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The present paper proposes a new parallel algorithm for the modular division u/v mod β s , where u, v, β and s are positive integers (β ≥ 2). The algorithm combines the classical add-and-shift multiplication scheme with a new propagation carry technique. This "Pen and Paper Inverse" (PPI) algorithm, is better suited for systolic parallelization in a "least-significant digit first" pipelined manner. Although it is equivalent to Jebelean's modular division algorithm [5] in terms of performance (time complexity, work, efficiency), the linear parallelization of the PPI algorithm improves on the latter when the input size is large. The parallelized versions of the PPI algorithm leads to various applications, such as the exact division and the digit modulus operation (dmod) of two long integers. It is also applied to the determination of the periods of rational numbers as well as their p-adic expansion in any radix β ≥ 2.

Introduction

The modular division of two positive integers u and v modulo a radix β ≥ 2 to the power s is defined as (u/v) mod β s . It is used in many topics in theoretical computer science, such as p-adic computation, cryptography, Computer Algebra systems, etc. When s is small, say less than a machine word (i.e., 8, 16 or 32 bits), the modular division is completed by several algorithms in O(s 2 ) time complexity. Such is the case for the Extended Euclidean algorithm (EEA) in [START_REF] Knuth | The art of computer programming: seminumerical algorithms[END_REF]. However, the EEA is not efficient for large s, because it entails long quotient-remainder divisions of two long positive integers at each step.

In [START_REF] Jebelean | A Generalization of the Binary GCD Algorithm[END_REF], Jebelean proposes a more efficient algorithm: Modiv. It is better suited for systolic parallelization in a LSF ("least-significant digit first") pipelined manner. Actually, experiments performed in [START_REF] Jebelean | A Generalization of the Binary GCD Algorithm[END_REF] using SACLIB Computer Algebra system indicate more than 20 times speed-up in computing the inverse modulo a power of β = 2 29 . The speed-up was measured in comparison with the EEA algorithm improved by Lehmer [START_REF] Lehmer | Euclid's algorithm for large numbers[END_REF] and Collins [START_REF] Collins | Lecture note on arithmetic algorithms[END_REF]. [START_REF] Lavault | Atrubin A one-dimensional iteration multiplier[END_REF] Jebelean also presents Ediv, a new algorithm for exact division of two long integers which improves on the classical quotient-remainder algorithm described in [START_REF] Knuth | The art of computer programming: seminumerical algorithms[END_REF], when it is known in advance that the remainder is zero. Although it is presented as an application to Ediv, Modiv may rather be considered as the true main algorithm. As a matter of fact, Ediv is obtained easily by running Modiv with the specific parameter s = ℓ β (u)-ℓ β (v)+1 (see Subsection 2.1 for the notation ℓ β (u)). Hence, we rather focus on modular division algorithms throughout the paper.

In Section 2, we compare and discuss sequential and parallel versions of Modiv and of the "Pen and Paper Inverse" (PPI) algorithm for modular division. Section 3 is devoted to the parallelization of the PPI algorithm, where a linear parallel PPI (ParPPI) algorithm using a new carry propagation technique is presented. Section 4, gives applications of the ParPPI algorithm to the exact division and the digit modulus' (dmod) operations on two long integers, as well as to the determination of the periods of rational numbers and their p-adic expansion in any given radix β ≥ 2. Section 5 concludes with some remarks.

Modular Division Algorithms

Let x ≡ (u/v) (mod β s ). Modiv follows the process below. After shifting the operands u and v until they become relatively prime to β, x 0 (the least-significant digit of x) is found from u 0 and v 0 (the least-significant digits of u and v) in the form

x 0 ≡ u 0 v -1 0 (mod β).
Next, once x 0 is obtained, the next coefficient x 1 is performed by applying again the same process to (ux 0 v)/β and v.

Notation and Example

Throughout the paper we assume that any integer is expressed in radix β ≥ 2, where β and v are coprime. As in [START_REF] Weber | Parallel implementation of the accelerated integer GCD algorithm[END_REF], ℓ β (u) denotes the number of digits needed to represent u in radix β and gcd(a, b) denotes the greatest commun divisor of integers a and b.

The algorithm designed in the paper is based on a simple technique: the classical "Pen and Paper" multiplication, which also works in LSF ("least-significant digit first") manner. Roughly speaking, the algorithmic scheme consists in guessing and filling the missed digits of x from right to left, so that the puzzle adapts the classical multiplication, and the process stops when the s-th digit of x is found. This is the reason why the algorithm is called the "Pen and Paper Inverse" algorithm, or PPI for short.

In Table 1, a simple example describes this inverse multiplication scheme for u = 37, 229, v = 1, 543 and β = 2 and s = 7.

• • • • • • • • • 1 ← x unknown 1 1 0 1 0 1 1 ← x = 107 × 0 0 0 0 1 1 1 ← v mod 2 7 × 0 0 0 0 1 1 1 ← v mod 2 7 • • • • • • • • • • • • 1 1 1 0 1 0 1 1 • • • • • • • • • 1 0 1 0 1 1 • • • • • • • • • 0 1 0 1 1 = 1 1 0 1 1 0 1 ← u mod 2 7 = 1 1 0 1 1 0 1 ← u mod 2 7
Before the PPI algorithm After the PPI algorithm Table 1: The PPI computation of (37, 229/1, 543) mod 2 73 The Algorithms Modiv and PPI

Let us recall the sequential and the parallel versions of the algorithm Modiv proposed in [START_REF] Jebelean | A Generalization of the Binary GCD Algorithm[END_REF].

The sequential version SeqModiv

Sequential Algorithm SeqModiv Input: u, v > 0, with gcd(v, β) = 1, and s a positive integer. Output:

(u/v) mod β s . v 0 := v mod β ; a := v -1 0 mod /* initialization */ for k := 0 to s -1 do x k := au mod β ; u := (u -x k v mod β s-k )/β endfor return x = (x s-1 , . . . , x 0 )
The time complexity of SeqModiv is O(s 2 ). In order to compare the parallel version of Modiv with the parallelization of the PPI algorithm, we first recall ParModiv, the parallel version of Modiv. In ParModiv, a carry save technique is used to handle the carry propagation (see [START_REF] Jebelean | An Algorithm for Exact Division[END_REF][START_REF] Muller | Arithmétiques des ordinateurs[END_REF]).

For every integer x such that |x| < β 2 , the notation (a, b) := x is defined as

(a, b) def = (x div β, x mod β) with 0 ≤ b < β,
where div is the "integral division":

x div β def = ⌊x/β⌋.

The Parallel version ParModiv Parallel Algorithm ParModiv

Input: u, v > 0, with gcd(v, β) = 1, and s a positive integer. Output: (u/v) mod β s .

for i := 1 to s pardo y i := 0 endfor /* initialization */ a := v -1 0 mod β for k := 0 to s -2 do x k := au k mod β ; y k+1 := y k+1 -(x k v 0 ) divβ /* update of the first carry */ for i := 1 to s -k -1 pardo (y k+i+1 , u k+i ) := u k+i -x k v i + y k+i endfor endfor x s-1 := au s-1 mod β return x = (x s-1 , . . . , x 1 , x 0 )

The PPI Algorithm

Assume u and β are coprime. Otherwise, u = β q u' for some positive integers q and u', such that u' and β are coprime. Then, x i = 0 for i = 0, 1, . . . , (q -1). Since (u/v) mod β s = β q (u ′ /v) mod β s-q , the algorithm variables reduces to the parameters u' and s ′ = sq.

In the algorithm the s least-significant digits of u only are needed; and thus we may use u mod β s instead of u. Set

u mod β s = s-1 i=0 u i β i and v mod β s = s-1 j=0 v j β j , and if ℓ β (u) < s, let u i = 0 for all i ≥ ℓ β (u).
On the above assumptions, the algorithm described in Table 1 expresses as

Sequential PPI Algorithm

Input: u, v > 0, with gcd(u, β) = gcd(v, β) = 1, and s a positive integer.

Output:

(u/v) mod β s . a := v -1 0 mod β ; x 0 := (au 0 ) mod β ; /* initialization */ c 1 := (x 0 v 0 ) div β for k := 1 to s -1 do /* loop */ L k := k j=1 v j x k-j + c k ; x k := a(u k -L k ) mod β ; c k+1 := (L k + x k v 0 ) div β endfor return x = (x s-1 , . . . , x 0 )

Remarks:

• In the case when β = 2, the algorithm turns out to be simpler.

• Notice that the loop is very similar to a triangular linear system of the form

A X = B,
with solution X = t (x s-1 , . . . , x 1 ), where B = t (b s-1 , . . . , b 1 ) is a given vector and A = (a i,j ) (1 ≤ i, j ≤ s -1), is defined as

a i,j def =      v 1 if i = j, v i-j+1 if i > j, 0 if i < j.
The parallelization process described in Section 4 applies to the above triangular system.

• In place of s, the constant m = ℓ β (v mod β s ) can be used for updating L k , because it is the current number of digits of v needed in the computation (see Fig. 1). The constant m allows faster computations: m ≤ s and, when m < s, all the useless computations corresponding to v m , . . . , v s-1 are eliminated. Hence, L k is updated as follows:

L k := 1≤j≤µ v j x k-j + c k , where µ = min(k -1, m -1).
• For any given k, the carry c k+1 satifies the relation

L k + x k v 0 = u k + βc k+1 .
Moreover, the worst-case time complexity of the above algorithm occurs for all pairs (u, v) such that (u + v) ≡ 0 (mod β s ), with output x = (u/v) mod β s = β s -1. In that case, the largest value of L k is βk -1. Therefore, for all k,

L k ≤ βk -1 ≤ βs -β -1.

Linear Parallelized PPI Algorithms

In the PPI algorithm, the output x is obtained step by step, least-significant digit first. The digits a, u k and the least-significant digit of L k , namely L k mod β, are only needed to compute x k . However, L k mod β is obtained after computing all of the two-digits products v j × x k-j and their sum. This variant significantly increases the running time of the algorithm and prevents any efficient systolic implementation. In order to overcome the difficulty, we make use of the followings two facts:

1. Every two-bits product v j × x k-j can be computed and added to L k as soon as

x k-j is found.

2. The goal of the parallelization is to break the computation of the sums 1≤j≤k-1 v j x k-j . As far as the carry propagation is concerned for updating the L i 's (for i = k + 1, . . . , s -1), the carry-save technique used in ParModiv can be applied successfully to the parallelization of the PPI algorithm ParPPI.

A Linear Parallel PPI Algorithm ParPPI

ParPPI Algorithm (version 1)

Input: u, v > 0, such that gcd(u, β) = gcd(v, β) = 1, and s a positive integer.

Output: (u/v) mod β s .

for i := 0 to s pardo (y i , L i ) := 0 endfor ; /* initialization */ a := v -1 0 mod β for k := 0 to s -2 do /* main loop */

x k := a(u k -L k -y k ) mod β for i := 0 to s -k -1 pardo (y k+i+1 , L k+i ) := L k+i + x k v i + y k+i endfor endfor x s-1 := a(u s-1 -L s-1 -y s-1 ) mod β return x = (x s-1 , . . . , x 1 , x 0 )

Comparison with ParModiv

ParPPI (version 1) and ParModiv are linear in terms of "surface" (i.e., the maximal number of processors needed in the algorithms) and time complexity. The algorithms are equivalent, but they also slightly differ in the following points:

• Every variable in the ParPPI algorithm consists of a single non-negative digit, whereas ParModiv uses a signed double digit for the variables y j .

• In contrast with ParModiv, the ParPPI algorithm does not change the input u.

• In the ParPPI algorithm, all carries y k+i are updated in parallel. By contrast the first carry is updated serially in ParModiv.

Although they are not important regarding the design of the algorithms themselves, the above differences cause substantial time improvements when s is large, and these algorithms are intensively used to devise efficient GCD algorithms, for example. (See [START_REF] Jebelean | An Algorithm for Exact Division[END_REF][START_REF] Sorenson | Two Fast GCD Algorithms[END_REF][START_REF] Weber | Parallel implementation of the accelerated integer GCD algorithm[END_REF]].)

A New Carry Propagation Technique

We now describe a new carry propagation technique, which propagates the carries alternately. This new technique, called "alternated carry", is illustrated in the second version of ParPPI, where the main loop of ParPPI (Version 1) designed in Subsection 4.1 can be rewritten as follows:

Main Loop of the ParPPI Algorithm (version 2)

for k := 0 to s -2 do

x k := a(u k -L k ) mod β for i := 0 to s -k -1 pardo L k+i := L k+i + x k v i endfor
for n := 0 to ⌊(sk -1)/2⌋ pardo L k+2n+1 := L k+2n+1 + L k+2n div β ; L k+2n := L k+2n mod β endfor endfor Theorem 4.1 below shows that, whatever the input size s, all the L i 's are bounded. Therefore, the ParPPI algorithm (version 2) is also linear in terms of surface (i.e., the maximal number of processors needed) and time complexity.

Theorem 4.1 For any β ≥ 2, s > 1, k ≤ s -1 and n ≤ ⌊(s -k -1)/2⌋, (i) L k+2n ≤ β -1. (ii) L k+2n+1 ≤ β 2 + β -2.
Proof By induction on k.

Basis: Obviously, L 2n = L 2n+1 = 0. So, L 2n ≤ β -1 and L 2n+1 ≤ β 2 + β -2.
Induction step: for any i ≥ k, let L i (k) denote the value of L i at the end of the k-th iteration. Suppose that inequalities (i) and (ii) hold for a given positive integer k. After the computation of x k+1 , and since x k+1 , v j ≤ β -1 for any k and j, we have

L k+1+2n+1 (k) + x k+1 v 2n+1 ≤ β 2 -β, for n ≤ ⌊(s -k -2)/2⌋, (1) 
L k+1+2n (k) + x k+1 v 2n ≤ 2β 2 -β -1, for n ≤ ⌊(s -k -1)/2⌋. (2) 
At the end of the (k + 1)-st iteration Eq. ( 1) and Eq. ( 2) yield

L k+2n+1 (k + 1) ≤ (2β 2 -β -1) mod β ≤ β -1, and 
L k+2n+2 (k + 1) ≤ β 2 -β + (2β 2 -β -1) div β = β 2 + β -2.

Remark:

The alternated carry propagation technique uses 3 digits for L k+2n+1 and one digit for L k+2n . Thus, only 2s digits are needed in the algorithm.

Applications

The ParPPI algorithm can also be used in several applications. All these algorithms use the same "pen and paper" multiplication technique combined with a carry propagation technique (either Version 1 or Version 2). Since it is new, we rather use the second version in the applications.

Exact Division Algorithms

Algorithms for exact division compute the exact quotient u/v of two long integers u and v, when it is known in advance that the remainder is zero. The exact division is easily completed by using the ParPPI algorithm with the parameter r = ℓ β (u)ℓ β (v) + 1 in place of s. Then, r is no longer the "input size" but rather expresses the difference between the sizes of inputs u and v [START_REF] Jebelean | A Generalization of the Binary GCD Algorithm[END_REF].

The dmod Operation

Let ℓ β (u) = s and ℓ β (v) = t, with s ≥ t. The dmod operation is defined as

dmod β (u, v) def = |xv -u|/β r
, where r = st + 1 and x ≡ (u/v) (mod β r ).

The algorithm below is similar to the ParPPI algorithm. It simply multiplies x k and v, and simultaneously substracts u from x k v. The subtraction is performed by β-complement. The β-complement of u k is defined as follows:

u ′ k def = (β -u k ) if k = r, (β -1 -u k ) if k > r.
We assume that xv and u are two (s + 1) digits numbers; so we set u s = 0.

Conclusion

The new modular division PPI algorithms (sequential and parallel variants) enjoy various interesting properties.

It is straightforward to derive many LSF algorithms from the ParPPI algorithm. Such is the case for the exact division, for the p-adic expansion and the periods of rational numbers, and for the multiplication and the dmod operations as well. All above applications are founded on the one and same identical scheme. This makes it easier to construct interactions between them, and thus provide an homogeneous collection of routines which may be extended later.

The "alternated carry propagation" is a new carry propagation technique, which is also fruitful for add-and-shift algorithms.

The parallel algorithms proposed herein follow the same classical multiplication scheme along with a carry propagation technique (either carry save or alternated carry). These algorithms are all linear (O(s)) in terms of surface S(s) (i.e., the maximal number of processors needed) and time complexity T (s), where s is the input size. As a consequence, the work (or cost), W (s) = S(s) × T (s), is O(s 2 ), and they are neither in N C, nor efficient (recall that the best sequential algorithms solving the same problems are O(s log c (s)), for some constant c > 0). Note also that their parallel speed-up is O(log c s), with efficiency O(log c (s)/s).

ParModiv and the main ParPPI algorithm are equivalent, since ParModiv is also surface-time linear (and hence optimal). However, our algorithm may significantly improve when used intensively within several efficient GCD algorithms, for example [START_REF] Jebelean | An Algorithm for Exact Division[END_REF][START_REF] Lehmer | Euclid's algorithm for large numbers[END_REF][START_REF] Sorenson | Two Fast GCD Algorithms[END_REF][START_REF] Weber | Parallel implementation of the accelerated integer GCD algorithm[END_REF]. A new algorithm is also presented, which performs the modular division as well as the digit modulus of two long positive integers simultaneously. All the ParPPI algorithms described are suitable for systolic implementation in a "least-significant digit first" manner, because all decisions in the procedures are taken by using the lower digits of the operands. Hence they can be well aggregated to other systolic algorithms in the arithmetic of multiprecision rational numbers. LSF processing is also used in the most efficient systolic algorithms for multiprecision rational arithmetic. Among them, one may mention long integer multiplication [START_REF] Lavault | Atrubin A one-dimensional iteration multiplier[END_REF] and addition/substraction [START_REF] Knuth | The art of computer programming: seminumerical algorithms[END_REF] algorithms, the Brent-Kung systolic GCD algorithm [START_REF] Brent | Kung Systolic VLSI arrays for linear-time GCD computation[END_REF] and the algorithms in [START_REF] Jebelean | Systolic Algorithms for Exact Division[END_REF][START_REF] Jebelean | A Generalization of the Binary GCD Algorithm[END_REF][START_REF] Jebelean | An Algorithm for Exact Division[END_REF].

The present work continues and complements our previous investigations [START_REF] Sedjelmaci | Lavault Improvements on the accelerated integer GCD algorithm[END_REF] in improving the algorithm for modular division. The combined effects of these improvements allow several basic routines in Computer Algebra systems to run more efficiently.

ParPPI dmod Algorithm

Input: u, v two positive numbers, ℓ β (u) = s, ℓ β (v) = t, with s ≥ t, and gcd(v, β) = 1. Output: x ≡ (u/v) (mod β r ) and dmod β (u, v) = |xv -u|/β r , where r = st + 1.

for i := 0 to s + 1 pardo L i := 0 endfor ; /* initialization */ a := v -1 0 mod β ; r := st + 1 for k := 0 to r -1 do

and xvu is easily given by β-complement.

Moreover the algorithm provides the sign of xvu. Note also that the algorithm computes the modular division and the digit modulus operations simultaneously.

A Linear Surface-Time Multiplication

The same algorithm also applies to perform a multiplication which is also linear in terms of surface and time complexity. However, the ParPPI multiplication algorithm is not even efficient, since the best sequential multiplication algorithms are O(s log c s), for some constant c > 0.

The ParPPI Multiplication Algorithm

Input: u, v two positive numbers, ℓ β (u) = s, ℓ β (v) = t.

Output: L = uv.

for i := 0 to s + t pardo L i := 0 endfor for k := 0 to t -1 do

The p-adic Expansion of Rationals

The ordered sequence of the s digits of x ≡ (u/v) (mod β s ) represents exactly the expected Hensel code H(u, v; β s ). The Hensel code is thus directly given by the ParPPI algorithm. Note that the p-adic expansion is obtained step by step, when s tends to infinity.

Computation of Periods of Rational Numbers

Let u/v be a rational number, with u < v, and let v and β be coprime. Let T be the periodic part of the expansion, called the period of u/v, and let t be the length of T in base β. Then, u/v = T /(β t -1), and thus vT ≡ (-u) (mod β t ). Now using the PPI algorithm with the parameters -u, v and t yields T ≡ -u/v (mod β) t . Note that T is obtained in a "least-significant digit first" manner, whereas the classical division provides the period in a "most-significant digit first" manner.