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On Landau's Function g(n)

Introduction

Let S n be the symmetric group of n letters. Landau considered the function g(n) defined as the maximal order of an element of S n ; Landau observed that (cf. [START_REF] Landau | Uber die Maximalordung der Permutation gegebenen Grades[END_REF]) g(n) = max lcm(m 1 , . . . , m k ) (1.1) where the maximum is taken on all the partitions n = m 1 + m 2 + . . . + m k of n and proved that, when n tends to infinity log g(n) ∼ n log n.

(1.2)

More precise asymptotic estimates have been given in [START_REF] Shah | An Inequality for the Arithmetical Function g(x)[END_REF][START_REF] Szalay | On the maximal order in S n and S * n[END_REF][START_REF] Massias | Evaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique[END_REF]. In [START_REF] Szalay | On the maximal order in S n and S * n[END_REF] and [START_REF] Massias | Evaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique[END_REF] one also can find asymptotic estimates for the number of prime factors of g(n). In [START_REF] Grantham | The largest prime dividing the maximal order of an element of S n[END_REF] and [START_REF] Deléglise | Le plus grand facteur premier de la fonction de Landau[END_REF], the largest prime factor P + (g(n)) of g(n) is investigated.

In [START_REF] Massias | Majoration explicite de l'ordre maximum d'un élément du groupe symétrique[END_REF] and [12], effective upper and lower bounds of g(n) are given. In [START_REF] Nicolas | Ordre maximal d'un élément d'un groupe de permutations[END_REF], it is proved that lim n→∞ g(n + 1)/g(n) = 1. An algorithm able to calculate g(n) up to 10 15 is given in [START_REF] Deléglise | Landau's function for one million billions[END_REF] (see also [26]). The sequence of distinct values of g(n) is entry A002809 of [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF]. A nice survey paper was written by W. Miller in 1987 (cf. [START_REF] Miller | The Maximum Order of an Element of a Finite Symmetric Group[END_REF]). My very first mathematical paper [START_REF] Nicolas | Sur l'ordre maximum d'un élément dans le groupe S n des permutations[END_REF] was about Landau's function, and the main result was that g(n), which is obviously non decreasing, is constant on arbitrarily long intervals (cf. also [START_REF] Nicolas | Ordre maximum d'un élément du groupe de permutations et highly composite numbers[END_REF]). First time I met A. Schinzel in Paris in May 1967. He told me that he was interested in my results, but that P. Erdős would be more interested than himself. Then I wrote my first letter to Paul with a copy of my work. I received an answer dated of June 12 1967 saying " I sometimes thought about g(n) but my results were very much less complete than yours". Afterwards, I met my advisor, the late Professor Pisot, who, in view of this letter, told me that my work was good for a thesis.

The main idea of my work about g(n) was to use the tools introduced by S. Ramanujan to study highly composite numbers (cf. [START_REF] Ramanujan | Highly composite numbers[END_REF][START_REF] Ramanujan | Highly composite numbers, annotated and with a foreword by[END_REF]). P. Erdős was very well aware of this paper of Ramanujan (cf. [START_REF] Alaoglu | On highly composite and similar numbers[END_REF][START_REF] Erdős | On highly composited numbers[END_REF][START_REF] Erdős | Répartition des nombres superabondants[END_REF][START_REF] Erdős | Ramanujan and I[END_REF]) as well as of the symmetric group and the order of its elements, (cf. [START_REF] Erdős | On some problems of a statistical group theory", I to VII[END_REF]) and I think that he enjoyed the connection between these two areas of mathematics. Anyway, since these first letters, we had many occasions to discuss Landau's function.

Let us define

n 1 = 1, n 2 = 2, n 3 = 3, n 4 = 4, n 5 = 5, n 6 = 7, etc . . . , n k (see a table of g(n) in [16, p. 187]), such that g(n k ) > g(n k -1).
(1.

3)

The above mentioned result can be read:

lim (n k+1 -n k ) = +∞. (1.4)
Here, I shall prove the following result:

Theorem 1. lim (n k+1 -n k ) < +∞. (1.5) 
Let us set p 1 = 2, p 2 = 3, p 3 = 5, . . ., p k = the k-th prime. It is easy to deduce Theorem 1 from the twin prime conjecture (i.e. lim (p k+1 -p k ) = 2) or even from the weaker conjecture lim (p k+1 -p k ) < +∞. (cf. §1.4 below). But I shall prove Theorem 1 independently of these deep conjectures. Moreover I shall explain below why it is reasonable to conjecture that the mean value of n k+1 -n k is 2; in other terms one may conjecture that

n k ∼ 2k (1.6)
and that n k+1 -n k = 2 has infinitely many solutions. Due to a parity phenomenon, n k+1 -n k seems to be much more often even than odd; nevertheless, I conjecture that: lim (n k+1 -n k ) = 1.

(1.7)

The steps of the proof of Theorem 1 are first to construct the set G of values of g(n) corresponding to the so called superior highly composite numbers introduced by S. Ramanujan, and then, when g(n) ∈ G, to build the table of g(n + d) when d is small. This will be done in §1.4 and §1.5. Such values of g(n + d) will be linked with the number of distinct differences of the form P -Q where P and Q are primes satisfying x -x α ≤ Q ≤ x < P ≤ x + x α , where x goes to infinity and 0 < α < 1. Our guess is that these differences P -Q represent almost all even numbers between 0 and 2x α , but we shall only prove in §1.3 that the number of these differences is of the order of magnitude of x α , under certain strong hypothesis on x and α, and for that a result due to Selberg about the primes between x and x + x α will be needed (cf. §1.2).

To support conjecture (1.6), I think that what has been done here with g(n) ∈ G can also be done for many more values of g(n), but, unfortunately, even assuming strong hypotheses, I do not see for the moment how to manage it.

I thank very much E. Fouvry who gave me the proof of Proposition 2.

Notation

p will denote a generic prime, p k the k-th prime; P, Q, P i , Q j will also denote primes. As usual π(x) = p≤x 1 is the number of primes up to x.

|S| will denote the number of elements of the set S. The sequence n k is defined by (1.3).

About the distribution of primes

Proposition 1. Let us define π(x) = p≤x 1, and let α be such that 1 6 < α < 1, and ε > 0. When ξ goes to infinity, and ξ ′ = ξ + ξ/ log ξ, then for all x in the interval [ξ, ξ ′ ] but a subset of measure O((ξ ′ -ξ)/ log 3 ξ) we have:

π(x + x α ) -π(x) - x α log x ≤ ε x α log x (1.8) π(x) -π(x -x α ) - x α log x ≤ ε x α log x (1.9) x log x - Q k -Q k-1 log Q ≥ √ x log 4 x
f or all primes Q, and k ≥ 2.

(1.10)

Proof. This proposition is an easy extension of a result of Selberg (cf. [START_REF] Selberg | On the normal density of primes in small intervals and the difference between consecutive primes[END_REF]) who proved that (1.8) holds for most x in (ξ, ξ ′ ). In [START_REF] Nicolas | Répartition des nombres largement composés[END_REF], I gave a first extension of Selberg's result by proving that (1.8) and (1.9) hold simultaneously for all x in (ξ, ξ ′ ) but for a subset of measure O((ξ ′ -ξ)/ log 3 ξ). So, it suffices to prove that the measure of the set of values of x in (ξ, ξ ′ ) for which (1.10) 

does not hold is O((ξ ′ -ξ)/ log 3 ξ).
We first count the number of primes Q such that for one k we have:

ξ log ξ ≤ Q k -Q k-1 log Q ≤ ξ ′ log ξ ′ .
(1.11)

If Q satisfies (1.11), then k ≤ log ξ ′ log 2 for ξ ′ large enough. Further, for k fixed, (1.11) implies that Q ≤ (ξ ′ ) 1/k ,
and the total number of solutions of (1.11) is

≤ log ξ ′ / log 2 k=2 (ξ ′ ) 1/k = O( ξ ′ ) = O( ξ).
With a more careful estimation, this upper bound could be improved, but this crude result is enough for our purpose. Now, for all values of y =

Q k -Q k-1 log Q satisfying (1.11), we cross out the interval y - √ ξ ′ log 4 ξ ′ , y + √ ξ ′ log 4 ξ ′ .
We also cross out this interval whenever y = ξ log ξ and y = ξ ′ log ξ ′ . The total sum of the lengths of the crossed out intervals is O ξ log 4 ξ , which is smaller than the length of the interval

ξ log ξ , ξ ′ log ξ ′ and if x log x
does not fall into one of these forbidden intervals, (1.10) will certainly hold. Since the derivative of the function ϕ

(x) = x/ log x is ϕ ′ (x) = 1 log x -1 log 2
x and satisfies ϕ ′ (x) ∼ 1 log ξ for all x ∈ (ξ, ξ ′ ), the measure of the set of values of x ∈ (ξ, ξ ′ ) such that ϕ(x) falls into one of the above forbidden intervals is, by the mean value theorem O ξ log 3 ξ , and the proof of Proposition 1 is completed.

About the differences between primes

Proposition 2. Suppose that there exists α, 0 < α < 1, and x large enough such that the inequalities

π(x + x α ) -π(x) ≥ (1 -ε)x α / log x (1.12) π(x) -π(x -x α ) ≥ (1 -ε)x α / log x (1.13)
hold. Then the set 4 and C 1 is an absolute constant (C 1 = 0.00164 works).

E = E(x, α) = {P -Q; P, Q primes, x -x α < Q ≤ x < P ≤ x + x α } satisfies: |E| ≥ C 2 x α where C 2 = C 1 α 4 (1 -ε)
Proof. The proof is a classical application of the sieve method that Paul Erdős enjoys very much. Let us set, for d ≤ 2x α ,

r(d) = |{(P, Q); x -x α < Q ≤ x < P ≤ x + x α , P -Q = d}|. Clearly we have |E| = 0<d≤2x α r(d) =0 1 (1.14) and 0<d≤2x α r(d) = (π(x+x α )-π(x))(π(x)-π(x-x α )) ≥ (1-ε) 2 x 2α / log 2 x. (1.15)
Now to get an upper bound for r(d), we sift the set

A = {n; x -x α < n ≤ x}
with the primes p ≤ z. If p divides d, we cross out the n ′ s satisfying n ≡ 0 (mod p), and if p does not divide d, the n ′ s satisfying n ≡ 0 (mod p) or n ≡ -d (mod p) so that we set for p ≤ z:

w(p) = 1 if p divides d 2 if p does not divide d.
By applying the large sieve (cf. [14, Corollary 1]), we have

r(d) ≤ |A| L(z)
with

L(z) = n≤z 1 + 3 2 n|A| -1 z -1 µ(n) 2   p|n w(p) p -w(p)  
(µ is the Möbius function), and with the choice z = (

2 3 |A|) 1/2 , it is proved in [23] that |A| L(z) ≤ 16 p≥3 1 - 1 (p -1) 2 |A| log 2 (|A|) p|d p>2 p -1 p -2 .
The value of the above infinite product is 0.6602 . . . < 2/3. We set f (d) = p|d p>2 p-1 p-2 , and we observe that |A| ≥ x α -1, so that for x large enough

r(d) ≤ 32 3α 2 |A| log 2 x f (d). (1.16)
Now, for the next step, we shall need an upper bound for n≤x f 2 (n). By using the convolution method and defining

h(n) = a|n µ(a)f 2 (n/a) one gets h(2) = h(2 2 ) = h(2 3 ) = . . . = 0 and, for p ≥ 3, h(p) = 2p-3 (p-2) 2 , h(p 2 ) = h(p 3 ) = . . . = 0, so that n≤x f 2 (n) = n≤x a|n h(a) = a≤x h(a) x a ≤ x ∞ a=1 h(a) a = x p≥3 1 + 2p -3 p(p -2) 2
(1.17) = 2.63985 . . . x ≤ 8 3

x.

From (1.15) and (1.16), one can deduce

(1 -ε) 2 x 2α log 2 x ≤ 0<d≤2x α r(d) =0 r(d) ≤ 32 3α 2 |A| log 2 x 0<d≤2x α r(d) =0 f (d).
which implies

0<d≤2x α r(d) =0 f (d) ≥ 3α 2 x 2α (1 -ε) 2 32|A| •
By Cauchy-Schwarz's inequality, one has

    0<d≤2x α r(d) =0 1         0<d≤2x α r(d) =0 f 2 (d)     ≥ 9α 4 x 4α (1 -ε) 4 1024|A| 2
and, by (1.14) and (1.17)

|E| ≥ 9α 4 x 4α (1 -ε) 4 1024|A| 2 8 3 (2x α ) = 27 16384 x 3α (1 -ε) 4 |A| 2 •
Since |A| ≤ x α + 1, and x has been supposed large enough, proposition 2 is proved.

Some properties of g(n)

Here, we recall some known properties of g(n) which can be found for instance in [START_REF] Nicolas | Ordre maximum d'un élément du groupe de permutations et highly composite numbers[END_REF]. Let us define the arithmetic function ℓ in the following way: ℓ is additive, and, if p is a prime and k ≥ 1, then ℓ(p k ) = p k . It is not difficult to deduce from (1.1) (cf. [START_REF] Miller | The Maximum Order of an Element of a Finite Symmetric Group[END_REF] or [START_REF] Nicolas | Ordre maximum d'un élément du groupe de permutations et highly composite numbers[END_REF]) that

g(n) = max ℓ(M)≤n M. (1.18) 
Now the relation (cf. [START_REF] Nicolas | Ordre maximum d'un élément du groupe de permutations et highly composite numbers[END_REF], p. 139)

M ∈ g(N) ⇐⇒ (M ′ > M =⇒ ℓ(M ′ ) > ℓ(M )) (1.19)
easily follows from (1.18), and shows that the values of the Landau function g are the "champions" for the small values of ℓ. So the methods introduced by Ramanujan (cf. [START_REF] Ramanujan | Highly composite numbers[END_REF]) to study highly composite numbers can also be used for g(n). Indeed M is highly composite, if it is a "champion" for the divisor function d, that is to say if

M ′ < M =⇒ d(M ′ ) < d(M ).
Corresponding to the so-called superior highly composite numbers, one introduces the set G : N ∈ G if there exists ρ > 0 such that

∀M ≥ 1, ℓ(M ) -ρ log M ≥ ℓ(N ) -ρ log N. (1.20) 
(1. [START_REF] Ramanujan | Highly composite numbers[END_REF]) and (1.20) easily imply that G ⊂ g(N). Moreover, if ρ > 2/ log 2, let us define x > 4 such that ρ = x/ log x and

N ρ = p≤x p αp = p p αp (1.21)
with

α p =      0 if p > x 1 if p log p ≤ ρ < p 2 -p log p k ≥ 2 if p k -p k-1 log p ≤ ρ < p k-1 -p k log p then N ρ ∈ G.
With the above definition, since x ≥ 4, it is not difficult to show that (cf. [11, (5)])

p αp ≤ x (1.22)
holds for p ≤ x, whence N ρ is a divisor of the l.c.m. of the integers ≤ x. Here we can prove Proposition 3. For every prime p, there exists n such that the largest prime factor of g(n) is equal to p.

Proof. We have g(2) = 2, g(3) = 3. If p ≥ 5, let us choose ρ = p/ log p > 2/ log 2. N ρ defined by (1.21) belongs to G ⊂ g(N), and its largest prime factor is p, which proves Proposition (3).

From Proposition 3, it is easy to deduce a proof of Theorem 1, under the twin prime conjecture. Let P = p + 2 be twin primes, and n such that the largest prime factor of g(n) is p. The sequence n k being defined by (1.3), we define k in terms of n by n k ≤ n < n k+1 , so that g(n k ) = g(n) has its largest prime factor equal to p. Now, from (1.18) and (1. [START_REF] Ramanujan | Highly composite numbers[END_REF], In the above formula, let us observe that ℓ(p β ) = p β if β ≥ 1, but that ℓ(p β ) = 0 = p β = 1 if β = 0, and, due to the choice of α p in (1.21), that, in the sum (1.24), all the terms are non negative: for all p and for β ≥ 0, we have

ℓ(g(n k )) = n k and g(n k +2) > g(n k ) since M = P p g(n k ) satisfies M > g(n k ) and ℓ(M ) = n k +2. So n k+1 ≤ n k + 2,
ℓ(p β ) -ℓ(p αp ) -ρ(β -α p ) log p ≥ 0 (1.25)
Indeed, let us consider the set of points (0,0) and (β, p β / log p) for β integer ≥ 1. For all p, the piecewise linear curve going through these points is convex, and for a given ρ, α p is chosen so that the straight line L of slope ρ going through α p , p αp log p does not cut that curve. The left-hand side of (1.25), (which is ben(N p β-αp )) can be seen as the product of log p by the vertical distance of the point β, p β log p to the straight line L, and because of convexity, we shall have for all p, ben(N p t ) ≥ t ben(N p), t ≥ 1 (1.26) and for p ≤ x, ben(N p -t ) ≥ t ben(N p -1 ), 1 ≤ t ≤ α p .

(1.27)

Proof of Theorem 1

First the following proposition will be proved:

Proposition 4. Let α < 1/2, and x large enough such that (1.10) holds. Let us denote the primes surrounding x by: . . . < Q j < . . . < Q 2 < Q 1 ≤ x < P 1 < P 2 < . . . < P i < . . .

Let us define ρ = x/ log x, N = N ρ by (1.21), n = ℓ(N ). Then for n ≤ m ≤ n + 2x α , g(m) can be written

g(m) = N P i1 P i2 . . . P ir Q j1 Q j2 . . . Q jr (1.28) with r ≥ 0 and i 1 < . . . < i r , j 1 < . . . < j r , P ir ≤ x + 4x α , Q jr ≥ x -4x α .
Proof. First, from (1.18), one has ℓ(g(m)) ≤ m, and from (1.23) and (1.18) ben(g(m

)) = ℓ(g(m)) -ℓ(N ) -ρ log g(m) N ≤ m -n ≤ 2x α (1.29) for n ≤ m ≤ 2x α .
Further, let Q ≤ x be a prime, and k = α Q ≥ 1 the exponent of Q in the standard factorization of N . Let us suppose that for a fixed m, Q divides g(m)

with the exponent β Q = k + t, t > 0. Then, from (1.24), (1.25), and (1.26), one gets ben(g(m))

≥ ben(N Q t ) ≥ ben(N Q) (1.30) and ben(N Q) = Q k+1 -Q k -ρ log Q = log Q Q k+1 -Q k log Q -ρ .
From (1.21), the above parenthesis is non negative, and from (1.10), one gets:

ben(N Q) ≥ log 2 √ x log 4 x • (1.31)
For x large enough, there is a contradiction between (1.29), (1.30) and (1.31), and so,

β Q ≤ α Q . Similarly, let us suppose Q ≤ x, k = α Q ≥ 2 and β Q = k -t, 1 ≤ t ≤ k. One has, from (1.24), (1.25) and (1.27), ben(g(m)) ≥ ben(N Q -t ) ≥ ben(N Q -1 ) and ben(N Q -1 ) = Q k-1 -Q k + ρ log Q = log Q ρ - Q k -Q k-1 log Q ≥ log 2 √ x log 4 x
which contradicts (1.29), and so, for such a

Q, β Q = α Q . Now, let us suppose Q ≤ x, α Q = 1, and β Q = 0 for some m, n ≤ m ≤ n + 2x α . Then ben(g(m)) ≥ ben(N Q -1 ) = -Q + ρ log Q = y(Q)
by setting y(t) = ρ log t -t. From the concavity of y(t) for t > 0, for x ≥ e 2 , we get

y(Q) ≥ y(x) + (Q -x)y ′ (x) = (Q -x) ρ x -1 = (x -Q) 1 - 1 log x ≥ 1 2 (x -Q) and so, ben(g(m)) ≥ 1 2 (x -Q) which, from (1.29) yields x -Q ≤ 4x α .
In conclusion, the only prime factors allowed in the denominator of g(m) N are the

Q ′ s, with x -4x α ≤ Q ≤ x , and α Q = 1.
What about the numerator? Let P > x be a prime number and suppose that P t divides g(m) with t ≥ 2. Then, from (1.26) and (1.23), ben(N p t ) ≥ ben(N p 2 ) = P 2 -2ρ log P.

But the function t → t 2 -2ρ log t is increasing for t ≥ √ ρ, so that, ben(N P t ) ≥ x 2 -2x > 2x α for x large enough, which contradicts (1.29). The only possibility is that P divides g(m) with exponent 1. In that case, from the convexity of the function z(t) = t -ρ log t, inequality (1.26) yields ben(g(m)) ≥ ben(N P ) = z(P ) ≥ z(x) + (P -x)z ′ (x)

= (P -x) 1 - 1 log x ≥ 1 2 (P -x)
for x ≥ e 2 , which, with (1.29), implies

P -x ≤ 4x α .
Up to now, we have shown that 

ℓ(g(m)) -n ≤ r(x + 4x α ) -s(x -4x α ) ≤ (r -s)x + 32x 2α .
From (1.32), ℓ(g(m)) -n ≥ 0 holds and as α < 1/2, this implies that r ≥ s for x large enough. Similarly, ℓ(g(m)) -n ≥ (r -s)x, so, from (1.32), (r -s)x must be ≤ 2x α , which, for x large enough, implies r ≤ s; finally r = s, and the proof of Proposition 4 is completed. 

b k ≤ b k-1 ≤ . . . ≤ b 1 ≤ x < a 1 ≤ a 2 ≤ . . . ≤ a k
and ∆ be defined by ∆ = k i=1 (a i -b i ). Then the following inequalities

x + ∆ x ≤ k i=1 a i b i ≤ exp ∆ x hold.
Proof. It is easy, and can be found in [START_REF] Nicolas | Ordre maximum d'un élément du groupe de permutations et highly composite numbers[END_REF], p. 159. Now it is time to prove Theorem 1. With the notation and hypothesis of Proposition 4, let us denote by B the set of integers M of the form

M = N P i1 P i2 . . . P ir Q j1 Q j2 . . . Q jr satisfying ℓ(M ) -ℓ(N ) = r t=1 (P it -Q jt ) ≤ 2x α .
From Proposition 4, for n ≤ m ≤ 2x α , g(m) ∈ B, and thus, from (1.18),

g(m) = max ℓ(M)≤m M. M∈B (1.33) 
Further, for 0 ≤ d ≤ 2x α , define

B d = {M ∈ B; ℓ(M ) -ℓ(N ) = d}. I claim that, if d < d ′ (which implies d ≤ d ′ -2), any element of B d is smaller than any element of B d ′ . Indeed, let M ∈ B d , and M ′ ∈ B d ′ . From Lemma 1, one has M N ≤ exp d x and M ′ N ≥ x + d ′ x ≥ x + d + 2 x • Since d < 2x α < x
, and e t ≤ 1 1-t for 0 ≤ t < 1, one gets 

M N ≤ 1 1 -d/x = x x -d • This last quantity is smaller than x+d+2 x if (d + 1) 2 < 2x + 1,
n k0+i+1 -n k0+i ≤ 2 C 2 .
Finally, for 1 6 < α < 1 2 , Proposition 1 allows us to choose x as wished, and thus, the proof of Theorem 1 is completed. With ε very small, and α close to 1/2, the values of C 1 and C 2 given in Proposition 2 yield that for infinitely many k ′ s, n k+1 -n k ≤ 20000.

To count how many such differences we get, we define

γ(n) = Card{m ≤ n; g(m) > g(m -1)}.
Therefore, with the notation (1.3), we have n γ (n) = n.

In [START_REF] Nicolas | Ordre maximum d'un élément du groupe de permutations et highly composite numbers[END_REF][162][163][164], it is proved that

n 1-τ /2 ≪ γ(n) ≤ n -c n 3/4 √ log n
where τ is such that the sequence of consecutive primes satisfies p i+1 -p i ≪ p τ i . Without any hypothesis, the best known τ is > 1/2. I now claim that, with the notation of Proposition 1, the number of primes p i between ξ and ξ ′ such that there is at least one x ∈ [p i , p i+1 ) satisfying (1.8), (1.9) and (1.10) is bigger than 1 2 (π(ξ ′ ) -π(ξ)). Indeed, for each i for which [p i , p i+1 ) does not contain any such x, we get a measure p i+1 -p i ≥ 2, and if there are more than 1 2 (π(ξ ′ ) -π(ξ)) such i ′ s, the total measure will be greater than π(ξ ′ ) -π(ξ) ∼ ξ/ log 2 ξ, which contradicts Proposition 1.

From the above claim, there will be at least 1 2 (π(ξ ′ ) -π(ξ)) distinct N ′ s, with N = N ρ , ρ = x/ log x, and ξ ≤ x ≤ ξ ′ . Moreover, for two such distinct N , say N ′ < N ", we have from (1.21), ℓ(N ′′ ) -ℓ(N ′ ) ≥ ξ.

Let N (1) and N (0) the biggest and the smallest of these N ′ s, and n (1) = ℓ(N (1) ), n (0) = ℓ(N (0) ), then from (1.36), γ(n (1) ) ≥ γ(n (1) ) -γ(n (0) ) ≥ 1 2 (π(ξ ′ ) -π(ξ)) ξ α ≫ ξ 1+α log 2 ξ .

(1.37)

But from (1.21) and (1.22), x ∼ log N ρ , and from (1.2),

x ∼ log N ρ ∼ n log n with n = ℓ(N p ) so ξ ∼ n (1) log n (1) and since α can be choosen in (1.37) as close as wished of 1/2, this completes the proof of Proposition 5.

  and Theorem 1 is proved under this strong hypothesis. Let us introduce now the so-called benefit method. For a fixed ρ > 2/ log 2, N = N ρ is defined by (1.21), and for any integer M , M = p p βp , one defines the benefit of M : ben(M ) = ℓ(M ) -ℓ(N ) -ρ log M/N. (1.23) Clearly, from (1.20), ben(M ) ≥ 0 holds, and from the additivity of ℓ one has ben(M ) = p ℓ(p βp ) -ℓ(p αp ) -ρ(β p -α p ) log p . (1.24)

g

  (m) = N P i1 . . . P ir Q j1 . . . Q js with P ir ≤ x + 4x α , Q js ≥ x -4x α . It remains to show that r = s. First, since n ≤ m ≤ n + 2x α , and N belongs to G, we have from(1.18) and(1.19) n ≤ ℓ(g(m)) ≤ n + 2x α . since r ≤ 4x α , and s ≤ 4x α ,

Lemma 1 .

 1 Let x be a positive real number, a 1 , a 2 , . . . , a k , b 1 , b 2 , . . . , b k be real number such that

Proposition 5 .

 5 We have γ(n) ≥ n 3/4-ε for all ε > 0, and n large enough.Proof. With the definition of γ(n), (1.34) and (1.35) giveγ(n + 2x α ) -γ(n) ≥ s ≫ x α (1.36) whenever n = ℓ(N ), N = N ρ , ρ = x/ log x,and x satisfies Proposition 1. But, from (1.21), two close enough distinct values of x can yield the same N .

  which is true for x large enough, because d ≤ 2x α and α < 1/2.From the preceding claim, and from (1.33), it follows that, if B d is non empty, theng(n + d) = max B d .Further, since N ∈ G, we know that n = ℓ(N ) belongs to the sequence (n k ) where g is increasing, and so, n = n k0 . If 0 < d 1 < d 2 < . . . < d s ≤ 2x α denote the values of d for which B d is non empty, then one hasn k0+i = n + d i , 1 ≤ i ≤ s.(1.34) Suppose now that α < 1/2 and x have been chosen in such a way that (1.12) and (1.13) hold. With the notation of Proposition 2, the set E(x, α) is certainly included in the set {d 1 , d 2 , . . . , d s }, and from Proposition 2,

	s ≥ C 2 x α	(1.35)
	which implies that for at least one i, d i+1 -d i ≤ 2 C2 , and thus	

CHAPTER 1. ON LANDAU'S FUNCTION G(N )

Bibliography