, was followed after 500 ms by the stimulus array, which participants
categorized based on either the average shape (square vs. circle) or average color (red vs. blue) across all elements, with auditory feedback. (b) Example distributions of array
elements for different combinations of mean and variance trials as labeled. The x-axis shows the feature space for the color task, with the larger blue and red squircles at each
extreme representing color values of −1 (blue) and +1 (red). The smaller squircles show example stimuli for the color task drawn from a distribution with low mean, low variance
(upper panel), high mean, low variance (upper middle panel), low mean, high variance (lower middle panel), and high mean, high variance (lower panel). The black arrow indicates
approximate location of the distribution mean and the central dashed line is the category boundary. Thus, in these example trials arrows to the left indicate of the central line indicate
that the correct response is “blue” and arrows to the right of the boundary should elicit a “red” response. (c) Coefficients from a logistic regression in which decision-relevant values,
“ranked” in each trial, predicted observers’ choices, separately for blue/square (blue) and red/circle (red) stimulus arrays. Higher decision weights appear for inlying versus outlying
elements. The abscissa indicates the average decision value of the elements in each rank, in native space. (d) Response times (RTs, left panels) and error rates (right panels), as a
function of the mean and variance manipulations. Low mean and high variance correspond to high uncertainty. Top row: effect of the task-relevant manipulations. Middle row: effect
of the irrelevant dimension. Bottom row: best-fitting model data (dashed lines) overlaid on the human data for the task-relevant manipulations. The model was fitted to errors only,
and RTs are predictions.
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100 ms each) indicated a correct response while 2 descending tones
(800–400 Hz, 100 ms each) were given for incorrect responses or
misses (no-response trials). In the scanner, a jitter of 4 ± 2 s was intro-
duced into the interstimulus interval (ISI); for the thresholding task,
the ISI was jittered uniformly around 1 s (min: 0.85 s, max: 1.15 s).

Each block began with an instruction screen indicating the relevant
decision dimension (either shape or color) and the response mapping
for the block. Response mappings were fully counterbalanced
across participants. Participants underwent 2 blocks of 144 trials
for each task, for a total of 576 trials, and the order of tasks was
pseudorandomized.

Eyetracker: Acquisition
An MRI compatible eyetracker (Eyelink 1000 tracking device; SR Re-
search, Ontario, CA, USA) was used to monitor eye movements in the
fMRI scanner. The tracker was adjusted before each experimental
block with a calibration/validation procedure in which participants fol-
lowed with their eyes a small circle moving between 9 locations on the
screen. Due to the difficulties of eyetracking in a scanner environment,
accurate calibrations were not always possible and so eye data are pre-
sented from 10 participants. Data were collected using the PsychTool-
Box Eyelink toolbox and analyzed using in-house customized Matlab
scripts. After downsampling to 200 Hz, we calculated the mean and
variance of the displacement of the eye on each sample. Analyses of
variance (ANOVAs) were then used to compare these estimates for
different levels of stimulus array mean and variance.

Behavioral Analyses
For each participant, we calculated accuracy (percent correct) and
response latencies on the correct choices, in the 3 relevant variance × 2
relevant mean conditions of our design, and carried ANOVAs at the
group level (Fig. 1d). The same procedure was used to analyze the
effects of the irrelevant dimension.

We also calculated a weighting profile across elements (Fig. 1c), as
in our previous work (de Gardelle and Summerfield 2011). This
weighting profile is a plot of regression weights describing the contri-
bution of each element to the trial decision. For each participant, we fit
a probit regression in which the weighted sum of the 8 relevant feature
values plus a constant term predicted the probability of “positive”
choices, on a trial-by-trial basis. We sorted the 8 values in each trial
before including them as predictors, so that the weights (i.e., the
regression coefficients) corresponded to the different ranks along the
task-relevant dimension. Then, we divided all weights in each partici-
pant by their root mean square, a normalization procedure that mini-
mized the influence of unreliable estimates and that was neutral with
respect to the weighting profile. We then compared the average nor-
malized weights for the 4 outlying elements (i.e., the elements ranked
1, 2, 7, 8 in the trial) and the 4 inlying elements (ranked 3, 4, 5, 6), in a
paired t-test across participants.

Computational Model
As in our previous experiments (de Gardelle and Summerfield 2011),
we calculated for each participant and task the proportion of trials in
which a particular color or shape value x was associated via feedback
with the left-hand response category (P(L|x)) or the right-hand
response category (P(R|x)). Taking the logarithm of the ratio between
these probabilities, we transformed the stimulus value x into a LPR
value (log probability ratio; eq 1). This LPR value quantifies the associ-
ation between x and the 2 response categories.

LPRðxÞ ¼ log
PðRjxÞ
PðLjxÞ

� �
ð1Þ

Here, we calculated these probabilities in 10 bins along the x-axis
(each bin contained 10% of the data), and fit them with a sigmoidal
function. From then, we simulated a diffusion model in which the
mean LPR over the 8 elements was used to drive the accumulation
of evidence towards choice (de Gardelle and Summerfield 2011).

The diffusion model had 2 free parameters for each participant: the
noise in the diffusion and the amount of accumulated evidence needed
to trigger the response. These parameters were optimized for the
model to fit the 6 error rates for each participant and task. The simu-
lated RTs (calculated in cycles) were then linearly scaled to the range of
human RTs (in seconds), by setting the cycle duration such that the
human and simulated RTs had the same standard deviation across all
trials, and by adding a constant offset such that the simulated and
human RTs had the same mean across all trials. This rescaling ensured
that we could compare simulated and human RTs, while being neutral
with respect to the profile of RTs across conditions.

fMRI Acquisition and Preprocessing
Images were acquired in a 3-Tesla Siemens TRIO with a 32-channel
head coil using a standard echo-planar imaging (EPI) sequence.
Images were 64 × 64 × 36 volumes with voxel size 3 × 3 × 3 mm; ac-
quired with a 2-s repetition time (TR) and 30-ms echo time. Four runs
of 412 volumes were obtained, each of which lasted approximately
15 min and corresponded to 1 experimental block of 144 trials.

Preprocessing of the imaging data included correction for head
motion and slice acquisition timing, followed by spatial normalization
to the standard template brain of the Montreal Neurological Institute
(MNI brain). Images were resampled to 3-mm cubic voxels and
spatially smoothed with a 10-mm full width at half-maximum isotropic
Gaussian kernel. A 256-s temporal high-pass filter was applied in order
to exclude low-frequency artifacts. Temporal correlations were esti-
mated using restricted maximum likelihood estimates of variance com-
ponents using a first-order autoregressive model. The resulting
nonsphericity was used to form maximum likelihood estimates of the
activations.

fMRI Analyses
All fMRI analyses were carried out using SPM8. SPM orthogonalizes
regressors by default, but we ensured that this feature was turned off.
We analyzed the data in 2 distinct ways. In “native space” analyses, we
created independent regressors encoding the parameters |μ| and σ of
the stimulus array. In “decision space” analyses, we substitute these for
their counterpart in terms of the LPR-transformed feature values for
each array, which we denote UMr and UVr (the subscript r indicates that
this is about the task-relevant dimension). The decision space values
represent the output from a proposed stage of processing in which the
feature values (in color or shape space) are passed through a sigmoidal
function. Including this transformation accounts for the behavioral
finding of a weighting function in which outlying elements are down-
weighted compared with those at the center of the trial distribution of
feature values.

mLPR ¼ 1
8
�
X8
k¼1

LPRðxkÞ ð2Þ

vLPR ¼ 1
8
�
X8
k¼1

ðLPRðxkÞ �mLPRÞ2 ð3Þ

UMr ¼ �jmLPRj ð4Þ

UVr ¼
ffiffiffiffiffiffiffiffiffiffiffi
vLPR

p ð5Þ

We calculated the decision space values as described in eq 2–5. First,
we calculate the mean (mLPR) and variance (vLPR) of the LPR over the
8 elements (eqs. 2 and 3). Then, we define UMr and UVr (eqs. 4 and 5)
such that both quantities positively scale with the intrinsic difficulty of
the stimulus in the categorization task, which increases when the mean
evidence approaches zero or when the feature values become more
variable. These quantities were then used as predictors for the BOLD
responses. In a separate analysis, we substituted the variability of the
evidence for a different regressor encoding the sum across elements of
the absolute value of the LPR.

Both native space and decision space analyses included the mean
and variance regressors for the relevant and irrelevant dimensions
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(1–4), as well as separate regressors encoding (5) the feedback coded
positive for correct and negative for incorrect trials, and nuisance
regressors encoding movement parameters estimated from the realign-
ment phase (7–12). These analyses were carried out independently
for each participant, and the resulting t-statistics for each regressor
were then subjected to t-tests at the group level. Voxels reported are
those that survived at an uncorrected threshold of P < 0.0001. Full
details of these voxels can be found in Tables 1 and 2.

In order to plot activity at different regions for the relevant and irre-
levant mean and variance, we placed a sphere of 5 mm radius on the
peak voxel in each cluster identified as responding to either the rel-
evant mean or relevant variance. We used a spherical ROI centered on
the peak voxel, rather than functionally-defined ROI, to avoid having
to select a statistical threshold above which to include voxels. We then
plotted its response to relevant and irrelevant mean and variance. We
report statistics for (only) the response within this region to the orthog-
onal factor, that is, to the mean when data were extracted on the basis
of the whole-brain search for voxels responsive to variance, and the
variance when data were extracted on the basis of the whole-brain
search for voxels responsive to mean. Because the regressors for the
mean and variance (either |μ| and σ or the mean and standard devi-
ation of LPR values) were orthogonal by design, this approach avoids
any circularity or “double-dipping”.

In order to show hemodynamic response functions (Fig. 3d), a
further whole-brain finite impulse response (FIR) analysis was run
with the native-space values. This model replicated the structure of the
main analyses, including the mean and variance of both the relevant
and irrelevant dimension. In this analysis, 16 time bins (each corre-
sponding to 2 s) were entered into the design matrix for each regressor
described above. Positive and negative feedback, as well as movement

parameters, were also included in the design matrix for this analysis.
Data in Figure 3d are presented from a sphere of 5 mm radius centered
on the peak voxel within the dmPFC ROI.

Results

Behavioral Data
Pre-experimental calibration ensured comparable performance
in shape and color tasks for the fMRI experiment (see Materials
and methods). Mean error rates (shape: 18%, color: 16%) and
response times (shape: 800 ms, color: 803 ms) were not different
across tasks. ANOVAs revealed main effects of both mean (i.e.,
proximity to category boundary) [F1,20 = 92.7, P < 0.001] and var-
iance (i.e., element heterogeneity) [F2,40 = 18.0, P < 0.001] on
correct response latencies (Fig. 1d, top left panel), but no signifi-
cant interaction [F2,40 = 0.46, P < 0.58]. Comparable effects were
found for accuracy (Fig. 1d, bottom left panel), with more errors
occurring on trials with low mean than high mean [F1,20 = 104,
P < 0.001], or trials with high variance versus low variance
[F2,40 = 7.80, P < 0.001], and no interaction [F2,40 = 2.70, P < 0.15].
The irrelevant mean and variance had no significant effect on RT
or errors (all P-values > 0.05; Fig. 1d, right panels). Analyses of
eye movements (mean length and variance of the eye path) con-
firmed that they did not differ between conditions (all P > 0.19).
Together, these data confirm the previous finding that array
mean and variance have independent (i.e., noninteracting)
effects on behavior (de Gardelle and Summerfield 2011).

When decisions involve integration of multiple independent
sources of evidence, the question additionally arises of how
much each source affects the final choice. In a previous report
(de Gardelle and Summerfield 2011), we demonstrated that
elements that were outlying in value space (e.g., in a red/blue
categorization, the 2 bluest or reddest elements amongst the
8 items in a trial) carried less weight in the choice than inlying
elements (e.g., the 4 central elements on the red/blue axis), a
phenomenon termed “robust averaging.” Calculating the weight
that each element (sorted by its rank) carried in the choice using
logistic regression (see Materials and methods), we replicated
this finding here. We observed significantly higher weights
(regression coefficients) for inlying versus outlying items
[t20 = 2.72, P < 0.013], when collapsing across relevant feature di-
mension (color or shape). These data are shown independently
for relevant feature dimension in Figure 1c (left panel).

Computational Model
We have previously shown that it is possible to account for
both this “robust averaging” phenomenon and prolonged RTs
for more variable arrays if decision values are “squashed,” for
example, by being passed through a soft-threshold nonlinear-
ity (i.e., a sigmoid function) before being averaged and inte-
grated across time (de Gardelle and Summerfield 2011). One
computationally parsimonious manner of implementing this
transformation is to recode the feature value of each element
according to the logarithm of the probability ratio (LPR)
between the 2 response options, given the history of feedback
for this stimulus value. This transformation mirrors what
might occur in a simple, biologically plausible neural network
in which inputs are mapped onto binary responses via
weights updated with a supervised, winner-takes-all rule
(Ratcliff et al. 1999).

Table 1
Voxels correlating with UMr in the decision space analysis at a threshold of P< 0.001 uncorrected
for clusters larger than 20 voxels

Cluster P
(FDR-corrected)

Cluster
equivk

Peak P
(FDR-corrected)

Peak
T

Peak x y z
(mm)

0.000 126 0.153 6.22 −34 −48 50
0.000 290 0.153 6.20 34 24 −2

0.466 4.90 50 8 26
0.001 69 0.153 6.11 −30 28 −2
0.000 101 0.207 5.77 −46 4 2
0.002 57 0.382 5.22 10 24 42
0.002 56 0.560 4.64 34 −64 46

0.561 4.40 38 −44 54
0.045 24 0.561 4.40 −50 32 30

0.596 4.12 −46 44 22
0.667 3.98 −38 28 18

0.017 33 0.078 6.70 66 −12 −14
0.000 120 0.294 5.13 −2 44 −2
0.000 101 0.294 5.12 −2 −52 30

Note: STATISTICS: P-values adjusted for search volume.
The following abbreviations have been used for the headings above and for all subsequent tables:
Cluster P(FDR-cor): clusterwise P-value with false discovery rate correction for multiple
comparisons; Cluster equivk: number of voxels in cluster; voxel P (FDR): voxelwise P-value with
false discovery rate correction for multiple comparisons; peak T; voxelwise t-value; x, y, z ({mm)}:
coordinates for the peak voxel, from the template brain of the Montreal Neurological Institute

Table 2
Voxels correlating with UVr in the decision space analysis at a threshold of P< 0.05 corrected
(FDR) for clusters larger than 20 voxels

Cluster P (FDR-corrected) Cluster equivk Peak P (FDR-corrected) Peak T x y z (mm)

0.005 57 0.349 5.73 6 32 42
0.023 36 0.349 5.73 50 −28 −2
0.000 119 0.007 8.15 −30 −84 14

0.013 7.04 −34 −84 6
0.000 331 0.011 7.37 34 −76 14

0.053 5.90 26 −56 54
0.053 5.86 22 −52 46

0.000 107 0.069 5.56 −18 −60 54

Note: Abbreviations as previously. STATISTICS: P-values adjusted for search volume.
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For each element x, we thus defined the LPR value of x (see
eq 1 and Materials and methods) which expresses the probabil-
istic evidence conveyed by the stimulus x in favor of the right-
ward option (for positive LPR values) or the leftward option
(for negative values). In the context of our experiment, this
LPR transformation had a sigmoidal shape, by which extreme
elements do not “pull their weight” compared with those near
the center of feature space (where the function is roughly
linear). Of note, the likelihood function is sigmoidal in our
experiment because of the mixture of Gaussians (4 levels of
mean × 3 levels of variance) from which samples were drawn
across trials. Consequently, using the average LPR to drive a
drift-diffusion decision process could account for the slowing
down of response latencies on more variable arrays, because
the weight of outlying evidence is muted, reducing the overall
input to the decision process on those trials (Fig. 1c, lines). In
addition, this LPR transformation could capture the down-
weighting of elements with extreme feature values exhibited
in participants’ behavior (Fig. 1c, right panel). These findings
replicate those of our earlier work (de Gardelle and Summer-
field 2011).

In what follows, we assess how brain responses of partici-
pants can be predicted by the intrinsic uncertainty of each
stimulus array in the categorization task. To do so, we defined
the quantities UMr and UVr to express the effects of manipulat-
ing the stimulus mean and variance in terms of the “decision-
space,” that is, the space of the LPR-transformed values (see
eqs 3–6 and Materials and methods).

BOLD Responses Associated with Mean Evidence
In the first set of analyses, we thus searched for voxels where
the BOLD signal correlated positively with the quantity UMr

which reflects the uncertainty due to the mean of the evidence

on the task-relevant dimension. In what follows, we report
uncorrected statistics but all reported activations exceeded a
cluster-corrected threshold of P < 0.05 unless explicitly noted
in the text.

The results are shown in Figures 2 and 3 (red blobs) and re-
ported in Table 1. UMr was positively associated with the BOLD
signal in the dorsomedial prefrontal cortex (dmPFC; Fig. 3a),
[peak: 0, 22, 48; t(20) = 5.22, P < 0.0001] and anterior insular
cortex (AINS; Fig. 3b) [left peak −30, 20, 2; t(20) = 6.07,
P < 0.00001; right peak: 34, 24, −2; t(20) = 6.2, P < 0.00001;].
Note once again that this positive correlation signals higher
BOLD signals as LPR approaches zero and responses come into
conflict. A positive association with UMr was also observed in
the inferior parietal lobule (IPL) [left peak: −34, −48, 50;
t(20) = 6.22, P < 0.00001; right peak: 38, −44, 54; t(20) = 4.40
P < 0.001; Figure 2a, far left] and dorsolateral prefrontal cortex
(dlPFC) both anteriorly in Brodmann’s area 46 [left peak: −50,
32, 30, t(20) = 4.40, P < 0.0002; right peak: 42, 44, 26, t(20) = 4.76,
P < 0.0001) and more caudally in Brodmann’s area 8 [left peak:
−46, 4, 26 t(20) = 5.77, P < 0.0001; right peak: 50, 8, 26;
t(20) = 4.90, P < 0.0001; Figure 2a, center left]. Negative corre-
lations with UMr (i.e., higher BOLD with growing unsigned LPR)
were observed in the ventromedial prefrontal cortex and pos-
terior cingulate (not shown).

BOLD Responses Associated with Evidence Variability
Our next step was thus to assess whole-brain responses to the
variability of the evidence. As for the results reported above,
all results shown remained significant following correction for
multiple comparisons at the cluster level (see Table 2). Here,
we report brain regions that were sensitive, across trials, to the
standard deviation of the LPR over elements; that is, UVr

(uncertainty due to variability) as defined above.

Figure 2. Imaging results from dorsolateral prefrontal, parietal and visual cortices. Top row: voxels where BOLD activity was responding to positively correlated with mean-related
uncertainty (UMr, in red), and positively correlated with variance-related uncertainty (UVr, in yellow). All activations are rendered on the template brain of the Montreal Neurological
Institute with an uncorrected threshold of P< 0.001 (see text and tables for full list of activation and peak coordinates). Bottom row: average parameter estimates from a 5 mm
sphere centered on the peak activation from the cluster highlighted with a dashed ellipse, for regressors encoding uncertainty due to the mean and variance for relevant and
irrelevant dimensions. Stars indicate significance: *P< 0.05, **P<0.01, ***P<0.001. Red and yellow shading denotes the condition used to define the ROI. (a) Voxels in the
inferior parietal cortex (IPL) responding to UMr. (b) Voxels in the dorsolateral prefrontal cortex (dlPFC) responding to UMr (c) superior parietal cortex (SPL) showed a positive
correlation with Uvr (and UMr, see bar plot). (d and e) We subdivided a large region of visual cortex showing activity positively correlated with Uvr into superior (sVis) and inferior
(iVis) regions.
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Positive correlations with evidence variability (UVr) were
observed in the visual cortex (Fig. 2d,e, yellow blobs). These
reached maxima in separate sites in the middle occipital gyrus
(sVis; visual area 3) which were positively activated when the
evidence was more variable [left peak: −30, −84, 14 t(20) = 8.15
P < 0.000001; right peak: 34, −76, 14, t(20) = 7.37, P < 0.00001;
center right panel] and at a more ventral site overlapping with
the inferior occipital gyrus (iVis) [t(20) = 4.02, P < 0.0004; far
right panel]. We also observed strong positive correlations
with evidence variability at sites coextensive with the superior
parietal lobule (SPL) [left peak: −18, −60, 54, t(20) = 5.56,
P < 0.0001; right peak: 26, −56, 54, t(20) = 5.90, P < 0.00001;
middle panel].

As shown in Figure 3a (green blobs), however, negative cor-
relations with UVr were observed in the dorsomedial prefrontal
cortex (6, 32, 42, t(20) = 5.73, P < 0.00001;). We also observed
negative correlations with evidence variability in the anterior
insula, with symmetric peaks in the left (−30, 24, −2,
t(20) = 3.95, P < 0.001) and right (26, 20, 2, t(20) = 3.95,
P < 0.001) hemispheres, although these fell just short of cor-
rected statistical thresholds (Fig. 3a, right). These negative cor-
relations with UVr denote voxels where the BOLD response
increased as arrays became more homogenous.

BOLD Response to the Mean and Variance of the
Irrelevant Dimension
Our stimulus array consisted of a relevant and an irrelevant di-
mension (either shape or color). This afforded us the opportu-
nity to carry out precisely parallel analyses on the dimension of
the array which was irrelevant to the decision. One small
cluster was found to negatively correlate with UMi (t(20) = 4.23,
P < 0.001), but it did not survive correction for multiple com-
parisons. No activations were observed in any regions

correlating with the variance of the “evidence” on the irrele-
vant dimension (UVi), although positive correlations with the
irrelevant variance were observed in the visual cortex at very
lenient thresholds (P < 0.005 uncorrected). The lack of reliable
correlation with the statistics of the irrelevant dimension con-
firms that the above-described effects are due to processing of
decision-relevant signals.

Overlapping and Nonoverlapping Responses
to Evidence Mean and Variability
To compare responses to mean and variance, we extracted
regions of interest focused on peaks responding positively to
UMr and tested their sensitivity to evidence variability (i.e.,
UVr), and vice versa (Fig. 2b). ROIs were defined as a 5 mm
radius sphere centered on the peak activated voxel in each
cluster. Of note, these analyses were strictly independent from
one another, as the mean and standard deviation of the feature
values in the array were orthogonal by design, and remained
so after conversion to LPR values (mean r =−0.01, P = 0.29,
t-test of Fisher’s z-scores against zero). For completeness, we
additionally verified sensitivity to the irrelevant mean and
variance via this approach, making separate plots for UVr

and UMr (correlations with the task-relevant variables) and UVi

and UMi (correlations with the task-irrelevant variables; see
also Fig. 2b).

Voxels responsive to UMr in the IPL and dlPFC failed to
respond to evidence variability (all P-values > 0.05; Fig. 2b far
and center left panels). However, superior parietal lobule
regions sensitive to UVr were additionally responsive to the
UMr, that is, to the proximity of the mean LPR to zero, in both
hemispheres [left peak, t(20) = 2.334, P = 0.02; right peak,
t(20) = 2.732, P = 0.007] (Fig. 2c). Alone among these ROIs, the
more superior visual region responded additionally to the

Figure 3. Imaging results from dorsomedial prefrontal cortex and anterior insula. (a) Upper panel: voxels responding positively to uncertainty due to the mean (UMr; red) and
negatively to uncertainty due to the variance (UMr; green) rendered onto a sagittal slice of the MNI template brain. The corresponding bar plot shows mean responses extracted a
sphere of 5 mm radius around the peak voxel for the highlighted cluster, with stars denoting the statistical significance as in Figure 2. (b) Same results for an axial slice showing the
AINS. (c) Correlations with native space mean (positive correlation with |μ|, red) and standard deviation (negative correlation with σ, green) in dmPFC, rendered onto a sagittal
slice at a threshold of P< 0.005 uncorrected. The scale indicates the t-value. (d) Left panel: hemodynamic response functions (HRFs) generated from a finite impulse response (FIR)
model for the dmPFC ROI (5 mm sphere extracted from peak of native space activation) for low mean (i.e., |μ| close to category boundary; light gray) and high mean (dark gray).
X-axis shows time in scans (2 s). Right panel: HRFs for low (black), medium (dark gray), and high (light gray) variance.
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task-irrelevant variance UVi (Fig. 2d), whereas the more ventral
visual region responding to variance also responded to UMr

[t(20) = 1.80, P < 0.04] (Fig. 2e).
By contrast however, peak voxels in the dorsomedial PFC

and anterior insula identified by virtue of their response to
mean evidence were additionally responsive to evidence var-
iance (Fig. 3). Negative correlations with UVr were observed in
the dmPFC (t(20) = 5.16, P < 0.00003; Fig. 3a) but also reliable
in the right (t(20) = 2.44, P < 0.012) and left (t(20) = 2.88,
P < 0.005) AINS (Fig. 3b). Note once again that negative corre-
lations with UVr signal increasing BOLD signal as the array
becomes more homogenous.

These results are striking for 2 reasons. First, they show a
sharp dissociation between 2 portions of a network frequently
activated by decision uncertainty or the demand of action se-
lection. Parietal sites responded to the level of relative evi-
dence in the stimulus array—quantified as the proximity of the
LPR to zero—but either failed to respond (at inferior sites) or
responded positively (at superior sites) to the variability of the
evidence. Medial prefrontal and insular sites, by contrast, were
equally responsive to the LPR, but responded negatively to the
variability of the evidence. In other words, more positive-
going BOLD signals were observed in the dmPFC/AINS when
the stimulus array was more homogenous. This is particularly
surprising, because the dmPFC in particular has been pro-
posed to be sensitive to the likelihood of an error (Brown and
Braver 2005) or to time-on-task (Grinband et al. 2011),
whereas here participants were both faster and more accurate
on trials with more homogenous feature values. We thus
sought to validate these findings with a further series of
control analyses.

Correlations with Mean and Variance of Raw
Feature Values
Could the negative correlation between dmPFC and AINS BOLD
signal and evidence variability be due to some artifact of our
log-probability transform of decision values? To rule out this
possibility, we conducted the same analyses as described above
but using the statistics of raw (native space) feature values |μ|
and σ rather than their LPR-transformed counterparts. Globally,
the results were qualitatively similar, but statistically more
modest. In Figure 3c, we show the overlapping clusters re-
sponding positively to mean-related uncertainty (negative corre-
lation with |μ|) and negatively to variance-related uncertainty
(positive correlation with σ) in the medial PFC for decision-
space and native-space analyses. Similar results were obtained
for the AINS and visual and parietal cortices.

Hemodynamic Response Functions
To additionally ensure that our unexpected findings were not
due to misfitting of our basis function (canonical hemody-
namic response) to the data, we reanalyzed our whole-brain
data using a FIR filter (which makes no assumptions about the
shape of the BOLD response) and plotted the HRFs for low
and high mean |μ| (Fig. 3d, left), and low, medium, and high
standard deviation σ (Fig. 3d, right) separately (i.e., in native
feature space). The peak BOLD response averaged across
4 and 6 s poststimulus onset confirmed the pattern of previous
analyses, with larger responses to smaller values of |μ|
(t(20) = 2.414, P < 0.0127) and larger responses on trials with

low values of σ (t(20) = 2.390, P < 0.014). There was no inter-
action between mean and variance observed.

Voxelwise Correlations Between Effects of Mean
and Variance
Our statistical approach involved identifying voxels that re-
sponded to evidence mean and testing their sensitivity to evi-
dence variability, and vice versa. One limitation of this
approach is that 2 adjacent but nonoverlapping clusters might
become smeared into one by spatial smoothing, potentially
giving rise to the spurious impression that a single region re-
sponds to both variables. We thus conducted a further analysis
in which we correlated the response to UMr and UVr in a voxel-
wise fashion using the unsmoothed data, and converted the
correlation coefficients at each voxel to a Fisher’s z-score, per-
mitting parametric statistics at the group level. The resulting
group statistical maps, which were only smoothed after corre-
lations were calculated, indicated voxels where there were sig-
nificant correlations between the response to UMr and UVr. The
results are shown in Figure 4a,b. We observed a cluster of
negative correlation between response to these 2 variables in
the vicinity of the dmPFC/ACC, with peaks at −2, 28, 30
(z = 3.17, P < 0.001, uncorrected) and −6, 36, 30 (z =−3.34,
P < 0.0005, uncorrected; Fig. 4a, left). Additional clusters were
observed at the left (−38, 20, −6, z =−3.43, P < 0.0003, uncor-
rected) and right (42, 24, −2, z =−3.32, P < 0.0005, uncor-
rected) AINS (Fig. 4a, right). Within the ROI defining, the
dmPFC by its sensitivity to UMr, the average Fisher’s z-score
was also significant (z =−2.39, P < 0.009). In other words,
those voxels that responded positively to UMr (higher signal as
the mean LPR approached zero) tended to respond negatively
to UVr (higher signal as evidence became more homogenous)
and vice versa. No positive or negative correlations between
response to UMr and response to UVr were observed in other
regions sensitive to UMr, such as the parietal cortex.

Neural Correlation with Reaction Time in dmPFC
One reason why the negative correlation with UVr in the
dmPFC is surprising is that this region has often been reported
to exhibit a positive correlation with reaction time (RT), and
here RTs are longer when feature variability is high. We thus
conducted a further analysis in which a regressor whose
height was parametrically modulated by RT on each trial was
included. As expected, the dmPFC region (defined as above)
correlated positively with RT (t(20) = 2.38, P < 0.0139) as well as
UMr. Critically however, the inclusion of RT left the negative-
going response to variability in the dmPFC region defined by
positive correlation with Umr intact (Fig. 4b and t(20) = 5.27,
P < 0.00002). In other words, the negative correlation between
BOLD activity in the dmPFC and evidence variability persists
even though the latter elicits greater behavioral cost.

Correlation with Distance-to-Bound in the dmPFC
One explanation for this counterintuitive finding is that infor-
mation that falls close to the category boundary is processed
with enhanced gain. This proposal follows naturally from our
modeling approach in which individual stimulus values were
sigmoidally transformed and averaged across elements within
the array, before they contribute to an “integration-to-bound”
decision process (in this decision process, some information
corrupted with noise is accumulated over time until a criterion

Cerebral Cortex April 2015, V 25 N 4 943



is reached that triggers the response, see, e.g., Ratcliff and
McKoon, 2008). One consequence of the sigmoidal transform-
ation is that information closest to the boundary will have the
most powerful impact on choices, as demonstrated by the
“robust averaging” behavior observed in this cohort (and pre-
viously) whereby elements falling far from the boundary are
downweighted in the choice.

One plausible neural implementation of this model is one in
which the gain of encoding of decision information is strongest
near to the category boundary. We thus attempted to formalize
this idea, calculating a new quantity that indexed total distance
of all elements to the category boundary, in decision space. We
call this variable distance to bound (D).

D ¼
X8
k¼1

jLPRðxkÞj

D thus indexes the total absolute divergence of the evidence
from the category boundary, summed across the whole array.
Under the conditions created by our experiment, D is very
highly correlated with evidence variability (average r = 0.87)
and uncorrelated with UMr (average r = 0.38 across the cohort).

For completeness, we conducted a separate analysis in
which we used D and UMr to predict brain activity on a
trial-by-trial basis (Fig. 4c). Because of the strong correlation
between D and evidence variability, it is not surprising that we
observed a robust negative response to D in the dmPFC (peak:
10, 28, 42, t(20) = 4.94, P < 0.00004) in a whole-brain analysis.
We additionally observed a significant negative response to
D in the peak dmPFC voxel responsive to UMr (t(20) = 3.71,
P < 0.001). In other words, the dmPFC correlates negatively
with the absolute distance of all elements to the decision
bound, or conversely, correlates positively with proximity-to-
bound.

Discussion

Most laboratory-based categorization tasks require observers
to classify a single, isolated element into 1 of 2 categories.
Where evidence is ambiguous, observers equivocate; formal
models capture these prolonged decision latencies with
mutual inhibition between competing response nodes
(Botvinick et al. 2001; Bogacz et al. 2006), or with overt mech-
anisms that put the brakes on responding in order to optimize
performance (Aron et al. 2007; Forstmann et al. 2010; Cava-
nagh et al. 2011; Ratcliff and Frank 2012). Neuroimaging
studies have attributed this function to a characteristic network
of interconnected brain regions (including the dorsomedial
prefrontal and anterior insular cortices) which are known to
become active when competing options exhibit similar
response values, and that predict the slow-down (Grinband
et al. 2011) and increased error probability (Brown and Braver
2005) characteristic of these trials. However, these studies have
tended to manipulate the degree of conflict between options,
but have not formally dissociated the twin influences of mean-
related and variance-related uncertainty (Huettel et al. 2005;
Grinband et al. 2006; Bach et al. 2011). Other researchers have
controlled the sensitivity of sensory discrimination judgments
by adjusting the signal-to-noise ratio in a stimulus (e.g., the
ratio of coherently to randomly moving dots in a random dot
kinetogram), which varies uncertainty but precludes an assess-
ment of the independent influences of evidence mean and evi-
dence variability on choice (Ho et al. 2009; Liu and Pleskac
2011; Filimon et al. 2013).

Here, manipulating the mean and variability of evidence in-
dependently, we report a new finding that is hard to reconcile
with current models emphasizing the role of the dmPFC in pro-
cessing conflict (Botvinick et al. 1999), error likelihood
(Brown and Braver 2005), or negative surprise (Alexander and
Brown 2011), and that contradicts the view that dmPFC inevita-
bly scales with time on task (Grinband et al. 2011). Irrespective

Figure 4. Additional imaging results (a) voxels where there was a significant negative correlation between the response to UMr and the response to UVr shown on a sagittal (left
panel) and axial (right panel) slice at a threshold of P< 0.001 uncorrected. (b) Results of an analysis in which reaction time (RT) was included in the design matrix. Bar graphs show
parameter estimates for response to the mean and variance of task-irrelevant (UMi and UVi) and task-relevant values (UMi and UVi) and reaction time (RT), for a dmPFC region of
interest defined by its significant response to UMr (left panel) and UMv (right panel). Stars indicate significance: *P< 0.05, **P<0.01, ***P< 0.001. Note positive correlation
with RT in each region, and that all effects described persist even once RT is included. (c) Voxels showing a negative correlation with D, indexing the absolute distance to bound of
all of the elements in the array, rendered on a sagittal slice at a threshold of P<0.001 uncorrected.
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of its mean value, when evidence is more heterogeneous (vari-
able), reaction times, and errors increase, but the neural
response in the dmPFC and AINS is the polar opposite: “less”
activity for “more” variable evidence. This finding was ob-
served both for raw (native-space) values of mean and stan-
dard deviation of the evidence, as well as following a
log-probability scaling of these values, a transformation that
allowed us to better account for the behavioral data. This
finding places an important new constraint on models that
have sought to link neural observations in these brain regions
to computational-level descriptions of decisions made under
uncertainty.

We begin by discussing the less controversial of our find-
ings. Consistent with previous reports, BOLD signals in por-
tions of the dlPFC and parietal cortex varied with uncertainty
about which response to choose. In our study, this was formal-
ized as the log probability ratio (LPR), a quantity that naturally
expresses the relative evidence for one choice over another
under an ideal observer framework, such as that underpinning
signal detection theory (Green and Swets 1966) and the serial
probability ratio test (Wald and Wolfowitz 1949)—in other
words, the extent to which decision-relevant evidence prompts
(and requires the resolution of) response conflict. Accordingly,
a well-established previous literature links the demand pro-
voked by choosing among competing responses with the
activity of the lateral prefrontal cortex (Miller and Cohen 2001;
Koechlin et al. 2003; Kerns et al. 2004; Egner and Hirsch 2005;
Badre and D’Esposito 2007; Koechlin and Summerfield 2007).
Similarly, firing rates of single neurons in the IPL scale with the
evolving relative evidence in favor of one option over another
(Roitman and Shadlen 2002; Yang and Shadlen 2007). An
interpretation consistent with this extensive literature is that
these signals reflect the demand of resolving conflict provoked
by competing or conflicting evidence.

Behaviorally, performance suffers as array variance increases
(de Gardelle and Summerfield 2011). A major aim of our study
was to pinpoint the source of this cost in human information
processing, and understand its neural basis. Standard decision
theoretic models, such as those capturing the decision process
as a particle diffusing towards a response boundary (Ratcliff and
McKoon 2008), treat evidence as a scalar quantity, thereby
sidestepping the question of how evidence is integrated from
multiple sources, and offering only limited guidance for under-
standing the computational cost of evidence heterogeneity. Two
theoretical accounts are nevertheless relevant for our study. The
first is the conflict monitoring hypothesis proposed by Botvi-
nick and colleagues (Botvinick et al. 2001; Yeung et al. 2004) ac-
cording to which the dmPFC is sensitive to the cumulative
product of the activation in all rival response units associated
with a stimulus. Assuming that the activation evoked by a
feature is proportional to its distance from the category bound-
ary (e.g., during red/blue discrimination, that a clearly red
stimulus elicits more activation in the relevant response unit
than a purplish-red stimulus), then this theory incorrectly pre-
dicts greater dmPFC activity for more heterogeneous arrays,
where there exists strong but contradictory evidence for the 2
opposing responses. A second theory is the view, attributable to
Frank et al. (2007), that the dmPFC is instrumental in inhibiting
prepotent actions when 2 conflicting responses are both favor-
able, for example, during “win/win” economic choices between
2 preferred goods. Presumably, this theory also incorrectly pre-
dicts heightened BOLD signals for more variable arrays, where

the need to inhibit an impulsive response driven by a single out-
lying element would be greatest. Thus, to the best of our under-
standing, these theories cannot account for the current findings,
and do not shed light on why the dmPFC does not encode the
behavioral cost of high variance arrays.

The failure of our findings to accord with these well-
motivated and well-supported accounts of dmPFC function
surprised us, and prompts us to be cautious in discussing and
interpreting our findings. Nevertheless, we wish to propose a
tentative theory that does account for the current data, and sim-
ultaneously offers a new explanation of dmPFC function. We
offer this theory because it may open potential new avenues
for future research, but with the frank acknowledgement that it
was formulated post hoc, to account for data that we did not
predict a priori.

Our explanation begins with the empirical finding that judg-
ments are more sensitive close to the category boundary, a
well-described feature of human categorical perception
(Shepard 1987; Tenenbaum and Griffiths 2001). This notion
informs the computational simulations that account for behav-
ioral data reported here and in our previous work: that pro-
longed RTs to more variable trials, and robust averaging, can
be explained if feature information is transformed sigmoidally
before being integrated to bound (de Gardelle and Summer-
field 2011). The sigmoidal transfer function, whose steepest
portion bisects the midpoint between the 2 categories, ensures
that the information falling closest to the boundary is pro-
cessed with the highest gain, and has the most impact on
human choices. This sigmoidal shape explains perceptual
magnet and perceptual categorization effects, by which per-
ceptual similarity is increased within the same category and de-
creased for elements falling across the category boundary.
Such a pattern can result from optimal inference schemes
applied to categorization tasks (Bonnasse-Gahot and Nadal
2008; Feldman et al. 2009).

One possibility, thus, is that the increased BOLD signal ob-
served at the dmPFC and AINS reflects the heightened gain
associated with information falling closest to the boundary—
such that dmPFC signals correlating strongly with the absolute
distance-to-bound of the information in the visual array. For
example, tuning functions might adapt over the course of the
experiment, so that those closest to the boundary produce
stronger output for a fixed input. An adapting transfer function
for feature information is suggested by our previous work, in
which outlier downweighting depended on the range of
feature information available across the experiment (de Gar-
delle and Summerfield 2011). Other studies have suggested a
specific increase in BOLD signal in sensory regions for stimuli
falling close to a known categorical boundary, such as the car-
dinal axes for tilted gratings (Furmanski and Engel 2000).
Here, we observed increases in BOLD signal observed in the
dmPFC and AINS for information close to the category bound-
ary, which might reflect a boost to an integration process oc-
curring within these regions, or might be driven by inputs
from interconnected regions, such as the parietal cortex.

Indeed, researchers have puzzled over the finding that in-
creased decision information is associated with decreases in
BOLD signal over regions that might play a key role in inte-
gration of evidence, such as the parietal cortex, AINS, and
dmPFC, given that single-cell studies suggest net increases
in firing as proximity to a choice, switch, or reward increases,
at least in some neurons (Shidara and Richmond 2002;
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Gold and Shadlen 2007; Hayden et al. 2011). One idea that has
been proposed is that when evidence is weak or ambiguous,
accumulation is prolonged, and so the time-integral of firing
will be greater under these circumstances (Basten et al. 2010).
However, this theory predicts a reversal of the effect during an
interrogation paradigm, when evidence is presented for a fixed
period before a response is solicited—a finding that does not
square with extant evidence (Huettel et al. 2005). The current
proposal, in which increased BOLD signal on trials with weak
or ambiguous evidence reflects the proximity of the decision
information to the category boundary in those situations,
offers an alternative explanation for this finding.

Outside of the frontal regions, yet another distinct pattern
was observed in the visual cortex and more superior regions of
the parietal cortex, where voxels responded positively to the
variability of information in the array. Sensitivity to evidence
variability in dorsal stream regions might serve a number of
purposes. For example, the first 2 statistical moments of the
perceptual evidence in a natural scene provide estimates of the
range and central tendency of visual information across space,
which might in turn allow the observer to adjust the gain of
neuronal responding to deal with currently available infor-
mation. Processing of evidence variability may also play a role
in computing the gist of perceptual information, which can in
turn guide saccadic exploration strategies (Torralba et al. 2006)
and facilitate rapid decision-making, for example, by permit-
ting divisive normalization (Carandini and Heeger 2012). In
our experiment, the fact that evidence variability seemed to be
associated with changes in neural activity relatively early in the
processing stream (e.g., in visual regions) points to an early
role in the choice process, albeit confined to task-relevant
information. Investigations of evidence variability and the ex-
traction of gist-like information in complex visual arrays may
prove a fruitful area of future research.
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