
HAL Id: hal-00916028
https://hal.science/hal-00916028

Submitted on 9 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Modular Division Algorithm and Applications
Sidi Mohamed Sedjelmaci, Christian Lavault

To cite this version:
Sidi Mohamed Sedjelmaci, Christian Lavault. A New Modular Division Algorithm and Applications.
International Conference on Theoretical Computer Science (ICTCS98), Jun 1998, Pisa, Italy. pp.65–
76. �hal-00916028�

https://hal.science/hal-00916028
https://hal.archives-ouvertes.fr

A New Modular Division Algorithm

and Applications

M. S. Sedjelmaci C. Lavault

LIPN CNRS UPRES-A 7030, Université Paris-Nord, 93430 Villetaneuse, France

E-mail: {lavault,sms}@lipn.univ-paris13.fr

Abstract

The present paper proposes a new parallel algorithm for the modular division
u/v mod βs, where u, v, β and s are positive integers (β ≥ 2). The algorithm
combines the classical add-and-shift multiplication scheme with a new propagation
carry technique. This “Pen and Paper Inverse” (PPI) algorithm, is better suited for
systolic parallelization in a “least-significant digit first” pipelined manner. Although
it is equivalent to Jebelean’s modular division algorithm [5] in terms of performance
(time complexity, work, efficiency), the linear parallelization of the PPI algorithm
improves on the latter when the input size is large. The parallelized versions of
the PPI algorithm leads to various applications, such as the exact division and
the digit modulus operation (dmod) of two long integers. It is also applied to the
determination of the periods of rational numbers as well as their p-adic expansion
in any radix β ≥ 2.

Keywords: Modular division; Exact division, Digit Modulus (dmod); Integer greatest
commun divisor (GCD); p-adic expansion.

1 Introduction

The modular division of two positive integers u and v modulo a radix β ≥ 2 to the power
s is defined as (u/v) mod βs. It is used in many topics in theoretical computer science,
such as p-adic computation, cryptography, Computer Algebra systems, etc. When s
is small, say less than a machine word (i.e., 8, 16 or 32 bits), the modular division
is completed by several algorithms in O(s2) time complexity. Such is the case for the
Extended Euclidean algorithm (EEA) in [7]. However, the EEA is not efficient for large
s, because it entails long quotient-remainder divisions of two long positive integers at
each step.

In [5], Jebelean proposes a more efficient algorithm: Modiv. It is better suited
for systolic parallelization in a LSF (“least-significant digit first”) pipelined manner.
Actually, experiments performed in [5] using SACLIB Computer Algebra system indicate
more than 20 times speed-up in computing the inverse modulo a power of β = 229. The
speed-up was measured in comparison with the EEA algorithm improved by Lehmer [8]
and Collins [3].

1

Jebelean also presents Ediv, a new algorithm for exact division of two long integers
which improves on the classical quotient-remainder algorithm described in [7], when it is
known in advance that the remainder is zero. Although it is presented as an application
to Ediv, Modiv may rather be considered as the true main algorithm. As a matter of fact,
Ediv is obtained easily by running Modiv with the specific parameter s = ℓβ(u)−ℓβ(v)+1
(see Subsection 2.1 for the notation ℓβ(u)). Hence, we rather focus on modular division
algorithms throughout the paper.

In Section 2, we compare and discuss sequential and parallel versions of Modiv and
of the “Pen and Paper Inverse” (PPI) algorithm for modular division. Section 3 is de-
voted to the parallelization of the PPI algorithm, where a linear parallel PPI (ParPPI)
algorithm using a new carry propagation technique is presented. Section 4, gives ap-
plications of the ParPPI algorithm to the exact division and the digit modulus’ (dmod)
operations on two long integers, as well as to the determination of the periods of rational
numbers and their p-adic expansion in any given radix β ≥ 2. Section 5 concludes with
some remarks.

2 Modular Division Algorithms

Let x ≡ (u/v) (mod βs). Modiv follows the process below. After shifting the operands
u and v until they become relatively prime to β, x0 (the least-significant digit of x) is
found from u0 and v0 (the least-significant digits of u and v) in the form x0 ≡ u0v−1

0

(mod β).
Next, once x0 is obtained, the next coefficient x1 is performed by applying again the

same process to (u − x0v)/β and v.

2.1 Notation and Example

Throughout the paper we assume that any integer is expressed in radix β ≥ 2, where β
and v are coprime. As in [13], ℓβ(u) denotes the number of digits needed to represent u
in radix β and gcd(a, b) denotes the greatest commun divisor of integers a and b.

The algorithm designed in the paper is based on a simple technique: the classical
“Pen and Paper” multiplication, which also works in LSF (“least-significant digit first”)
manner. Roughly speaking, the algorithmic scheme consists in guessing and filling the
missed digits of x from right to left, so that the puzzle adapts the classical multiplication,
and the process stops when the s-th digit of x is found. This is the reason why the
algorithm is called the “Pen and Paper Inverse” algorithm, or PPI for short.

In Table 1, a simple example describes this inverse multiplication scheme for u =
37, 229, v = 1, 543 and β = 2 and s = 7.

2

· · · · · · · · · 1 ← x unknown 1 1 0 1 0 1 1 ← x = 107

× 0 0 0 0 1 1 1 ← v mod 27
× 0 0 0 0 1 1 1 ← v mod 27

· · · · · · · · · · · · 1 1 1 0 1 0 1 1

· · · · · · · · · 1 0 1 0 1 1

· · · · · · · · · 0 1 0 1 1

= 1 1 0 1 1 0 1 ← u mod 27 = 1 1 0 1 1 0 1 ← u mod 27

Before the PPI algorithm After the PPI algorithm

Table 1: The PPI computation of (37, 229/1, 543) mod 27

3 The Algorithms Modiv and PPI

Let us recall the sequential and the parallel versions of the algorithm Modiv proposed
in [5].

3.1 The sequential version SeqModiv

Sequential Algorithm SeqModiv

Input: u, v > 0, with gcd(v, β) = 1, and s a positive integer.
Output: (u/v) mod βs.

v0 := v mod β ; a := v−1
0 mod /* initialization */

for k := 0 to s − 1 do

xk := au mod β ;
u := (u − xkv mod βs−k)/β

endfor

return x = (xs−1, . . . , x0)

The time complexity of SeqModiv is O(s2). In order to compare the parallel version
of Modiv with the parallelization of the PPI algorithm, we first recall ParModiv, the
parallel version of Modiv. In ParModiv, a carry save technique is used to handle the
carry propagation (see [6, 9]).

For every integer x such that |x| < β2, the notation (a, b) := x is defined as

(a, b)
def
= (x div β, x mod β) with 0 ≤ b < β,

where div is the “integral division”: x div β
def
= ⌊x/β⌋.

3

3.2 The Parallel version ParModiv

Parallel Algorithm ParModiv

Input: u, v > 0, with gcd(v, β) = 1, and s a positive integer.
Output: (u/v) mod βs.

for i := 1 to s pardo yi := 0 endfor /* initialization */
a := v−1

0 mod β

for k := 0 to s − 2 do

xk := auk mod β ;
yk+1 := yk+1 − (xkv0) divβ /* update of the first carry */

for i := 1 to s − k − 1 pardo

(yk+i+1, uk+i) := uk+i − xkvi + yk+i

endfor

endfor

xs−1 := aus−1 mod β

return x = (xs−1, . . . , x1, x0)

3.3 The PPI Algorithm

Assume u and β are coprime. Otherwise, u = βqu’ for some positive integers q and
u’, such that u’ and β are coprime. Then, xi = 0 for i = 0, 1, . . . , (q − 1). Since
(u/v) mod βs = βq

(

(u′/v) mod βs−q
)

, the algorithm variables reduces to the parameters
u’ and s′ = s − q.

In the algorithm the s least-significant digits of u only are needed; and thus we may
use u mod βs instead of u. Set

u mod βs =
s−1
∑

i=0

uiβ
i and v mod βs =

s−1
∑

j=0

vjβj ,

and if ℓβ(u) < s, let ui = 0 for all i ≥ ℓβ(u).
On the above assumptions, the algorithm described in Table 1 expresses as

Sequential PPI Algorithm

Input: u, v > 0, with gcd(u, β) = gcd(v, β) = 1, and s a positive integer.
Output: (u/v) mod βs.

a := v−1
0 mod β ; x0 := (au0) mod β ; /* initialization */

c1 := (x0v0) div β

4

for k := 1 to s − 1 do /* loop */
Lk :=

∑k
j=1 vjxk−j + ck ;

xk := a(uk − Lk) mod β ; ck+1 := (Lk + xkv0) div β
endfor

return x = (xs−1, . . . , x0)

Remarks:

• In the case when β = 2, the algorithm turns out to be simpler.

• Notice that the loop is very similar to a triangular linear system of the form

A X = B,

with solution X = t(xs−1, . . . , x1), where B = t(bs−1, . . . , b1) is a given vector and
A = (ai,j) (1 ≤ i, j ≤ s − 1), is defined as

ai,j
def
=











v1 if i = j,
vi−j+1 if i > j,
0 if i < j.

The parallelization process described in Section 4 applies to the above triangular
system.

• In place of s, the constant m = ℓβ(v mod βs) can be used for updating Lk, because
it is the current number of digits of v needed in the computation (see Fig. 1). The
constant m allows faster computations: m ≤ s and, when m < s, all the useless
computations corresponding to vm, . . . , vs−1 are eliminated. Hence, Lk is updated
as follows:

Lk :=
∑

1≤j≤µ

vjxk−j + ck, where µ = min(k − 1, m − 1).

• For any given k, the carry ck+1 satifies the relation Lk + xkv0 = uk + βck+1.

Moreover, the worst-case time complexity of the above algorithm occurs for all pairs
(u, v) such that (u + v) ≡ 0 (mod βs), with output x = (u/v) mod βs = βs − 1. In
that case, the largest value of Lk is βk − 1. Therefore, for all k,

Lk ≤ βk − 1 ≤ βs − β − 1.

5

4 Linear Parallelized PPI Algorithms

In the PPI algorithm, the output x is obtained step by step, least-significant digit first.
The digits a, uk and the least-significant digit of Lk, namely Lk mod β, are only needed
to compute xk. However, Lk mod β is obtained after computing all of the two-digits
products vj × xk−j and their sum.

This variant significantly increases the running time of the algorithm and prevents
any efficient systolic implementation. In order to overcome the difficulty, we make use
of the followings two facts:

1. Every two-bits product vj × xk−j can be computed and added to Lk as soon as
xk−j is found.

2. The goal of the parallelization is to break the computation of the sums
∑

1≤j≤k−1

vjxk−j. As far as the carry propagation is concerned for updating the

Li’s (for i = k + 1, . . . , s − 1), the carry-save technique used in ParModiv can be
applied successfully to the parallelization of the PPI algorithm ParPPI.

4.1 A Linear Parallel PPI Algorithm ParPPI

ParPPI Algorithm (version 1)

Input: u, v > 0, such that gcd(u, β) = gcd(v, β) = 1, and s a positive integer.
Output: (u/v) mod βs.

for i := 0 to s pardo (yi, Li) := 0 endfor ; /* initialization */
a := v−1

0 mod β

for k := 0 to s − 2 do /* main loop */
xk := a(uk − Lk − yk) mod β

for i := 0 to s − k − 1 pardo

(yk+i+1, Lk+i) := Lk+i + xkvi + yk+i

endfor

endfor

xs−1 := a(us−1 − Ls−1 − ys−1) mod β

return x = (xs−1, . . . , x1, x0)

4.1.1 Comparison with ParModiv

ParPPI (version 1) and ParModiv are linear in terms of “surface” (i.e., the maximal
number of processors needed in the algorithms) and time complexity. The algorithms
are equivalent, but they also slightly differ in the following points:

6

• Every variable in the ParPPI algorithm consists of a single non-negative digit,
whereas ParModiv uses a signed double digit for the variables yj.

• In contrast with ParModiv, the ParPPI algorithm does not change the input u.

• In the ParPPI algorithm, all carries yk+i are updated in parallel. By contrast the
first carry is updated serially in ParModiv.

Although they are not important regarding the design of the algorithms themselves,
the above differences cause substantial time improvements when s is large, and these
algorithms are intensively used to devise efficient GCD algorithms, for example. (See [6,
11, 13].)

4.2 A New Carry Propagation Technique

We now describe a new carry propagation technique, which propagates the carries alter-
nately. This new technique, called “alternated carry”, is illustrated in the second version
of ParPPI, where the main loop of ParPPI (Version 1) designed in Subsection 4.1 can
be rewritten as follows:

Main Loop of the ParPPI Algorithm (version 2)

for k := 0 to s − 2 do

xk := a(uk − Lk) mod β

for i := 0 to s − k − 1 pardo Lk+i := Lk+i + xkvi endfor

for n := 0 to ⌊(s − k − 1)/2⌋ pardo

Lk+2n+1 := Lk+2n+1 + Lk+2n div β ; Lk+2n := Lk+2n mod β
endfor

endfor

Theorem 4.1 below shows that, whatever the input size s, all the Li’s are bounded.
Therefore, the ParPPI algorithm (version 2) is also linear in terms of surface (i.e., the
maximal number of processors needed) and time complexity.

Theorem 4.1 For any β ≥ 2, s > 1, k ≤ s − 1 and n ≤ ⌊(s − k − 1)/2⌋,
(i) Lk+2n ≤ β − 1.
(ii) Lk+2n+1 ≤ β2 + β − 2.

Proof By induction on k.

Basis: Obviously, L2n = L2n+1 = 0. So, L2n ≤ β − 1 and L2n+1 ≤ β2 + β − 2.

Induction step: for any i ≥ k, let Li(k) denote the value of Li at the end of the k-th
iteration. Suppose that inequalities (i) and (ii) hold for a given positive integer k. After

7

the computation of xk+1, and since xk+1, vj ≤ β − 1 for any k and j, we have

Lk+1+2n+1(k) + xk+1v2n+1 ≤ β2 − β, for n ≤ ⌊(s − k − 2)/2⌋, (1)

Lk+1+2n(k) + xk+1v2n ≤ 2β2 − β − 1, for n ≤ ⌊(s − k − 1)/2⌋. (2)

At the end of the (k + 1)-st iteration Eq. (1) and Eq. (2) yield

Lk+2n+1(k + 1) ≤ (2β2 − β − 1) mod β ≤ β − 1, and

Lk+2n+2(k + 1) ≤ β2 − β + (2β2 − β − 1) div β = β2 + β − 2.

�

Remark: The alternated carry propagation technique uses 3 digits for Lk+2n+1 and one
digit for Lk+2n. Thus, only 2s digits are needed in the algorithm.

5 Applications

The ParPPI algorithm can also be used in several applications. All these algorithms use
the same “pen and paper” multiplication technique combined with a carry propagation
technique (either Version 1 or Version 2). Since it is new, we rather use the second
version in the applications.

5.1 Exact Division Algorithms

Algorithms for exact division compute the exact quotient u/v of two long integers u and
v, when it is known in advance that the remainder is zero. The exact division is easily
completed by using the ParPPI algorithm with the parameter r = ℓβ(u) − ℓβ(v) + 1
in place of s. Then, r is no longer the “input size” but rather expresses the difference
between the sizes of inputs u and v [5].

5.2 The dmod Operation

Let ℓβ(u) = s and ℓβ(v) = t, with s ≥ t. The dmod operation is defined as

dmodβ(u, v)
def
= |xv − u|/βr, where r = s − t + 1 and x ≡ (u/v) (mod βr).

The algorithm below is similar to the ParPPI algorithm. It simply multiplies xk

and v, and simultaneously substracts u from xkv. The subtraction is performed by
β-complement. The β-complement of uk is defined as follows:

u′
k

def
=

{

(β − uk) if k = r,
(β − 1 − uk) if k > r.

We assume that xv and u are two (s + 1) digits numbers; so we set us = 0.

8

ParPPI dmod Algorithm

Input: u, v two positive numbers, ℓβ(u) = s, ℓβ(v) = t, with s ≥ t, and gcd(v, β) = 1.
Output: x ≡ (u/v) (mod βr) and dmodβ(u, v) = |xv − u|/βr, where r = s − t + 1.

for i := 0 to s + 1 pardo Li := 0 endfor ; /* initialization */
a := v−1

0 mod β ; r := s − t + 1

for k := 0 to r − 1 do

xk := a(uk − Lk) mod β

for i := 0 to t − 1 pardo Lk+i := Lk+i + xkvi endfor

for n := 0 to ⌊(s − k − 1)/2⌋ pardo

Lk+2n+1 := Lk+2n+1 + Lk+2n div β ;
Lk+2n := Lk+2n mod β

endfor

endfor

for i := 0 to s − r pardo Lr+i := Lr+i + u′
r+i endfor

for k := r to s do

for n := 0 to ⌊(s − k)/2⌋ pardo

Lk+2n+1 := Lk+2n+1 + Lk+2n div β ;
Lk+2n := Lk+2n mod β

endfor

endfor

w := (Ls, . . . , Lr)

if Ls+1 = 0 then w := βt − w

return x, w

Remark: If Ls+1 = 0, xv −u = w −βt < 0; and xv −u is easily given by β-complement.
Moreover the algorithm provides the sign of xv − u. Note also that the algorithm
computes the modular division and the digit modulus operations simultaneously.

5.3 A Linear Surface-Time Multiplication

The same algorithm also applies to perform a multiplication which is also linear in terms
of surface and time complexity. However, the ParPPI multiplication algorithm is not
even efficient, since the best sequential multiplication algorithms are O(s logc s), for some
constant c > 0.

9

The ParPPI Multiplication Algorithm

Input: u, v two positive numbers, ℓβ(u) = s, ℓβ(v) = t.
Output: L = uv.

for i := 0 to s + t pardo Li := 0 endfor

for k := 0 to t − 1 do

for i := 0 to s − 1 pardo Lk+i := Lk+i + vkui endfor

for n := 0 to ⌊(s − 1)/2⌋ pardo

Lk+2n+1 := Lk+2n+1 + Lk+2n div β ;
Lk+2n := Lk+2n mod β

endfor

endfor

for k := t to s + t − 1 do

for n := 0 to ⌊(s + t − k − 1)/2⌋ pardo

Lk+2n+1 := Lk+2n+1 + Lk+2n div β ;
Lk+2n := Lk+2n mod β

endfor

endfor

return L = (Ls+t−1, . . . , L1, L0)

5.4 The p-adic Expansion of Rationals

The ordered sequence of the s digits of x ≡ (u/v) (mod βs) represents exactly the
expected Hensel code H(u, v; βs). The Hensel code is thus directly given by the ParPPI
algorithm. Note that the p-adic expansion is obtained step by step, when s tends to
infinity.

5.5 Computation of Periods of Rational Numbers

Let u/v be a rational number, with u < v, and let v and β be coprime. Let T be the
periodic part of the expansion, called the period of u/v, and let t be the length of T in
base β. Then, u/v = T/(βt − 1), and thus vT ≡ (−u) (mod βt).

Now using the PPI algorithm with the parameters −u, v and t yields T ≡ −u/v
(mod β)t.

Note that T is obtained in a “least-significant digit first” manner, whereas the clas-
sical division provides the period in a “most-significant digit first” manner.

10

6 Conclusion

The new modular division PPI algorithms (sequential and parallel variants) enjoy various
interesting properties.

It is straightforward to derive many LSF algorithms from the ParPPI algorithm.
Such is the case for the exact division, for the p-adic expansion and the periods of
rational numbers, and for the multiplication and the dmod operations as well. All above
applications are founded on the one and same identical scheme. This makes it easier
to construct interactions between them, and thus provide an homogeneous collection of
routines which may be extended later.

The “alternated carry propagation” is a new carry propagation technique, which is
also fruitful for add-and-shift algorithms.

The parallel algorithms proposed herein follow the same classical multiplication
scheme along with a carry propagation technique (either carry save or alternated carry).
These algorithms are all linear (O(s)) in terms of surface S(s) (i.e., the maximal num-
ber of processors needed) and time complexity T (s), where s is the input size. As a
consequence, the work (or cost), W (s) = S(s) × T (s), is O(s2), and they are neither in
N C, nor efficient (recall that the best sequential algorithms solving the same problems
are O(s logc(s)), for some constant c > 0). Note also that their parallel speed-up is
O(logc s), with efficiency O(logc(s)/s).

ParModiv and the main ParPPI algorithm are equivalent, since ParModiv is also
surface-time linear (and hence optimal). However, our algorithm may significantly
improve when used intensively within several efficient GCD algorithms, for exam-
ple [6, 8, 11, 13]. A new algorithm is also presented, which performs the modular
division as well as the digit modulus of two long positive integers simultaneously.

All the ParPPI algorithms described are suitable for systolic implementation in a
“least-significant digit first” manner, because all decisions in the procedures are taken
by using the lower digits of the operands. Hence they can be well aggregated to other
systolic algorithms in the arithmetic of multiprecision rational numbers. LSF process-
ing is also used in the most efficient systolic algorithms for multiprecision rational
arithmetic. Among them, one may mention long integer multiplication [1] and addi-
tion/substraction [7] algorithms, the Brent-Kung systolic GCD algorithm [2] and the
algorithms in [4, 5, 6].

The present work continues and complements our previous investigations [10] in im-
proving the algorithm for modular division. The combined effects of these improvements
allow several basic routines in Computer Algebra systems to run more efficiently.

References

[1] A.J. Atrubin A one-dimensional iteration multiplier, IEEE Trans. on Computers,
C-14, 1965, 394-399

11

[2] R.P. Brent, H.T. Kung Systolic VLSI arrays for linear-time GCD computation, in
VLSI’83, Anceau and Aas eds., 1983, 145-154

[3] G.E. Collins Lecture note on arithmetic algorithms, Un. of Wisconsin, 1980

[4] T. Jebelean Systolic Algorithms for Exact Division, RISC-Linz Report, 92-71,
Dec. 1992

[5] T. Jebelean A Generalization of the Binary GCD Algorithm, in Proc. of the In-
ternational Symposium on Symbolic and Algebraic Computation (ISSAC’93), 1993,
111-116

[6] T. Jebelean An Algorithm for Exact Division, Journal of Symbolic Computation,
15, 1993, 169-180

[7] D.E. Knuth The art of computer programming: seminumerical algorithms, Vol. 2,
2nd ed, Addisson Wesley, 1981

[8] D.H. Lehmer Euclid’s algorithm for large numbers, American Math. Monthly, 45,
1938, 227-233

[9] J.M. Muller Arithmétiques des ordinateurs, Masson, 1989

[10] M.S. Sedjelmaci, C. Lavault Improvements on the accelerated integer GCD algo-
rithm, Information Processing Letters, 61, 1997, 31-36

[11] J. Sorenson Two Fast GCD Algorithms, J. of Algorithms, 16, 1994, 110-144

[12] Earl E. Swartlander Jr Computer Arithmetic (tutorial), Vol. 1, IEEE Computer
Society Press, 1990

[13] K. Weber Parallel implementation of the accelerated integer GCD algorithm, J. of
symbolic Computation (Special Issue on Parallel Symbolic Computation), 21, 1996,
457-466

12

