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Abstract: Training Systems Engineering (SE) is increasingly spreading in academic curriculums in order to satisfy the grow-
ing need of engineers aware of systems view. This is achieved by the formalization of ad-hoc best practices into a more mature 
corpus expecting to make SE a full discipline. However, one major training difficulty is to infuse multi-disciplinary views of a 
system as a whole beyond implementing standardized engineering processes. In this way, our training practice leads us to well 
formalize the specification process as a basic driver in order to logically guide both trainers and trainees SE practices. 

1 Introduction 

There is a growing interest in Systems Engineering (SE) [Haskins et al. 2011], as the discipline of engineering a system as a 
whole [Von Bertalanffy, 1968]. The objective is to address the increasing complexity caused technically by multiple system 
component architectures as well as caused behaviorally by multiple interacting agents under control. Classical engineering dis-
ciplines have to broaden their respective theoretical and technical domains to meet this crosscutting challenge in order to de-
fine, to develop and to deploy a system satisfying stakeholder requirements. 

For SE to be recognized as a full discipline by the industrial and academic worlds, the BKCASE1 international project 
(Body of Knowledge and Curriculum to Advance Systems Engineering) aims at proposing a worldwide knowledge repository, 
composed of two major deliverables. The first one is the SEBoK (Systems Engineering Body of Knowledge) [Pyster et al. 
2012a], which purpose is to “provide a widely accepted, community based, and regularly updated baseline of SE knowledge”. 
It is available as a wiki which describes precepts about Systems Science, System Thinking, and mainly about Systems Engi-
neering. The second deliverable is the GRCSE (Graduate Reference Curriculum for Systems Engineering) [Pyster et al. 
2012b], which is a set of “recommendations for the development and the implementation of a systems-centric professional 
master’s degree program in Systems Engineering”, compliant with the SEBoK. 

With the same objective than the SEBoK, the AFIS2, the French chapter of the INCOSE3, has proposed in parallel a SE ref-
erence book [Fiorèse & Ménadier 2012]. The presentation approach used is to describe basic concepts (“with what?”, “why?”, 
“what?”), before describing SE processes, methods and tools (“how?”). Our eight years of experience in teaching SE within a 
master’s degree in Complex Systems Engineering4 convinced us that, indeed, it is important for students to understand first 
how SE basic precepts are structured. In this sense, considering the SE domain as the pivotal domain between the trainer do-
main and concurrent specialist engineering domains (Fig. 1) [Bouffaron et al. 2012], we prescribe that satisfying systems re-
quirements as well as functionally and physically architecting a solution rely mainly on a logical ORM-based5 specification 
process. The objective of this paper is to propose SE training recommendations based on this specification process as driver, 
before to assess them on Model-Based Systems Engineering (MBSE), in particular with SysML [OMG 2012]. 
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Fig. 1 Collaborative specification process applied to SE training 

2 SE training problem statements 

Systems Engineering teaching is gradually being implemented in some schools and universities, but is not unified. It is often 
taught by experienced engineers and professors, who are rather autodidacts and trained by years of practices on large projects. 
These engineering projects pushed them to cope with different types of problems, to find solutions, and to formalize "best 
practices" to implement on future projects. As a result, SE approaches are mostly based on feedbacks rather than on sound sci-
entific foundations. Furthermore, in function of trainers’ experience and tendency, some complementary points of views can be 
followed, with advantages and drawbacks, to teach SE: ensuring compliance with SE standards, following MBSE methods, 
and applying project management concepts.  

Indeed, a major effort has been done since years to standardize SE processes (ANSI/EIA 632 [ANSI/EIA 1999], IEEE 1220 
[IEEE 2005], ISO/IEC 15288 [ISO/IEC 2008], ISO/IEC TR 24748-2 [ISO/IEC 2011], ISO/IEC 26702 [ISO/IEC 2007]). As a 
result, agreement, enterprise, project and technical processes involved within system life cycle are highlighted and defined. 
This enables to realize which processes have to be applied, how they can be applied, and what their outcomes are. This way, 
trainees can verify if they have well applied SE processes in order to “solve the problem right”, but the main drawback is that 
the compliance to these processes does not guarantee that they have worked “the right problem” [Martin 1997]. 

The implementation complexity of these standardized processes grows in function of the number of systems functionalities, 
which increases rapidly with the growing use of software. The traditional document-centric approaches come then to theirs 
limit [Pyster et al. 2012 a]. One answer seems to be Model-Based Systems Engineering (MBSE) [Estefan 2008], which seems 
to be better suited to manage complexity, including that of software [Friedenthal et al. 2011]. The objective of MBSE is to 
support system life cycle activities, including requirements engineering, high-level architecture, detailed design, testing, usage, 
maintenance, and disposal, with models. In practice, if trainees are not well guided to apply MBSE, graphical representations 
are used to replace traditional textual documents. The result is a set of diagrams representing aspects of the system, but which 
can present inconsistencies. In this case, students have only “drawn” rather than “modeled”. 

Even if the management of SE processes can not be dissociated from project management [PMI 2008], it is also clear that a 
senior project manager (Fig. 2a or Fig. 2c) has previously managed technical processes in several projects as junior manager 
(Fig. 2b). In other words, the trainer is in charge of the strategic project management according to a training development cy-
cle, while trainees are in charge of the operational management of SE tasks as well as of their execution. 
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Fig. 2 Overlap of the project roles, adapted from [Pyster et al. 2012]: trainer and trainees share the project processes 

This interoperation relationship between trainer and trainees (Fig. 3) must be also contextualized in a common domain-of-
interest, from which the system-of-interest must be specified. This system-of-interest must have a scale factor and a complexity 
justifying that various disciplines (system, specialties…) are involved as well as that different roles are allocated to trainees. 

 

 

Fig. 3 Interoperations between trainers and trainees within SE training projects 

As example of training context, the CISPI lab platform reflects some requirements of the large-scale R&D programme aim-
ing to innovate in power-plant control system-architectures for technical as well as ecological issues. CISPI system-of-interest 
reflects the main principles of a steam generator Auxiliary Feedwater System (AFS). The purpose of such an AFS is to partici-
pate in the cooling of the primary circuit, in case of emergency. Its mission is to feed steam generators with water in order to 
get the necessary conditions for the use of a Shutdown Cooling Heat Exchanger (SCHE). The main objective is to maintain a 
sufficient water flow rate into the steam generators, so that they can ensure heat transfers in safe conditions. Student training 
projects impact modifications of the current CISPI platform related to an integrated Control, Maintenance and technical Man-
agement System [Morel et al. 2009] as well as fluid circuits. 

3 Specification as a SE training driver 

The problem statements we pointed out in the previous section brought us to formalize the contractual specification rela-
tionship between trainers and trainees, as a pivotal driver to logically organize SE artifacts within training projects.  
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Problem-Solution spaces interoperation 

In Fig. 3, Trainer[Project_Manager] and Trainee[Systems_Engineer] can be associated to problem spaces. Trainee[Project_Engineer] and Train-
ee[Specialist_Engineer] can in turn be associates to solution spaces. Indeed, problem space describes its problem and solution space 
prescribes a solution in return. If the solution proposed solves the problem, this solution is seen as a specification result. In this 
sense, as underlined by [Hall et al., 2002] the interoperation between problem space and solution space is seen as a specifica-
tion process producing this specification result. This is consistent with previous work [Bouffaron et al., 2012] wherein the 
specification process is seen as a descriptive-prescriptive interoperation relationship between problem space and solution 
space. This formalization (Fig. 4) allows clarifying the use of the “specification” word (which is used for referring to the speci-
fication process as well as the result of this process [Van Lamsweerde, 2000]) and the emergence of a key SE artifact which is 
the separation of problem and solution spaces. 

Thus, Trainee[Systems_Engineer] and Trainee[Specialist_Engineer] would not be the same person. Therefore, trainees would be 
specialized in either system engineering domain, or in specialist domains. 

 

 

Fig. 4 Problem-solution spaces interoperation artifacts 

Source-Sink objects interoperation 

In a more general way, the interaction between two spaces highlights that the specification process treats stakeholder re-
quirements (Problem) as source objects, to specify system requirements (Solution) as sink objects. We noticed that the specifi-
cation process evolution is clocked by the different roles of the objects handled by the processes composing the specification 
process: an object produced by a process with a sink role will have a source role when it will be consumed by another process 
(Fig. 5). A main interest in the Source-Sink artifact is that it can be useful to perform traceability between source objects and 
sink objects during process execution. In this sense, trainer and trainee would trace all actions performed during process 
specification execution to ensure traceability between problem and solution. 
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Fig. 5 Source-sink objects interoperation artifacts 

Optative and indicative moods interoperation 

The process formalization (Fig. 6) can be put in relation with works by Jackson in the software engineering domain, who for-
malized the concepts of optative and indicative moods [Jackson, 1997]. During the specification process, optative objects (rep-
resenting requirements at different levels of abstraction) undergoes several transformations performed by processes according 
to indicative objects belonging either to the problem space or to several specialist solution spaces. Optative object expresses 
conditions over the problem space that have to become true. Indicative objects represent the known properties (skills) of a do-
main which are validated by experts regardless of the behavior or given properties of the solution. Thus, domains can act as so-
lution spaces if they have skills to solve a problem, or as problem space if they don’t [Czarnecki, 1998]. This highlights that 
some students would be involved at the system level, and some other students would be specialized in engineering do-
mains. 
 

 

Fig. 6 Optative and indicative moods interoperation artifacts 

Verification and Validation processes interoperation 

The relationship between problem and solution spaces appears as a contractual process involving validation and verification 
[Pyster et al., 2012a] (Fig. 7). “Validation is used to ensure that one is working the right problem, whereas verification is used 
to ensure that one has solved the problem right” [Martin, 1997]. In this sense, we propose a formalization of the verification 
and validation processes by interpreting Jackson’s works [Gunter et al., 2000] about optative and indicative moods, and con-
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sidering the predicate: W ⋀ S ⇒ R,  where the specification S (Optative object Sink) must satisfy the requirement R (Optative 
object Source) considering the domain knowledge W (Indicative Object). Thus, the verification process performed by solution 
space consists in the satisfaction of the predicate: 

Wsolution space ⋀ Optative_objectSink ⇒	Optative_objectSource 
In a similar way, the validation process performed by problem space has to satisfy the predicate:  

Wproblem space ⋀ Optative_objectSink ⇒	Optative_objectSource  
This shows that trainees would not valid by themselves their solution. Their work would be evaluated by the corre-

sponding problem space. It can be either the trainer for the system level, or other trainees for specialists.  
 

 

Fig. 7 Verification and Validation processes interoperation artifacts 

4 SE training solution assessments 

To illustrate the potential benefits of the recommendations expressed in the previous section, we focus on the specification 
of the CISPI platform modifications. In order to specify it, a set of projects are proposed by relevant trainers (problem space) to 
student teams (solution spaces), as parts of their SE training curriculum. 

The first set of observations we make is that, with such formalizations and explanations, trainees understand more easily SE 
concepts and the relative positioning of SE processes. They are aware of their respective roles within problem and solution 
spaces, and establish contractual interoperations they should have between them, and with trainers. They clearly make the dif-
ference between requirement definition and analysis processes, and between verification and validation processes. 

The second set of observations we make concerns the application of the recommendations on MBSE, more specifically with 
SysML [Holt & Perry 2008]. We proposed to students to interpret SE recommendations into SysML modeling recommenda-
tions or rules, in order to facilitate diagram authoring and to improve SysML semantics [Ober et al. 2011]: 

 The problem / solution spaces partitioning of SysML models can be done using packages: “problem space package” and 
“solution space package”. This has a main interest for requirement definition and analysis, for example to clearly separate 
stakeholder requirements and system requirements; 

 The source & sink concept is closed to UML customer & supplier roles used in dependencies to ensure traceability between 
objects. Given that SysML is a UML profile, we propose to use dependencies for the traceability during the requirement 
specification process, as presented in Table 1. Note that during the requirement analysis process, we have identified 4 types 
of transformations: refinement, decomposition, composition and induction [Bouffaron et al., 2012];  

 As transformations rely on skills, it is very important to trace their use in models. We propose to include skills into models 
using SysML “Rationales”. Such rationales can be linked to dependencies between requirements to justify and trace the 
transformation performed. 

 Although verification and validation processes can be executed according to skills, which can be traced using SysML ra-
tionales as presented before, they are usually performed according to SysML “Test Cases”. Problem and solution spaces do 
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not have necessarily similar test cases to verify and validate requirements. Thus we propose to link solution space test cases 
to requirements with a “verify” dependency as the indicative mood for the verification process, and to create the “validate” 
dependency for the validation process in order to clearly make the difference between verification and validation. 

 
 

Process Source Sink SysML  

dependencies 

Description Stakeholder requirement 
– Problem space 

Stakeholder require-
ment – Solution space 

trace 

Prescription System requirement – 
Solution space 

System requirement – 

Problem space 

trace 

Requirement 
Analysis 

Requirement level n Requirement level n+1 Refine, Derive, 
Requirement 
containment re-
lationship … 

Validation Stakeholder requirement System requirement satisfy 

Table 1. SysML dependencies used to model source and sink relations 

 To illustrate this second set of observations, we focus on the following stakeholder requirement, extracted from a student 
project: “CISPI-AFS shall produce a sufficient water flow rate for the return of the primary circuit to SCHE conditions”. Con-
sidering the work of students who are not guided by the recommendations made in section 3, the resulting requirement diagram 
is very poor, presenting only a stakeholder requirement and a system requirement tracing it (Fig. 8).  

 

 

Fig. 8 Requirement diagram made by students without rules application 

Considering now the work done by students guided by section 3 recommendations (Fig. 9), the approach is the following: once 
expressed in the trainer problem space (represented by a package), the stakeholder requirement is described to the trainees’ 
system level solution space (also represented by a package). To transform (refine) this requirement into system requirements, 
as well as to verify the requirements they produce, trainees need skills that they can have or that can be required to specialist 
engineering solution spaces. These skills are then traced in models with rationales. The validation of system requirements is 
done by the trainer in the problem space using a test case which is traced in models. 

Sufficient_Flow_Rate_PbS
«Requirement»

ID = SH_1

AFS shall produce a sufficient water flow rate for
the return of the primary circuit to SCHE 

Sufficient_Flow_Rate
«Requirement»

ID = CISPI_2

AFS shall produce a sufficient water flow rate for
the return of the primary circuit to : T < 180°C 
and P < 30 bars

«trace»«trace»

Flow_Rate
«Requirement»

ID = CISPI_3

Flow rate produced by ASG shall be 80 t/h

«trace»«trace»
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Fig. 9 Requirement diagram made by students applying rules 

The comparison of the requirement diagrams of Fig. 8 and Fig. 9 shows that recommendations improve the traceability be-
cause requirements are clearly classified into packages, and because skills used for requirement transformations and verifica-
tion are traced into models. The verification of student work is also simpler, which is important in a learning context in which 
teachers can be at the same time the contracting authority and the support of student assessment. More detailed dependencies 
links (verify validate…) helps the mutual understanding of models, and accelerates the specification process in decreasing the 
number of iterations before converging on validated system requirements. 

Note that this training process based on a reference specification process enable to rationally extend the project structure of 
SysML based tools as the one7 for the CISPI project, as well as their metamodel for the relevant use of required SE artifacts. 

                                                           
7 IBM® Rational® Rhapsody® supporting Model transformation Based Systems Engineering processes. 
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Trainer_Problem_Space

Sufficient_Flow_Rate_PbS
«Stakeholder_Requirement»

ID = SH_1

AFS shall produce a sufficient water flow rate 
for the return of the primary circuit to SCHE 
conditions

Trainee_Solution_Space
«rationale,Trainee_Domain»

Problem to be solved by 
SE students

testCase_1

Validated by : 
Validation 
Activity Diagram

Trainee_SE_Solution_Space

Sufficient_Flow_Rate
«Requirement»

ID = CISPI_2

AFS shall produce a sufficient water flow rate for
the return of the primary circuit to : T < 180°C 
and P < 30 bars

Sufficient_Flow_Rate_SolS
«Requirement»

ID = CISPI 1
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5 Conclusions 

In order to cope with the large amount of “best-practices” required to face any SE project with the limited amount of train-
ing resources (time, platforms, trainers’ skill and knowledge, trainees’ knowledge heterogeneity…), we decided to share a 
common model of understanding of the process of engineering a system as a whole. This is a prerequisite to logically train 
mainly the technical processes and their related SE artifacts based on the specification process considered as a key SE driver.  

ORM diagrams presented in this article are parts of a metamodel under development for training as well as for engineering 
purposes. This SE specification-based metamodel will be used as a pivotal reference in order to map systems modeling lan-
guages and tool artifacts with best SE artifacts. 
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